Genome annotation
Genome annotation was performed using FGENESH++ v7.2.2 (Softberry;
(Solovyev et al., 2006)) on a Pawsey Supercomputing Centre Nimbus cloud
machine (256 GB RAM, 64 vCPU, 3 TB storage) using the longest open
reading frame predicted from the global transcriptome, non-mammalian
settings, and optimised parameters supplied with the Corvus
brachyrhynchos (American crow) gene-finding matrix. BUSCO v5.2.2 in
‘protein’ mode was used to assess the completeness of the annotation
with the Aves_odb10 lineage on Galaxy Australia.
Supplementary References*
Allio, R., Schomaker-Bastos, A., Romiguier, J., Prosdocimi, F., Nabholz,
B., & Delsuc, F. (2020). MitoFinder: Efficient automated large-scale
extraction of mitogenomic data in target enrichment phylogenomics.Molecular Ecology Resources , 20 (4), 892-905.
https://doi.org/https://doi.org/10.1111/1755-0998.13160
Andrews, S. (2010). FastQC: A quality control tool for high
throughput sequence data .
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Barnett, D. W., Garrison, E. K., Quinlan, A. R., Strömberg, M. P., &
Marth, G. T. (2011). BamTools: a C++ API and toolkit for analyzing and
managing BAM files. Bioinformatics , 27 (12), 1691-1692.
https://doi.org/10.1093/bioinformatics/btr174.
Bell, P. J., Webb, M. H., Holdsworth, M., & Baker, G. B. (2023).
Defining and mapping habitat. requirements to support the survival of
King Island threatened birds. Report to Cradle Coast NRM, Cradle Coast
Authority, Burnie, Tasmania.
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics ,30 (15), 2114-2120.
https://doi.org/10.1093/bioinformatics/btu170
Bushnell, B. (2022). BBMap . Retrieved February 2022 from
sourceforge.net/projects/bbmap/
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H., & Li, H. (2021).
Haplotype-resolved de novo assembly using phased assembly graphs with
hifiasm. Nature Methods , 18 (2), 170-175.
https://doi.org/10.1038/s41592-020-01056-5
Cheng, H., Jarvis, E. D., Fedrigo, O., Koepfli, K.-P., Urban, L.,
Gemmell, N. J., & Li, H. (2022). Haplotype-resolved assembly of diploid
genomes without parental data. Nature Biotechnology ,40 (9), 1332-1335.
https://doi.org/10.1038/s41587-022-01261-x
Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V.,
Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M.,
& Li, H. (2021). Twelve years of SAMtools and BCFtools.GigaScience , 10 (2).
https://doi.org/10.1093/gigascience/giab008
Do, C., Waples, R. S., Peel, D., Macbeth, G. M., Tillett, B. J., &
Ovenden, J. R. (2014). NeEstimator v2: re‐implementation of software for
the estimation of contemporary effective population size (Ne) from
genetic data. Molecular ecology resources, 14(1), 209-214.
Eiler, A., Löfgren, A., Hjerne, O., Nordén, S., & Saetra, P. (2018).
Environmental DNA (eDNA) detects the pool frog (Pelophylax
lessonae ) at times when traditional monitoring methods are insensitive.SCIENTIFIC REPORTS , 8 , 5452.
https://doi.org/10.1038/s41598-018-23740-5
Feng, S., Stiller, J., Deng, Y. et al. Dense sampling of bird
diversity increases power of comparative
genomics. Nature 587 , 252–257 (2020).
https://doi.org/10.1038/s41586-020-2873-9
Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G.,
Feschotte, C., & Smit, A. F. (2020). RepeatModeler2 for automated
genomic discovery of transposable element families. Proc Natl Acad
Sci U S A , 117 (17), 9451-9457.
https://doi.org/10.1073/pnas.1921046117
Haas, B. J. (2022). TransDecoder (find coding regions within
transcripts) . Retrieved February 2022 from
https://github.com/TransDecoder/TransDecoder
IUCN SSC Amphibian Specialist Group. (2022). Taudactylus pleione.
The IUCN Red List of Threatened Species 2022:e.T21533A78446285.Retrieved 31st March from
https://dx.doi.org/10.2305/IUCN.UK.2022-2.RLTS.T21533A78446285.en
Kang, Y.-J., Yang, D.-C., Kong, L., Hou, M., Meng, Y.-Q., Wei, L., &
Gao, G. (2017). CPC2: a fast and accurate coding potential calculator
based on sequence intrinsic features. Nucleic Acids Research ,45 (W1), W12-W16. https://doi.org/10.1093/nar/gkx428
Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019).
Graph-based genome alignment and genotyping with HISAT2 and
HISAT-genotype. Nature Biotechnology , 37 (8), 907-915.
https://doi.org/10.1038/s41587-019-0201-4
Kuo, R. I., Cheng, Y., Zhang, R., Brown, J. W. S., Smith, J., Archibald,
A. L., & Burt, D. W. (2020). Illuminating the dark side of the human
transcriptome with long read transcript sequencing. BMC Genomics ,21 (1), 751. https://doi.org/10.1186/s12864-020-07123-7
Li H. and Durbin R. (2009) Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics , 25 ,
1754-1760.
Meng, G., Li, Y., Yang, C., & Liu, S. (2019). MitoZ: a toolkit for
animal mitochondrial genome assembly, annotation and visualization.Nucleic Acids Research , 47 (11), e63-e63.
https://doi.org/10.1093/nar/gkz173
Mikheenko,A., Prjibelski, A., Saveliev, V., Antipov, D., Gurevich, A.,
Versatile genome assembly evaluation with QUAST-LG, Bioinformatics
(2018) 34 (13): i142-i150. doi: 10.1093/bioinformatics/bty266 First
published online: June 27, 2018
Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J.
T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction
of a transcriptome from RNA-seq reads. Nat Biotechnol ,33 (3), 290-295. https://doi.org/10.1038/nbt.3122
Price, G., & Farquharson, K. (2022). PacBio HiFi genome assembly using
hifiasm v2.1.
WorkflowHub. https://doi.org/10.48546/WORKFLOWHUB.WORKFLOW.221.3
Price, G. (2023). Genome assessment post assembly.
WorkflowHub. https://doi.org/10.48546/WORKFLOWHUB.WORKFLOW.403.2
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., &
Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation
completeness with single-copy orthologs. Bioinformatics ,31 (19), 3210-3212.
https://doi.org/10.1093/bioinformatics/btv351
Smit, A. F. A., Hubley, R., & Green, P. (2013-2015). RepeatMasker
Open-4.0 . Retrieved February 2022 from
http://www.repeatmasker.org
Solovyev, V., Kosarev, P., Seledsov, I., & Vorobyev, D. (2006).
Automatic annotation of eukaryotic genes, pseudogenes and promoters.Genome Biology , 7 (1), S10.
https://doi.org/10.1186/gb-2006-7-s1-s10
Sim, S.B., Corpuz, R.L., Simmonds, T.J. et al. HiFiAdapterFilt, a
memory efficient read processing pipeline, prevents occurrence of
adapter sequence in PacBio HiFi reads and their negative impacts on
genome assembly. BMC Genomics 23 , 157 (2022).
https://doi.org/10.1186/s12864-022-08375-1
Sun, Y. B., Zhang, Y., & Wang, K. (2020). Perspectives on studying
molecular adaptations of amphibians in the genomic era. Zool Res ,41 (4), 351-364.
https://doi.org/10.24272/j.issn.2095-8137.2020.046
The Galaxy Community. (2022). The Galaxy platform for accessible,
reproducible and collaborative biomedical analyses: 2022 update.Nucleic Acids Research , 50 (W1), W345-W351.
https://doi.org/10.1093/nar/gkac247
Uliano-Silva, M., Gabriel R. N. Ferreira, J., Krasheninnikova, K.,
Formenti, G., Abueg, L., Torrance, J., Myers, E. W., Durbin, R.,
Blaxter, M., & McCarthy, S. A. (2023). MitoHiFi: a python pipeline for
mitochondrial genome assembly from PacBio High Fidelity reads.bioRxiv , 2022.2012.2023.521667.
https://doi.org/10.1101/2022.12.23.521667
Vurture, G. W., Sedlazeck, F. J., Nattestad, M., Underwood, C. J., Fang,
H., Gurtowski, J., & Schatz, M. C. (2017). GenomeScope: fast
reference-free genome profiling from short reads. Bioinformatics ,33 (14), 2202-2204.
https://doi.org/10.1093/bioinformatics/btx153
Webb, M. H., Holdsworth, M., Stojanovic, D., Terauds, A., Bell, P., &
Heinsohn, R. (2016). Immediate action required to prevent another
Australian avian extinction: the King Island Scrubtit. Emu-Austral
Ornithology, 116(3), 223-229.
Wright, B., Farquharson, K.A., McLennan, E.A., Belov, K., Hogg, C.J.,
Grueber, C.E. (2019). From reference genomes to population genomics:
comparing three reference-aligned reduced-representation sequencing
pipelines in two wildlife species. BMC Genomics. 20(453).
doi:10.1186/s12864-019-5806-y