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Abstract 20 

High-resolution climate projections provide crucial insights into assessing climate risk and 21 
developing climate resilience strategies. The Seasonal Trends and Analysis of Residuals 22 
empirical statistical downscaling model (STAR-ESDM) is a computationally-efficient and 23 
flexible approach to generating high-resolution climate projections that can be applied globally 24 
using a broad range of predictands and predictors that can be sourced from weather stations, 25 
gridded datasets, satellites, reanalysis, and global or regional climate models. It uses signal 26 
processing combined with Fourier filtering and kernal density estimation techniques to 27 
decompose and smooth any quasi-Gaussian time series, gridded or point-based, into multi-28 
decadal long-term means and/or trends; static and dynamic annual cycles; and probability 29 
distributions of high-frequency variability. Long-term predictor trends are bias-corrected and 30 
predictor components are used to map remaining predictand components to future conditions. 31 
Components are then recombined for each station or grid cell to produce a continuous, high-32 
resolution bias-corrected and downscaled time series at the spatial and temporal scale of the 33 
original time series. Comparing STAR-ESDM output with high-resolution daily temperature and 34 
precipitation projections generated by a fully dynamical global model demonstrates that the 35 
method is extremely robust, capable of accurately reproducing projected changes for all but the 36 
most extreme temperature and precipitation values. For most continental areas, biases in 1-in-37 
1000 hottest and coldest temperatures are less than 0.5°C and biases in the 1-in-1000 wet day 38 
precipitation amounts are less than 5 mm/day. As climate impacts intensify, STAR-ESDM 39 
represents a significant advance in generating consistent high-resolution projections to 40 
comprehensively assess risk and optimize resilience. 41 

Plain Language Summary 42 

The STAR-ESDM tool is able to quickly and accurately generate climate projections for 43 
individual weather stations and high-resolution grids anywhere in the world. It does this by 44 
breaking down global or regional climate model output into different components, from the long-45 
term trend to the day-to-day variability, then merging modelled projected changes with 46 
observations. When tested against projections generated by a much more computationally 47 
expensive and complex fully dynamical global model, STAR-ESDM produced almost the same 48 
output even for very extreme temperature and precipitation values, at a fraction of the 49 
computational cost. Moreover, unlike most statistical downscaling models, this method isn’t tied 50 
to any specific geographic area or predictand and/or predictor dataset. It can be applied to any 51 
regional or global dataset, whether generated by a climate or reanalysis model, derived from 52 
satellite observations, recorded at weather stations, and more. As climate impacts escalate, 53 
STAR-ESDM offers a flexible and effective way to generate the high-resolution climate 54 
projections needed to better gauge climate risk and enhance resilience anywhere in the world 55 
where reliable observational or quasi-observational data, including from reanalysis or satellites, 56 
are available. 57 

1 Introduction 58 

Climate is now changing faster than any time in human history due to human activities, 59 
primarily emissions of greenhouse gases (IPCC, 2021a). These changes are already impacting 60 
food production, water quality, and infrastructure (IPCC, 2022) as well as increasing the 61 
frequency and/or intensity of many types of extreme events including heatwaves and heavy 62 
downpours (IPCC, 2021a). Quantifying the risks these rapid changes pose to human society and 63 
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the natural environment can provide critical input to resilience and adaptation planning while 64 
simultaneously highlighting the need for mitigation. As the impacts of climate change become 65 
increasingly evident around the world, the urgency of such assessments – and the need for 66 
approaches to generating projections that can be applied globally, especially in the most 67 
vulnerable regions which often lack abundant observational data or modeling capacity – is 68 
increasing rapidly.  69 

Future projections typically begin with a range of plausible scenarios that describe the 70 
emissions resulting from a consistent set of human choices regarding climate policy, energy, land 71 
use, population and more (Hayhoe et al. 2017; Chen et al. 2021). These projections are then used 72 
as input to global climate models (GCMs) that divide the atmosphere, ocean, and land surface up 73 
into millions of discrete cells to solve numerical equations representing the physical, biological, 74 
and chemical phenomena in each, as well as inter-cell transfer of water, gases, energy, and more.  75 
As output, GCMs generate gridded projections of key variables including temperature, 76 
precipitation, wind direction and speed, humidity, and other variables that characterize the 77 
evolution of long-term climatic conditions as well as shorter-term variability.  78 

The horizontal spatial resolution of GCMs has increased significantly over the past few 79 
decades, with grid cells for CMIP6 models typically ranging from approximately 50 to 260 km 80 
per side (IPCC, 2021b). However, most climate resilience and preparedness efforts require 81 
climate inputs at spatial and sometimes temporal scales much finer than the resolution of even 82 
the latest GCMs (Kotamarthi et al. 2021). In addition, both regional and global model output is 83 
often biased relative to observations due to both structural and parametric uncertainty in the 84 
models as well as the unavoidable fact that the average of a grid cell, particularly for temperature 85 
or precipitation extremes over land, is rarely representative of the value at an individual location 86 
or smaller area within the grid cell. Use of regionally homogenous and/or biased output to 87 
calculate the impacts of, for example, extreme heat on the human body, crop yields, or flood risk 88 
due to heavy precipitation, will yield errors that could in turn result in adaptation measures that 89 
are insufficient (if the projections under-estimate future change, creating a Type 2 or false 90 
negative error) or overly expensive and stringent (if projections over-estimate future change, a 91 
Type 1 or false positive error). 92 

These challenges are not unique to climate modeling; they are also relevant to the field of 93 
numerical weather modeling, where they were initially addressed by combining model output 94 
with observations to create a series of multivariate regression corrections such as Model Output 95 
Statistics (Glahn & Lowry, 1972). In a similar way, biases can be removed from climate model 96 
output by combining statistical methods with observed data. Specifically, empirical statistical 97 
bias correction and downscaling of climate model projections introduces new information from 98 
observations and combines this information with model output to generate higher-resolution 99 
projections based on coarser-resolution fields consisting of local weather and climate 100 
characteristics like temperature, humidity, and precipitation. 101 

The application of statistical methods to bias correcting GCM output was first proposed 102 
by Karl et al. (1990) as “a method, called climatological projection by model statistics, to relate 103 
GCM grid-point free-atmosphere statistics, the predictors, to these important local surface 104 
observations.” Since then, hundreds of ESDMs have been developed and published, each 105 
describing a separate method or additional development of statistical bias correction and 106 
downscaling method. Previously independent methods have been combined and additional 107 
advanced statistical and computational techniques applied, including neural networks, clustering 108 
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methods such as expectation-maximization algorithms, combined statistical-dynamical 109 
approaches, machine learning techniques, and deep learning models (e.g., Coulibaly et al. 2005; 110 
Vrac et al. 2007a; Walton et al. 2015; Sachindra et al. 2018; Hernanz et al. 2022; Wang & Tian, 111 
2022). This abundance of methods, a number of which we were involved in developing or 112 
evaluating (e.g. Vrac et al., 2007b; Stoner et al., 2012; Barsugli et al. 2013; Dixon et al. 2016), 113 
begs the obvious question: Why is another needed? Why STAR-ESDM?  114 

Despite the plethora of statistical methods and the more than 30-year period over which 115 
they have been developed, stakeholders still do not have a tool that fully encompasses all that the 116 
scientific modeling community can provide. With the notable exception of the Statistical 117 
DownScaling Model (SDSM, Wilby et al. 2002), most ESDMs are developed for a specific 118 
geographic region. This has led to a plethora of different ESDMs being applied to generate 119 
projections for watersheds, regions, and countries around the world; differences between those 120 
projections, especially at the tails of the distribution, are difficult to resolve without digging into 121 
the nuances of each model. In addition, the predictors and predictands for most ESDMs are hard-122 
wired into the model. It can be difficult and time-consuming to update them with new CMIP 123 
simulations or different predictands, and typically that new data must be in the same format as 124 
the original predictor and predictand for which they were designed: gridded or station-based. 125 
Other ESDMs may demonstrate high reliability in simulating important features such as wet and 126 
dry spells, but were designed more as a proof of concept than a tool that can be used by 127 
stakeholders on a regular basis (e.g. Vrac et al. 2007a). 128 

As discussed in Kotamarthi et al. (2021), there is a significant and growing demand for 129 
projections that are: (1) robust, with clearly quantifiable accuracy; (2) generalizable and flexible, 130 
applicable to any region of the world and any observational or modelled dataset; (3) capable of 131 
rapidly bias-correcting and downscaling large suites of global or regional climate model output 132 
for multiple scenarios; and (4) can be used with confidence to calculate increasing risks for 133 
applications where absolute values are required, such as extreme heat, changing energy demand, 134 
shifting crop yields, changes in water demand and supply, and more. Many existing methods 135 
meet one or more of these criteria, but few if any meet them all. 136 

Our objective in developing STAR-ESDM is to create a highly functional and 137 
generalizable ESDM that addresses these four stakeholder concerns, and that can be applied 138 
broadly around the world using any predictand dataset in which the user has confidence. 139 
Building on previous research (e.g. Hayhoe et al., 2004, 2008; Stoner et al., 2012) and evaluation 140 
techniques (Dixon et al. 2016) we have developed a demonstrably flexible, computationally 141 
efficient, and robust statistical model that is capable of downscaling any atmospheric variable 142 
that is measured on a daily basis as long as it has, or can be transformed into, an approximately 143 
Gaussian distribution. This approach can be applied globally and to a broad range of climate and 144 
weather data sources, from global and regional model output to satellite data, gridded 145 
observations, and weather station records. Section 2, Model Development, describes the 146 
statistical basis of the model and refinements that improve its ability to downscale global model 147 
outputs. Section 3, Model Performance and Evaluation, describes how the model’s ability to 148 
simulate temperature and precipitation extremes across the globe was tested using the perfect 149 
model framework. Finally, Section 4 summarizes the findings of this analysis, its application to 150 
climate impact assessments, and future model development objectives. 151 
  152 
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2 STAR-ESDM Design and Development 153 

STAR-ESDM is a MATLAB-based code that combines signal decomposition with 154 
Fourier filtering and kernel density estimation to create an effective and computationally-155 
efficient bias-removal and spatial disaggregation technique that can be used to analyze and 156 
translate a coarser-resolution time series of any quasi-Gaussian variable into a finer-resolution 157 
time series of the same variable. It is designed for application to climatological data: specifically, 158 
(1) to analyze biases in GCM and RCM simulations compared to observational or quasi-159 
observational datasets over timescales relevant to the statistics of climate and weather, and (2) to 160 
use this information to bias-correct and spatially disaggregate predictor projections to the scale 161 
of the input predictands. Predictands can consist of gridded or station-based observations, quasi-162 
observations such as satellite datasets or reanalysis, or higher resolution model output at any 163 
spatial scale finer than that of the predictor. 164 

The first part of the acronym, STAR (seasonal trends and analysis of residuals) refers to 165 
the decomposition of a time series into components based on temporal variability: (1) long-term 166 
decadal average and/or trend, (2) climatological annual cycle (average over the historical period), 167 
(3) dynamical annual cycle (changing over time), and (4) high frequency daily anomalies. The 168 
second part of the acronym, ESDM (empirical-statistical downscaling model) refers to the steps 169 
taken once a modeled predictor and an observed or quasi-observed predictand has been 170 
decomposed into these components. The predictor signal is bias-corrected relative to the 171 
observed or predictand signal for a historical period and the projected changes then applied to 172 
observed values, resulting in bias-corrected and downscaled high-resolution projections at the 173 
spatial scale of the observations. 174 

In empirical statistical bias-correction and downscaling, stationarity is a primary concern 175 
(e.g. Dixon et al. 2016). Will statistical relationships developed based on historical data hold true 176 
under potentially very different climatic conditions in the future? In cases where human 177 
intervention directly or indirectly, through climate change, significantly alters the characteristics 178 
of the land surface (e.g. by expanding an urban area, through large-scale deforestation, or when 179 
the timing of snowpack melt shifts), the answer is clearly no. The only way to account for these 180 
in climate modeling, whether statistical or dynamical, is to either explicitly include the change or 181 
build in the capacity to predict the change. In other cases, however, it may be possible to increase 182 
the stationarity of the model by increasing its ability to resolve different components of a signal 183 
that may be changing differently over time: and this is the hypothesis on which STAR-ESDM is 184 
based.  185 

Why might signal decomposition improve the stationarity of a statistical model? Biases 186 
and errors in GCM simulations, which arise due to both structural and parametric uncertainties in 187 
the model, are typically physical in origin and relate to a process or a component not accurately 188 
represented in the model for that region or aspect of the climate system. When the GCM signal is 189 
considered in sum, as an ‘analogue’ signal, it increases the likelihood that some of the biases 190 
interact and even cancel each other out. A statistical method that cannot distinguish between the 191 
various sources of bias must assume that not only the biases, but how they interact with each 192 
other, remain stationary over time. Decomposing the signal by the timescale over which various 193 
types of biases may occur allows them to be better quantified and a statistical correction 194 
developed that is appropriate to the timescale at which they are relevant: effectively ‘digitizing’ 195 



manuscript submitted to Earth’s Future 

 

the signal, to a certain extent. Through decomposing the signal, each component of which may 196 
be biased due to different sources of structural or parametric uncertainty within the GCM, these 197 
can be corrected independently before the signal is recombined. Previous evaluations of a beta 198 
version of STAR-ESDM v1 using the perfect model framework (Dixon et al. 2016) shows that 199 
the manner in which it allows distributions of daily anomalies and annual climatology to change 200 
over time relaxes the stationarity assumption that underlies most ESDMs, significantly reducing 201 
the bias, particularly at the tails of the distribution where extreme events may be relatively rare 202 
but have a proportionally greater impact. Based on that preliminary analysis, we have now 203 
developed a fully operational STAR-ESDM v2 can be used to bias-correct and downscale a 204 
broad range of coarser-resolution predictor datasets to finer-resolution predictands, and evaluate 205 
its stationarity here. 206 

Applying the STAR-ESDM framework to bias-correct and spatially disaggregate coarser 207 
predictor simulations (which could be derived from any dataset a user wishes to bias-correct and 208 
downscale, but are most likely to consist of GCM or RCM output) relative to a higher-resolution 209 
predictand dataset consists of three main steps (Figure 1). First, each time series is disaggregated 210 
into individual components. Second, predictand components are used to bias-correct predictor 211 
components, and predictor components are used to map predictand statistics to future conditions. 212 
Lastly, bias-corrected and downscaled components are recombined to create a single continuous 213 
time series at the spatial scale of the predictand but covering the temporal range of the predictor.  214 

The first component is the long-term trend, determined by fitting an optimized linear or 215 
third-order trend to the entire time series. This represents the climatological change resulting 216 
from human choices. Based on analyses comparing model-simulated with observed multi-217 
decadal trends at the regional to global scale (IPCC, 2021a), the framework currently assumes 218 
that the absolute value of the predictand and the long-term normalized trend of the predictor are 219 
accurate.  220 

The second component is the mean or climatological annual cycle over the historical 221 
period. It is extracted by averaging each day of the year over the historical period, then 222 
smoothing the resulting curve using a low-pass Fourier filter to remove noise. This was used in 223 
place of a conventional smoothing filter such as a rolling mean to prevent dampening the 224 
extremes. The historical period is flexible, automatically determined based on the beginning and 225 
end of the predictand data being used. Thus, if a longer dataset or a more recently updated one is 226 
being used, predictand values beginning as far back as 1900 or ending as recently as the latest 227 
full year of predictand data will be considered part of the historical “training” period; whereas if 228 
a relatively short predictand dataset such as 1971-2000 is being used, then only this period will 229 
be used to determine the static annual cycle as well as the components that follow. The 230 
difference between the predictand and predictor annual cycle is used to bias-correct the 231 
predictor’s dynamic annual cycle (how it varies from year to year). 232 

The third component is the annually-varying or dynamical annual cycle. This component 233 
is smoothed both along the year axis and the day-of-year axis to create a climatological surface 234 
that changes over time, but with the variability and the long-term trend over both day to day and 235 
year to year timescales removed. This is then used to adjust the predictand annual cycle to 236 
account for future changes. It captures the change in the shape of the climatology over time, 237 
accounting for how summer may be broadening, for example, and shoulder seasons shrinking, or 238 
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estimate of the likely changes in the predictand’s CDFs over time as well. The former allows the 256 
bias-corrected annual signal to vary over time, and the latter allows mapping of the predictor’s 257 
daily anomalies from the predictor’s time-varying CDFs to an estimate of the predictand’s time-258 
varying CDFs, rather than to a static historical CDF.  259 

Another important feature of STAR-ESDM is that creates probability surfaces of the 260 
annual cycles rather than discrete monthly CDFs.  These surfaces are generated for both the 261 
historical period and future conditions using a rolling window that steps forward through time. 262 
Two-dimensional frequency-based (Fourier domain) filtering of the probability surfaces ensures 263 
they vary smoothly, with unique values for each day of the year.  Similarly, one-dimensional 264 
Fourier filtering is used to smooth the static or climatological annual cycles for the predictand’s 265 
and the predictor’s historical period data, and two-dimensional filtering is used to calculate 266 
dynamic annual cycle surfaces which evolve over time by combining the observations’ historical 267 
and model future data. Thus, the dynamic annual cycle surface represents the expected value of 268 
the data variable over time, while the probability surfaces represents the variability of the data 269 
variable, both in the historical period and over time.  The predictor’s annual cycle is adjusted to 270 
match the mean value and shape of the predictand’s in the historical period, and allowed to vary 271 
over time as estimated by the predictor through the full time period from past into the future.   272 

The frequency range of the filters is selected to allow separating the signal into the 273 
seasonally varying component (climatology) and the short-term variability (weather).  274 
Seasonally-varying filters capture 90 to 95 percent of typical seasonal-shape changes, including 275 
events that repeat annually but excluding short-term random events. Once these three 276 
components have been removed from the signal, what remains primarily reflects high-frequency 277 
daily variability in the time series which may not repeat from year to year. This last component 278 
characterizes the magnitude and frequency of extremes, which are the most challenging aspect of 279 
future projections for ESDMs to accurately resolve, and simultaneously the most relevant to 280 
many stakeholder applications in building climate resilience to threats including heatwaves, 281 
droughts, floods and more.  282 

Daily anomaly values are bias-corrected by calculating a quantile value for each data 283 
point and mapping between the predictor’s set of rolling CDFs and the predictand’s set of rolling 284 
estimated CDFs. Filtering of daily variability is also done in the Fourier domain as it is much 285 
faster computationally than using time-domain convolution, and computational efficiency is 286 
another key consideration in development of this model. Finally, one last round of Fourier 287 
filtering combined with Kernal Density Estimation (KDE) smoothing is used to transform the 288 
two-dimensional histograms of the anomalies into PDF surfaces, which are then integrated along 289 
the probability axis to create CDF surfaces; KDE being an approach determined by McGinnis et 290 
al. (2015) to perform well in bias correcting climate model output. 291 

These steps are generalizable to any variable with a quasi-Gaussian distribution or that 292 
can be transformed into a quasi-Guassian form. As discussed in the next section, however, 293 
through iterative application of the Perfect Model framework, the method has been optimized to 294 
daily maximum and minimum temperature and precipitation (and in the future, will be similarly 295 
optimized to apply the model to humidity, solar radiation, and more).  296 

3 Model Performance and Evaluation 297 
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We evaluate the stationarity of the STAR-ESDM framework using a “Perfect Model” 298 
framework. As described in Dixon et al. (2016), the name of this approach is not intended to 299 
contradict the aphorism often attributed to statistician George Box, “All models are wrong but 300 
some are useful.” Rather, “Perfect Model” describes a methodology that uses a high-resolution 301 
GCM simulation (in this case, a 25km resolution GFDL simulation for a historical period and for 302 
an end-of-century 2086-2095 RCP8.5 scenario) and a coarsened version of the same simulation 303 
as the predictand and predictor variables to train an ESDM in a “pseudo-reality context,” as 304 
Erlandsen et al. (2020) describe it. The resulting ESDM is then applied to the coarsened GCM 305 
simulations in the future and the output compared to the fully dynamical simulations for the 306 
same time period. Differences between the statistically bias-corrected and downscaled ESDM 307 
and dynamical GCM output for the same future time period reveal structural uncertainties in the 308 
ESDM that prevent it from generating the information that a much more complex (but less 309 
flexible and more computationally demanding) dynamical high-resolution global climate model 310 
would. Locations where biases are minimal indicate that the ESDM can generate virtually 311 
identical values to those of a fully dynamical model (with the benefits of greater flexibility and 312 
significantly reduced computational cost, as well as bias-correction). 313 

To illustrate the improvement offered by the signal processing approach, we compare the 314 
biases in STAR-ESDM output with the biases in projections generated using the Asynchronous 315 
Regional Regression Model, a parametric quantile mapping approach to bias correction and 316 
downscaling that has been used in a number of regional climate assessments across the United 317 
States (Stoner et al. 2012). As shown in Figure 2, while ARRM performed well over the 318 
contiguous United States at simulating daily maximum temperature for quantiles ranging 319 
between 0.1 and 99.9, it displayed biases in maximum temperature values ranging from 3 to 5°C 320 
for both extreme hot and cold temperatures along most major coastlines and biases in mean 321 
values averaging around 3°C across much of Central and South America and central Africa that 322 
would preclude its use in those regions. In contrast, STAR-ESDM displays almost no biases in 323 
mean values across any continental area other than a bias of between 1-2°C at the highest 324 
elevations of the Rocky and Himalayan mountain ranges. Even out to the tails of the distribution, 325 
at the 0.1 and 99.9th quantiles, biases are significantly reduced in both extent and magnitude 326 
relative to ARRM. For the 1-in-1000 coldest temperatures, STAR-ESDM warm biases occur 327 
primarily along Arctic coastlines, while for the 1-in-1000 highest temperatures, significant warm 328 
and cold biases are present only in the northern Andes and the highest elevation region of the 329 
Himalayas. Table S1 summarizes the locations where STAR-ESDM use is not recommended for 330 
temperature projections, and Figure S2 shows the same results as in Figure 1, except for daily 331 
minimum temperature.   332 
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 333 

Figure 2. Biases over land areas in ARRM (left) and STAR-ESDM (right) daily maximum 334 
temperature (degrees C) compared to high resolution global climate model output for 2086-2095 335 
under the higher RCP8.5 scenario for the 1-in-1000 coldest, mean, and 1-in-1000 hottest days 336 
illustrate the significant improvements the signal processing approach uses over the parametric 337 
quantile mapping approach. 338 

Improvements in precipitation are even more pronounced. (Here, precipitation quantiles 339 
are calculated based on wet days only. As such, they represent a more extreme assessment than 340 
temperature quantiles, which are calculated based on all days.) As shown in Figure 3, ARRM is 341 
capable of simulating projected changes in precipitation over the contiguous United States, 342 
northern Africa, the Middle East, and Europe up to the 90th quantile of wet day precipitation 343 
with minimal biases. Biases of 20-30 mm/day occurred over South America, central Africa, and 344 
southeast Asia. At the 99th quantile, however, positive biases ranging from 20 to 40 mm per day 345 
across the contiguous United States and up to 100mm per day across other continental areas 346 
occurred. By the 99.9th quantile, positive biases ranging from 50 up to greater than 100mm per 347 
day occurred across most continental areas. STAR-ESDM biases are less than 10 mm per day at 348 
the 90th quantile across all land areas. At the 99th quantile, small negative biases on the order of 349 
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10 to 20 mm per day occur across equatorial regions (within about 10 degrees of the equator) 350 
while biases across the rest of the world remain below 10 mm per day. At the 99.9th quantile, 351 
while negative biases approaching 50 mm emerge in equatorial regions, biases across most of 352 
North America, Europe, and central Asia remain below 10 mm. This indicates that even for the 353 
wettest few days in a decade, the statistical model is able to reproduce the values that a high-354 
resolution dynamical model would provide at that quantile. Once again, Table S1 summarizes 355 
the locations, quantiles and seasons where STAR-ESDM use is not recommended for 356 
precipitation.  357 

 358 

Figure 3. Biases over land areas in ARRM (left) and STAR-ESDM (right) daily cumulative 359 
precipitation values (mm per day) compared to 25km global climate model output for 2086-2095 360 
under the higher RCP8.5 scenario for the 1-in-10, 1-in-100, and 1-in-1000 wettest days of all wet 361 
days at that location illustrate the stationarity of the STAR approach and the significant 362 
improvements the signal processing approach uses over the parametric quantile mapping 363 
approach. 364 

As discussed in the section above, the signal processing approach used by STAR-ESDM 365 
already offers significant improvements relative to previous statistical methods. However, a 366 
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second unique aspect of this work is that STAR-ESDM was not developed linearly. Rather, we 367 
used the Perfect Model framework to iteratively and interactively optimize the original code for 368 
daily maximum and minimum temperature and 24-hour cumulative precipitation. This enabled 369 
us to identify areas with high biases, and explore statistical approaches to reducing those biases 370 
that were: (a) consistent with the likely physical basis of the bias, and (b) globally generalizable, 371 
to avoid over-fitting.  372 

 373 

Figure 4. Biases in ARRM (left), STAR-ESDM v1 (center) and STAR-ESDM v2 (right) daily 374 
maximum temperature (degrees C) compared to high resolution global climate model output for 375 
2086-2095 under the higher RCP8.5 scenario for the 0.1, 50th and 99.9th quantiles of the 376 
distribution over the Indian subcontinent show how both the statistical method and the further 377 
refinement using the Perfect Model approach reduce biases compared with previous methods. 378 

 379 

When comparing STAR-ESDM v1 (the original generic code) with v2 (the code that has 380 
been iteratively optimized) at the global scale, there are few obvious improvements in maximum 381 
and minimum temperature biases, other than a reduction in the magnitude of high quantile biases 382 
in equatorial regions (Figures S1 and S2). At a finer scale, however, the added value of these 383 
refinements can be more evident. In high-elevation locations, for example, shifts in the timing of 384 
snow melt lead to large positive and negative temperature biases in spring and summer. Figure 4 385 
compares biases in maximum temperature projections over the Indian subcontinent 386 
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corresponding to ARRM, STAR-ESDM v1 and STAR-ESDM v2. While the greatest 387 
improvements are still obtained by changing the statistical approach, at the 99.9th quantile it can 388 
be seen that an outlier adjustment that was part of the original v1 design (scaling daily extremes 389 
beyond 2.5 sigma) produced slightly greater biases then simply smoothing the entire time series 390 
using the KDE. Removing this scaling further reduced the bias at mid elevations and in the 391 
foothills and expanded the geographic area over which this method can effectively be used in v2. 392 

Precipitation is a more challenging variable to characterize than temperature and as a 393 
result, for this variable the Perfect Model optimization yielded greater benefits. As shown in 394 
Figure S4, STAR-ESDM v1 output for the 99th and 99.9th quantile was characterized by large 395 
bands of positive and negative precipitation biases across equatorial regions, while continental 396 
biases were less but still notable, ranging from -20 mm per day across the Gulf Coast up to 50 397 
mm per day at high elevations in the Andes and Himalayas. We first explored the use of different 398 
methods to transform precipitation into an approximately Gaussian distribution, and identified 399 
power mapping as the most consistent. However, originally v1 used the same empirically-400 
determined power mapping for all locations. Adding an interative search to identify the optimal 401 
equation for each individual location reduced precipitation biases in equatorial regions in terms 402 
of both geographic extent and magnitude, while biases across continental areas in the northern 403 
hemisphere were reduced to less than +/- 5 mm per day. While a dry bias persists across South 404 
America, southern Africa and southeast Asia in v2, the magnitude of the bias ranges from -5 to -405 
15 mm per day, nearly an order of magnitude reduction compared to STAR-ESDM v1. 406 

As alluded to earlier, quantifying biases using the Perfect Model approach also enables us 407 
to identify geographic locations where use of this framework is not recommended as the ESDM 408 
displays significant non-stationarity; these locations and quantiles are listed in Table S1. For 409 
example, shifts in the timing of monsoonal precipitation in a warmer world may be what leads to 410 
precipitation biases across Central America, Mexico and the southwestern United States that 411 
dominate during spring and summer seasons. Similarly, large biases in temperature values still 412 
occur under a set of specific conditions, including biases (a) in high temperatures for very high 413 
elevations in the Andes and Himalayas under a higher scenario by end of century, during the 414 
season that saw the highest level of snow melt during the historical period, and (b) in both high 415 
and low temperatures along Arctic coastlines where rapid melting of shoulder-season sea ice 416 
introduces significant non-stationarity relative to historical conditions. In these cases, the biases 417 
are likely due to the fact that the statistical relationships between predictor and predictand for 418 
future months are now representative of those of a different month in the historical time period. 419 
In future versions of STAR-ESDM, this can be addressed by introducing a phase shift into the 420 
bias corrections applied to the dynamical climatology and the high frequency variability. 421 
Effective reduction of other biases might require more granular information that is absent in the 422 
coarser-scale model, such as distinguishing between land and air temperatures for small islands 423 
below the spatial scale of the predictor grid cell, or for valleys and mountains in areas with 424 
rapidly-varying topography. In the future, we plan to explore whether these could be improved 425 
through incorporating high-resolution digital elevation maps, lapse rates, and more into the 426 
statistical model. 427 

4 Conclusions and Next Steps 428 

As anthropogenic climate change increasingly impacts food production, water quality, 429 
infrastructure integrity, and the frequency and intensity of extreme events, there is a critical need 430 
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for accurate and high-resolution climate projections to inform sectoral and regional climate 431 
resilience planning. The STAR-ESDM model, developed within the Perfect Model framework, 432 
represents a significant advancement in the ability to generate robust high-resolution climate 433 
projections for regional to local-scale climate impact assessments. As described above, the 434 
STAR-ESDM model decomposes a predictand and predictor signal into multiple components 435 
which are then bias-corrected and adjusted individually before being recombined into a single 436 
coherent time series covering the time period of the predictor. The result is a stationary and 437 
computationally-efficient ESDM which was further iteratively developed within the Perfect 438 
Model framework to quantify model biases by variable, region and season. Additionally, it is 439 
extremely flexible, allowing for a range of predictor and predictand inputs, depending on what is 440 
available for that region. 441 

Evaluating STAR-ESDM’s ability to bias correct and downscale climate projections for 442 
end-of-century under a higher (RCP8.5) scenario by comparing its output to that of a high-443 
resolution dynamical model demonstrates that, for quantiles ranging from 0.1 to 99.9 over most 444 
land areas, it is able to produce temperature and precipitation projections that are virtually 445 
identical to those that would be obtained from a high-resolution fully dynamical model. With a 446 
few exceptions, such as the Arctic coastline and areas with rapidly varying topography at high 447 
elevation such as the Himalayas, STAR-ESDM can be confidently applied to nearly any location 448 
in the world for which gridded or point-based predictand data is available. The granularity of this 449 
guidance, as summarized in Table S1, offers stakeholders and users a clear pathway to assessing 450 
the reliability of this information for informing their future assessments, depending on which 451 
quantiles of the distribution, geographic location, and season(s) are most relevant to the impacts 452 
with which they are concerned.  453 

We have already applied the STAR-ESDM framework to generating high-resolution 454 
projections of daily maximum and minimum temperature and precipitation using SSP1-2.6, 455 
SSP2-4.5, SSP3-7.0, and SSP5-8.5 simulations by 24 CMIP6 GCMs as predictors for the 456 
following geographic regions and predictand datasets: (1) the contiguous U.S. using the 457 
NClimGrid 5x5km observational dataset (Vose et al. 2014), (2) the contiguous U.S. using to the 458 
Livneh 1/16th degree observational dataset (Livneh et al. 2015), and (3) North and Central 459 
America and the Caribbean, using over 10,000 GHCNd long-term weather station records 460 
(Menne et al. 2012). We are currently extending this work to the global scale, using Sheffield et 461 
al. (2006) global 0.25 x 0.25 degree gridded dataset and the ERA5-Land 0.1 x 0.1 degree global 462 
dataset (Muñoz-Sabater et al., 2021) as predictands to generate global high-resolution bias-463 
corrected projections. These datasets will be archived shortly; we anticipate we will be able to 464 
remove this sentence and include a DOI for each of these datasets by the time this manuscript is 465 
published. 466 

In future model development, we propose to examine projected phase shifts in annual 467 
cycles to determine whether it is possible to reduce biases arising from to changes in the timing 468 
of monsoonal precipitation or snowpack melt at high elevations. We also plan to refine the 469 
weighting scheme used to select predictor grid cells, to better characterize conditions in areas of 470 
rapidly varying topography such as islands, coastlines, and mountainous areas, and explore the 471 
outcomes of including a high resolution digital elevation map. Finally, recognizing that a 472 
fundamental flaw in statistical methods is the separation and independent bias-correction of 473 
variables that are dynamically linked, long-term we propose to develop a version of STAR-474 
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ESDM where the input is a hypersurface composed of average temperature, daily temperature 475 
range, humidity and precipitation, rather than a single variable.  476 

As the need for accurate and detailed climate impact assessments increases, high-477 
resolution climate projections will play a crucial role in helping societies worldwide adapt to and 478 
mitigate the impacts of climate change. STAR-ESDM provides a valuable tool for resilience and 479 
adaptation planning, especially in the most vulnerable regions which often lack abundant 480 
observational data or modeling capacity. 481 
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