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Key points: 10 

• A catchment-based strategy is proposed to represent explicit land cover heterogeneity 11 

using discretized height bands along a hillslope. 12 

• Landscapes shaped by hillslope water dynamics are detected in many regions of the world 13 

in diverse climate zones. 14 

• The proposed strategy can neatly resolve land cover heterogeneity in land surface 15 

modeling with relatively high accuracy. 16 

  17 



Abstract 18 

Some recent land surface models can explicitly represent land surface process and focus more 19 

on sub-grid terrestrial features. Many studies have involved the analysis of how hillslope 20 

water dynamics determine vegetation patterns and shape ecologically and hydrologically 21 

important landscapes, such as desert riparian and waterlogged areas. However, the global 22 

locations and abundance of hillslope-dominated landscapes remain unclear. To address this 23 

knowledge gap, we propose a globally applicable method that employs high-resolution 24 

elevation, hydrography, and land cover data to neatly resolve explicit land cover 25 

heterogeneity for the mapping of hillslope-dominated landscapes. First, we aggregate pixels 26 

into unit catchments to represent topography-based hydrological units, and then vertically 27 

discretize them into height bands to approximate the hillslope profile. The dominant land 28 

cover type in each height band is determined, and the uphill land cover transition is analyzed 29 

to identify hillslope-dominated landscapes. The results indicate that hillslope-dominated 30 

landscapes are distributed extensively worldwide in diverse climate zones. Notably, some 31 

landscapes, including gallery forests in northeastern Russia and desert riparian in the Horn of 32 

Africa, are newly revealed. Furthermore, the proposed strategy enables more accurate 33 

representation of explicit land cover heterogeneity than does the simple downscaling of a 34 

rectangular grid from larger to smaller units, revealing its capability to neatly resolve land 35 

cover heterogeneity in land surface modeling with relatively high accuracy. Overall, we 36 

present the extensive global distribution of landscapes shaped by hillslope water dynamics, 37 

underscoring the importance of the explicit resolution of heterogeneity in land surface 38 

modeling. 39 

  40 



Plain language summary 41 

Local land cover distributions are influenced profoundly by various factors that are not 42 

represented fully in current land surface models. In alpine regions, changes in vegetation 43 

layers from mountain bases to tops are apparent; this phenomenon is driven largely by 44 

climatic factors, such as temperature. Interestingly, similar vegetation changes occur in 45 

relatively flat regions due to uneven water distribution on hillslopes. Hillslope water 46 

dynamics contribute to the development of unique landscapes, such as gallery forests, and 47 

substantially influence local ecological and hydrological conditions. Despite this importance, 48 

the global locations and abundance of such landscapes remain mysterious. In this study, we 49 

propose a method for the mapping of the global distribution of hillslope-dominated 50 

landscapes using high-resolution land-cover, terrain, and climate data. The results reveal that 51 

the global distribution of these landscapes, including some newly revealed landscapes such as 52 

gallery forests in northeastern Russia, is extensive. In conclusion, our study sheds light on the 53 

significant role of hillslope water dynamics in determining vegetation patterns in many parts 54 

of the world, highlighting the importance of resolving local features in land surface modeling. 55 

  56 



1 Introduction 57 

Land surface models (LSMs) are integrated with climate models as the land components 58 

for the simulation of land–atmosphere water and energy exchange. For global- or continental-59 

scale modeling, these models generally operate on large (~20–200-km) grid units. However, 60 

LSMs have a limited ability to capture fundamental land surface processes that are 61 

heterogeneous, such as hydrological processes, which are linked closely to spatially complex 62 

factors such as topography, land cover, and soil properties. These processes occur at sub-grid 63 

scales and are not readily resolved using current models (Clark et al., 2015; Fan et al., 2019; 64 

Fisher and Koven, 2020; Wood et al., 2011). 65 

At the sub-grid scale, land surface heterogeneity is profoundly differentiated by factors 66 

such as local climatic, topographic, and hydrological conditions (Fisher and Koven, 2020; Li 67 

and Sawada, 2022; Tai et al., 2020). In mountainous regions with significant topographic 68 

relief, climatic gradients tend to determine vertical vegetation zonation from the valley to 69 

hilltop (see Fig. 1a, von Humboldt, 1807; Schimper et al., 1903; Zou et al., 2023). In regions 70 

where the terrain is much flatter, which are governed by hillslope-scale water dynamics, such 71 

vegetation gradients are also observed at the sub-grid scale (see Fig. 1a, Fan et al., 2017), as 72 

gravity drives vertical and lateral surface and subsurface water flow downhill, leading to a 73 

wetter (and sometimes more saline) valley and drier hill.  74 

In light of the importance of addressing the fundamental phenomenon underlying these 75 

patterns at the sub-grid scale, model developers have recently aimed to resolve the high-76 

resolution land surface heterogeneity in LSMs (Ajami et al., 2016; Burton et al., 2019; 77 

Chaney et al., 2016; Hazenberg et al., 2015; Lawrence et al., 2019; Naudts et al., 2015; Subin 78 

et al., 2014; Swenson et al., 2019). In particular, the concept of a representative hillslope, 79 

commonly incorporated into hydrological models, has been applied to LSMs. This concept is 80 

used to aggregate hydrologically similar areas in single catchments into hydrological 81 

response units, allowing the catchment area draining into the main channel to be treated as an 82 

integral hillslope. This representation consists of multiple vertical bands with varying widths 83 

and elevations, and water is routed linearly from higher to lower bands. By treating the band 84 

as the basic modeling unit for the incorporation of representative hillslopes into LSMs, this 85 

method can efficiently resolve the explicit land surface heterogeneity and the key 86 

hydrological processes occurring at the hillslope scale (Newman et al., 2014). This method 87 

has been applied in some studies, resulting in considerable reduction of the computational 88 

cost of the LSM (Hazenberg et al., 2015; Swenson et al., 2019). Furthermore, Chaney et al. 89 

(2018) divided the hillslope into connected bands and then aggregated the hyper-resolution 90 



pixels with similar hydrological behavior in each band into complex tiles or clusters for the 91 

more efficient representation of land surface processes. This method improves computational 92 

efficiency while minimizing the degradation caused by simulation at high resolution, 93 

providing promising results for the resolution of heterogeneous land-surface processes at 94 

local and regional scales. Nevertheless, previous hillslope modeling studies have focused on 95 

model development, and relevant analysis of the global distribution of hillslope-dominated 96 

landscapes remains lacking. Research aiming to close the gap between model simulation 97 

results and the impacts on sub-grid land cover heterogeneity would provide great benefit. 98 

Plant growth is strongly suppressed under extremely dry (plant water stress), humid (plant 99 

water excess), and saline conditions, leading to the development of unique landscapes (Fig. 100 

1b; detailed information is provided in Supplementary Text S1). For example, under arid or 101 

semiarid climate conditions, drier uphill areas constrain plant growth, forming desert riparian 102 

(DR) and gallery forest (GF) landscapes. When excess water accumulates in down-valley or 103 

upper hill areas, plants drown due to limited root respiration, leading to the development of 104 

waterlogging (WL) or raised bog (RB) landscapes, respectively. Salt pan (SP) landscapes 105 

develop due to excessive evaporation relative to groundwater inflow and precipitation, which 106 

causes saline soil conditions in down-valley areas and hinders plant growth. Given their key 107 

roles in influencing local land–atmosphere water and energy budgets and global 108 

biogeochemical cycles (Clark et al., 2015), these landscapes have been studied separately and 109 

regionally, with examination of their spatiotemporal distribution and evolution using state-of-110 

the-art remote sensing techniques (Kirpotin et al., 2021; Lehner and Döll, 2004; Macfarlane 111 

et al., 2017; Nguyen et al., 2015; Safaee and Wang, 2020; Xu et al., 2018). As noted by Fan 112 

et al. (2019), such landscapes are likely to exist in diverse parts of the world. However, their 113 

distribution patterns and abundance have not been assessed to date. We still lack a global 114 

overview of hillslope-dominated landscapes, which is necessary to fully elucidate how 115 

hillslope water dynamics affect land surface heterogeneity.  116 

In this study, the global tessellation of catchments and height bands are generated based 117 

on up-to-date high-resolution topographic data from the MERIT DEM and hydrographic data 118 

from MERIT Hydro  (Yamazaki et al., 2017, 2019). Using those data combined with high-119 

resolution land cover and climate classification maps, we aim to construct a global 120 

distribution map of hillslope-dominated landscapes and discuss the importance of explicitly 121 

resolving land surface heterogeneity in land surface modeling. First, we propose an 122 

aggregation method called the catchment-based strategy, which is used to derive a global 123 

distribution map of landscapes shaped by hillslope water dynamics. Second, to assess and 124 



verify the detection results, we perform visual examination to calculate the detection 125 

accuracy. Third, to determine the abundance of hillslope-dominated landscapes, we construct 126 

a global distribution map of landscapes shaped by climate impacts for comparison. Finally, 127 

through comparison of the catchment-based strategy with the simple downscaling of a 128 

rectangular grid from larger to smaller units, we demonstrate the superiority of this new 129 

method for the resolution of land cover heterogeneity. 130 

 131 

Figure 1. (a) Examples of landscapes dominated by elevation (climate) and hillslope 132 

dynamics. Temperature is considered to be the factor controlling uphill land cover transition 133 

in climate-dominated landscapes, and wetness is regarded as the major controller of hillslope-134 

dominated landscapes. Note that we selected one pathway of land cover transition for 135 

illustration; many other paths for elevation- and hillslope-dominated landscapes exist. (b) 136 

Typical landscapes shaped by hillslope water dynamics: salt pan (SP; salt lakes of Pinos 137 

Wells; photograph by David Ryan, https://gentleartofwandering.com/wandering-around-the-138 

salt-lakes-of-pinos-wells/, used with permission), desert riparian (DR; forest corridor in arid 139 

Arizona, https://en.wikipedia.org/wiki/Desert_riparian), gallery forest (GF; forest corridor in 140 

the Luama Katanga Reserve of eastern Congo; photograph by Andrew Plumptre/WCS, 141 

https://news.mongabay.com/2014/11/mapping-mistake-leaves-wildlife-at-risk/, used with 142 



permission),  waterlogging (WL; oxygen-stressed environment in Pantanal, 143 

http://wikimapia.org/8582923/Pantanal-Mato-Grossense-National-Park), and raised bog (RB; 144 

uplifted peatland in Teijo National Park, Finland, https://en.wikipedia.org/wiki/Raised_bog). 145 

The images represent climatic gradients from hot and dry on the left to cold and wet on the 146 

right. 147 

2 Data  148 

The datasets used in this study are listed in Table 1.  149 

We employed the MERIT DEM dataset as our topographic data. Major error components 150 

of other DEMs have been eliminated from this dataset through the separation of types of bias 151 

(absolute and tree height) and noise (stripe and speckle) using multiple satellite datasets and 152 

filtering techniques (Yamazaki et al., 2017). In particular, significant improvements have 153 

been achieved in flat regions with height errors exceeding their topographic variability, and 154 

landscapes such as river networks and hill–valley structures are represented clearly.  155 

We used MERIT Hydro as our hydrographic data, representing the global hydrographic 156 

network. These data are derived from the MERIT DEM and water body datasets (G1WBM, 157 

Global Surface Water Occurrence, and OpenStreetMap). Due to the increasing availability of 158 

high-quality baseline geospatial datasets, this dataset has more spatial coverage (between 159 

90°N and 60°S) and representation of small streams than do other datasets (Yamazaki et al., 160 

2019).  161 

The land use/land cover (LULC) product derived from ESA Sentinel-2 imagery was used 162 

as the land cover data (Karra et al., 2021). A global LULC map was created based on a large 163 

novel dataset of more than 5 billion human-labeled Sentinel-2 pixels, with a high resolution 164 

of 10 m. The LULC data represents 11 types of land cover: clouds, snow/ice, bare ground, 165 

built areas, scrub/shrub areas, crops, flooded vegetation, grass, trees, water, and oceans. 166 

LULC products from 2017 to 2022 are available; we used the 2020 product in our analysis. 167 

To consistently match the spatial resolution of the MERIT DEM and MERIT Hydro data, the 168 

LULC data were aggregated from 10 m to 3 arcsec (i.e., 90 m at the equator) using the 169 

nearest-neighbor interpolation method. 170 

To account for climate impacts, we used the present-day Koppen–Geiger map as 171 

described by Beck et al. (2018). The map was generated from an ensemble of four high-172 

resolution, topographically corrected climatic maps, and has greater classification accuracy 173 

and more detailed information than do previous versions, especially in regions with sharp 174 

spatial or elevation gradients. To maintain consistency with the MERIT DEM and MERIT 175 



Hydro data, this map was resampled from 1-km to 3-arcsec spatial resolution. 176 

In general, the topographic, hydrographic, land cover and climate classification data are 177 

used for landscape detection, as described in section 3. In section 4, the results obtained with 178 

the combined application of satellite imagery, topographic and land cover information are 179 

evaluated and discussed. 180 
 181 

Table 1. Datasets used in this study. 182 

Dataset Name Spatial 
resolution 

Temporal 
range 

Reference 

Topography  MERIT DEM 3 arcsec - Yamazaki et al. (2017) 

Hydrography MERIT Hydro 3 arcsec - Yamazaki et al. (2019) 

Land cover LULC Sentinel-2 10 m 2017-2022 Karra et al. (2021) 

Climate classification  Koppen-Geiger map 1 km 1980-2016 Beck et al. (2018) 

Optical satellite image Google static map - - - 

 183 

3 Methods 184 

3.1 Catchment-based strategy  185 

Land surface processes are commonly modeled in LSMs based on a large rectangular 186 

grid, with the topographic factor parameterized uniformly within each grid cell (Takata et al., 187 

2003; Wood et al., 2011). In this case, the major river channel in each grid unit is not 188 

determined explicitly, and relative height above the river channel cannot be defined. Without 189 

explicit consideration of the main river channel and hillslope drainage into the channel in 190 

each calculation unit, an LSM cannot resolve observed land cover heterogeneity that is 191 

shaped by hillslope water dynamics. Thus, in this study, we propose a catchment-based 192 

strategy for LSMs that can neatly resolve the sub-grid heterogeneity related to hillslope water 193 

dynamics, as follows. 194 

1) Based on the MERIT Hydro high-resolution hydrographic dataset, the flow directions 195 

of pixels are merged to create a terrestrial boundary map of unit catchments using the 196 

flexible location of waterways (FLOW, Yamazaki et al., 2009) upscaling method. By 197 

maintaining uniform catchment size and river channel connectivity, FLOW allocates 198 

outlets throughout river networks to define the main river channels of unit 199 

catchments. Each rectangular grid unit is spatially paired with one unit catchment of 200 

similar size; thus, the catchment boundary map roughly aligns with the Cartesian grid 201 



coordinate system commonly used in LSMs (Fig. 2a). Although the catchment 202 

boundary map can be created flexibly to discretize unit catchments into multiple sizes, 203 

we discretize unit catchments to match the 0.25° rectangular grid units used in this 204 

study.  205 

2) A catchment generally consists of numerous complex hillslope forms, among which 206 

land cover transitions from channel to ridgeline are assumed to be highly similar. For 207 

conceptual clarity and computational efficiency, these complex hillslope forms are 208 

theoretically collapsed into a neat representative hillslope based on the relative height 209 

above the main river channel (Fig. 2b).  210 

3) The representative hillslope is discretized into 10 vertical height bands, with uniform 211 

surface area in each band (Fig. 2c). 212 

4) The proportion of each land cover type in each band is summarized, and the dominant 213 

land cover type (that accounting for the largest proportion) is identified. To efficiently 214 

represent the explicit land cover heterogeneity using height bands, we assume that the 215 

land cover of pixels within each band is represented uniformly by the dominant land 216 

cover type (Fig. 2c). 217 

 218 

Figure 2. Schematic diagram of the catchment-based strategy. (a) The terrestrial area is first 219 

segmented into unit catchments of similar sizes; (b) the representative hillslope is applied as a 220 

conceptual approximation of the unit catchment; and (c) the representative hillslope is 221 

discretized vertically into 10 height bands, each with uniform surface area.  222 

3.2 Search for hillslope-dominated landscapes 223 

For the five major hillslope-dominated landscape types (Fig. 1b), information regarding 224 

the transition paths of dominant land cover types from lowland to highland was obtained 225 

from relevant studies (i.e., Fan et al., 1997, 2017, 2019; Rodríguez-González et al., 2010; 226 

MacKay, 2013; Schulz et al., 2015; Roebroek et al., 2020; Safaee and Wang, 2020; van der 227 

Velde et al., 2021) and summarized in Table 2. Some land cover types share similar 228 



characteristics of plant adaptation to water excess or stress (e.g., in GF Path I, the grass and 229 

shrub herbaceous plant types on the upper hillslope can both withstand water stress), and in 230 

certain circumstances, several land cover types are assumed to collectively represent the 231 

dominant land cover in one height band. By summing the proportions of these LULC types 232 

within a height band, the characteristically similar land cover types are merged into one type 233 

prior to landscape detection.  234 

Table 2. Summary of vertical land cover transition paths for five hillslope-dominated 235 

landscape types.  236 

 Salt pan 
Desert riparian
(Arid/semiarid)

Gallery forest
(Seasonally dry)

Waterlogging Raised bog 

Abbreviation SP DR GF WL RB 

Path I 
Shrub ⬆ 

Bare ground 

Grass/Shrub ⬆ 
Tree 

Tree * ⬆ 
Water+Flooded veg. 

Flooded veg. ⬆ 
Tree 

Path II - 

Grass+Shrub  ⬆ 
Tree ⬆ 

Water+Flooded veg. 

Tree  ⬆ 
Grass+Shrub ⬆ 

 Water+Flooded veg. 

Flooded veg. ⬆ 
Grass+Shrub ⬆ 

Tree 

Path III - - - 

Flooded veg.  ⬆ 
Tree ⬆ 

Water+Flooded veg.

Path IV - - - 

Flooded veg. ⬆ 
Grass+Shrub ⬆ 

Tree ⬆ 
Water+Flooded veg.

PTV 40% 40% 30% 30% 30% 

Reference 
Fan et al. (1997) 

Schulz et al. (2015)  

Safaee and Wang (2020) 

 MacKay (2013) 

Fan et al. (2019)  

Roebroek et al. (2020) 

Rodríguez-González et al. 

(2010) 

Fan et al. (2017, 2019) 

van der Velde et al. 

(2021) 

Note. Flooded veg. in the Sentinel-2 LULC data incorporates multiple flooded vegetation 237 

types, such as swamps and bogs For WL Path I, labeled with ‘*’, the proportion of flooded 238 



vegetation should be larger than 0. The optimal proportion threshold value (PTV) for the 239 

detection of each landscape type is determined in the validation step and summarized here. 240 
 241 

The procedure for hillslope-dominated landscape detection is as follows. 242 

1) For each unit catchment (representative hillslope), the proportion of each land cover 243 

type in each height band is calculated. The land cover type with the largest proportion 244 

is defined as the dominant land cover type.  245 

2) Similar to step 1, the proportion of each climate type in each height band is calculated 246 

and the dominant type is identified.  247 

3) Starting from the lowest band and stopping flexibly at any upper band, if the uphill 248 

transition of the dominant land cover type matches any path listed in Table 2, the unit 249 

catchment is maintained as a preliminarily detected hillslope-dominated landscape. 250 

Note that DR and GF share identical transition paths, but develop under different 251 

climatic conditions (Fan et al., 2019); therefore, these classes are first detected and 252 

then differentiated based on arid/semiarid or seasonally dry climate conditions, 253 

respectively, with reference to the Koppen–Geiger climate map.  254 

4) The preliminarily detected landscapes are evaluated by setting a proportion threshold 255 

value (PTV) for the dominant land cover type in each band. Detected landscapes are 256 

invalidated and removed when the proportion of the dominant land cover type falls 257 

below the PTV. Note that this process leads to the non-detection of some landscapes 258 

if the PTV is set too high. To explore the optimal value, we tested PTVs of 20%, 259 

30%, 40%, 50%, and 60% for the detection of each landscape type. The optimal PTV 260 

for each landscape type is discussed in section 4.2 and summarized in Table 2. 261 

5) The PTV is set to examine the proportion of the dominant climate type for further 262 

evaluation of the detected landscapes in step 6. Spatially, the climate type distribution 263 

is more homogeneous than the land cover distribution, and uphill transition trends are 264 

expected to be less frequent for the former than the latter (e.g., the climate type 265 

distribution is uniform for the hillslope-dominated landscape illustrated in Fig. 1a). 266 

Thus, to minimize the bias caused by heterogeneity in the climate type distribution 267 

and the risk of false detection of hillslope-dominated landscapes, we set the PTV as 268 

high as 90% to define the dominant climate type in each height band. 269 

6) The preliminarily detected landscapes are evaluated, and those satisfying any of the 270 

following conditions are excluded: 271 

o Following the uphill transition of the dominant land cover type shown in Table 2, 272 



a change in the dominant climate type occurs. This rule aims to exclude climate 273 

impacts to focus on the impact of hillslope water dynamics in the catchment. Note 274 

that the hillslope dynamics may drive a land cover transition on the lower 275 

hillslope while climate drives a land cover transition on the upper hillslope; in 276 

such cases, the unit catchments are classified as both climate-dominated and 277 

hillslope-dominated landscapes. To focus on the impact of hillslope water 278 

dynamics, such mixed catchments are treated uniformly as hillslope-dominated 279 

landscapes.  280 

o The integrated proportion of built area and cropland in any height band exceeds 281 

1%. Human impacts are excluded to consider only the impacts of natural factors 282 

on the land cover distribution in this study. However, the land cover distribution 283 

could be altered strongly by human activities such as groundwater depletion, 284 

deforestation, and grazing. A small portion of area affected by human activities 285 

may strongly impact the surrounding land cover distribution (Fig. S2). For this 286 

reason, the proportions of built areas and cropland should be constrained to small 287 

values. 288 

o For SPs, (a) the proportion of flooded vegetation exceeds 0 or the climate type is 289 

not arid/semiarid. Because these landscapes often appear in terminal lake basins 290 

where the climate is extremely hot and dry, the growth of aquatic plants is largely 291 

constrained due to water scarcity and saline conditions. (b) An ocean pixel is 292 

detected near or in the unit catchment. This rule is used to avoid confusion with 293 

another SP type that is distributed in coastal regions and affected mainly by 294 

seawater with or without downhill waterflow, such as SPs in tidal salt marshes 295 

(Pethick, 1974). 296 

7) For the remaining hillslope-dominated landscapes, the elevation range over which 297 

hillslope impacts are detected, i.e., the relative height of the band in which the final 298 

transition occurs, is summarized. To avoid the false detection of landscapes where the 299 

vertical land cover distribution is prone to climate impacts, the threshold defining the 300 

elevation range of hillslope impacts was determined heuristically to be 100 m 301 

(Supplementary Text S2). Landscapes in which the elevation range of hillslope 302 

impacts exceeds this threshold are excluded. 303 



 304 

Figure 3. Example of GF detection in Kinda-Mwampu, Congo. (a) Relative height from the 305 

mainstream, (b) height bands aggregated through the catchment-based strategy, (c) land cover 306 

map, and (d) land cover map aggregated through the application of the catchment-based 307 

strategy near the location of the detected landscape. In (a)–(d), the target catchment is 308 

highlighted in a brighter color than the surrounding area. In (a) and (c), the boundaries of 309 

height bands in the landscape are represented as contours, with redder contours enclosing 310 

height bands at higher elevations. (e) Bar plot showing the proportions of land cover types in 311 

each height band. Bars with value tags represent the height bands involved in step 3 of the 312 

detection procedure, and the values indicate the proportions of dominant land cover types in 313 

the bands. The line plot shows the median difference in elevation for each height band 314 

relative to the lowest band. (f) Static Google Earth map of the same area. 315 



To illustrate the procedure outlined above, we provide an example of GF detection in Fig. 316 

3. The local topography of the unit catchment is shown in Fig. 3a. Based on the topography, 317 

the catchment-based strategy is used to discretize the catchment into 10 height bands (Fig. 318 

3b). The discretized height bands are applied to the high-resolution land cover map (Fig. 3c) 319 

and the dominant land cover type (Fig. 3d) is determined according to the summarized 320 

proportion of each land cover type in each band (Fig. 3e). The dominant land cover type 321 

changes from trees in the first band to scrub/shrubs in the second band, matching the assumed 322 

GF transition path (Path I in Table 2) with relatively high proportions of 66% and 59%, 323 

respectively. Fig. 3e illustrates the elevation range where hillslope impacts were detected, 324 

which is near 50 m and below the set 100-m elevation threshold. Using these data in 325 

combination with the satellite image (Fig. 3f), no built area or cropland is detected nearby, 326 

suggesting the development of this landscape with little anthropogenic interference. Overall, 327 

these results exemplify the successful detection of a GF that developed mainly under the 328 

impact of hillslope water dynamics. Furthermore, the land cover in each band is uniformly 329 

represented by the dominant type to generate an aggregated land cover map (Fig. 3d). 330 

Subsequently, as described in section 5.1, the accuracy of dominant land cover type 331 

representation of catchment-based strategy is determined and compared with that of a simple 332 

grid-downscaling method. 333 

3.3 Validation of detected landscapes 334 

To validate the landscapes detected as described in section 3.2, we examine the detection 335 

results generated with different PTVs (20%, 30%, 40%, 50%, and 60%) for each transition 336 

path listed in Table 2.  337 

In general, fewer landscapes will be detected with higher threshold values; 338 

underestimation may occur if the PTV is set too high. To avoid this issue, we compared PTV 339 

categories to determine the appropriate PTV for each landscape type based on the point at 340 

which the number of detected landscapes reaches peaks and shows little further difference. 341 

To improve robustness, the highest PTV among the appropriate values is selected as the 342 

optimal threshold and employed to derive the global distribution of the corresponding 343 

landscape type. 344 

On the other hand, due to inherent deficiencies in the detection method or baseline data, 345 

falsely detected landscapes may be included in the results, leading to overestimation for 346 

certain landscape types. To evaluate the risk of overestimation, we visually examine the 347 



detected landscapes for each PTV category, identifying false detections and then calculating 348 

the detection accuracy (𝑎௉்௏): 349 𝑎௉்௏ = 𝑚𝑛 , (1) 

where the PTV is 20%, 30%, 40%, 50%, or 60%; 𝑚  denotes the number of landscapes 350 

confirmed to be correct detections by visual examination; and 𝑛  denotes the number of 351 

landscapes selected for visual examination. As the visual examination of all landscapes is 352 

difficult when the detection number is large, we randomly select 10% of the detected 353 

landscapes for each landscape category as 𝑛 . Specifically, we examine each selected 354 

landscape with reference to the corresponding land cover distribution and satellite image. 355 

When the spatial information provided by the reference maps is unclear, we additionally 356 

check the location at a smaller scale using Google Earth to confirm whether the landscape has 357 

been shaped by hillslope water dynamics. Generally, false detections are identified in the 358 

following cases: 359 

1) Despite the effort to exclude human impacts during detection, landscapes affected by 360 

human factors may be falsely detected. For example, regularly trimmed woodland is 361 

falsely detected as GF in Fig. S3; the land cover distribution pattern has resulted 362 

mainly from human activity, rather than hillslope water dynamics.  363 

2) The misclassification of land cover type in the Sentinel-2 LULC product may lead to 364 

false detection. Fig. S4 shows an example of a falsely detected landscape, with an 365 

abrupt change of land cover from trees to scrub/shrubs visible in its northern part. The 366 

scrub/shrubs present in the highest band have been mistakenly detected as the 367 

dominant land cover type due to a classification error. 368 

3) Local factors such as soil type, wind, wildfire, aspect, and microclimate driven by 369 

microtopography may mediate the land cover distribution in the landscape (Aas et al., 370 

2019); in some cases, the detection method may lead to the false detection of these 371 

landscapes as shaped by hillslope water dynamics (e.g., Fig. S5). 372 

Generally, the occurrence of these issues is independent of the PTV setting. To robustly 373 

evaluate the extent of overestimation, we calculate the mean detection accuracy (𝑎ത) among 374 

the five PTV categories:  375 

𝑎ത = ∑ 𝑎௉்௏ହ௜ୀଵ5 . (2) 



 376 

4 Results 377 

4.1 Global distribution of hillslope-dominated landscapes 378 

 379 

Figure 4. Global distribution of five hillslope-dominated landscape types (derived using the 380 

optimal PTV, determined as described in section 4.2) and global climate classification map 381 

(Beck et al., 2018). Locations with overlapping RB and WL are represented by RB. The inset 382 

bar plot shows the abundance of each landscape type. Red boxes indicate the locations of the 383 

landscape examples presented in Fig. 5.  384 

Fig. 4 illustrates the global distribution of hillslope-dominated landscapes, derived 385 

through the synthesis of the maps for each detected hillslope landscape type (Fig. 6a–e). SP 386 

stands out as the most abundant landscape type (3,383 detections worldwide). Overall, the 387 

distribution map shows some geographical patterns: SPs occur mainly near 30°N and 30°S, 388 

especially in the Northern Hemisphere, and cover a wide range of dry regions including the 389 

Sahara Desert and Arabian Peninsula. GFs are located mainly in equatorial regions with 390 

semiarid climate conditions, such as Amazonia in South America and the Congo Basin in 391 

Central Africa, generally near the border between tropical and dry regions. Some GFs are 392 

also detected in subarctic regions, such as Eastern Siberia. The WL and RB distributions 393 

overlap with some documented wetland types, such as peatlands and swamps. Unlike RBs, 394 

which occur primarily in boreal regions (south of Hudson Bay in Canada and Tomsk Oblast 395 

in Russia), WLs cover large areas in boreal (Alaska and Canada in North America, Nordic 396 

countries and Russia in Eurasia) and equatorial (Amazonia in South America and the Congo 397 



Basin in Central Africa) regions. 398 



 399 



Figure 5. Examples of detected (a) SP (Southern Kostanay region, Kazakhstan), (b) DR 400 

(Horn of Africa), (c) GF (northeastern Russia), (d) WL (Lake Ozero Maloye Kizi, Russia) 401 

and (e) RB (eastern Tomsk Oblast, Russia) landscapes. On the land cover maps (left), the 402 

detected landscapes are highlighted with a brighter color than the surrounding area. The 403 

boundaries of height bands in the landscapes are represented as contours, with redder 404 

contours enclosing height bands at higher elevations. The bar plots in the middle show the 405 

proportions of land cover types in each height band. Bars with value tags represent the height 406 

bands used in the identification procedure, and values indicate the proportions of the 407 

dominant land cover types in the corresponding height bands. The plotted lines show the 408 

median difference in elevation between each height band and the lowest band. Static Google 409 

Earth maps (right) show satellite images of the same areas as the land cover maps. 410 

In Fig. 5, we present zoomed-in views and the properties of example landscapes selected 411 

from Fig. 4. The SP detected on the land cover map is clearly visible in the satellite image as 412 

an expanse of salt evaporites in the northeastern part of the domain (Fig. 5a). In an example 413 

of DR, a narrow corridor of forest is observed along a winding stream (Fig. 5b). Compared to 414 

the GF example in Fig. 3 that shows an identical transition path to DR landscape in this case 415 

(i.e., from trees to grass), virtually identical vegetation patterns are revealed on the land cover 416 

maps. However, on the upper hillslope, where the land cover is dominated by scrub/shrubs, 417 

the satellite image clearly shows sparser vegetation in the DR than in the GF landscape. This 418 

difference suggests that the differentiation of DR and GF landscapes based solely on land 419 

cover maps is impossible without the consideration of additional conditions (e.g., wetness or 420 

temperature). In addition to the GF example shown in Fig. 3, a GF example corresponding to 421 

transition Path II, in which the lowest band is represented by water (a stream), is shown in 422 

Fig. 5c. An example of WL landscape corresponding to transition Path II is shown in Fig. 5d, 423 

with waterlogging at its center and a change in the dominant land cover type from water to 424 

scrub/shrubs and then to trees from low to high bands. For the RB example shown in Fig. 5e, 425 

the brown area of the satellite image represents waterlogged peatland on lifted mounds. Note 426 

that in some cases, WL landscapes are detected in lower height bands while RBs are detected 427 

in both lower and higher height bands of the unit catchment, constituting simultaneous 428 

detection (Fig. S7). This phenomenon explains the few overlapping areas in the WL and RB 429 

distributions in Fig. 4. 430 

According to the lines plots in the middle panels of Fig. 5, despite differences in 431 

topography among landscapes, land cover transitions with relatively flat topography are 432 



observed across lower height bands in areas where vegetation patterns are affected by 433 

hillslope water dynamics, e.g., the lowest three bands in the WL landscape (Fig. 5d). Notably, 434 

a hillslope impact is observed for the topographically flat RB, in which the elevation 435 

difference across all height bands is less than 20 m. This finding suggests that the force of 436 

gravity causes hillslope water dynamics to perturb or control the spatial pattern of vegetation 437 

in catchments with overall complex topography but relatively flat terrain in the lower 438 

hillslope area, in addition to flat catchments. It illustrates the widespread occurrence of 439 

hillslope impacts across numerous terrestrial regions.  440 

In some unit catchments, hillslope and climate impacts are observed simultaneously. For 441 

some unit catchments detected as GF, the dominant land cover type first changes from trees 442 

to shrubs, and then shifts back from shrubs to trees in the highest band (Fig. S6a). The same 443 

phenomenon is observed in other landscape types, such as WL landscapes (Fig. S6b), where 444 

the dominant land cover type first changes from water and shrubs to trees, and then shifts 445 

back from trees to shrubs in the highest band. This pattern is probably due to the impacts of 446 

climatic factors, as the elevation difference between the highest and lowest bands of the unit 447 

catchment far exceeds 100 m. Thus, the land cover distribution in the same catchment is 448 

likely affected simultaneously by hillslope and climate impacts when the elevation difference 449 

is very large. To focus on the analysis of hillslope impacts, we labeled such unit catchments 450 

as hillslope-dominated landscapes and included them in the distribution results for hillslope-451 

dominated landscapes depicted in Fig. 4.  452 
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landscapes associated with five PTV categories. In the left panels, bar plots show the number 456 

of landscapes detected for each category. Solid and dashed lines denote the detection 457 

accuracy of each PTV category and the mean detection accuracy among PTV categories, 458 

respectively. The right panels show the distribution of detected landscapes generated using 459 

the optimal PTV. Detailed information about accuracy evaluation is provided in Tables S1–5. 460 

Fig. 6 shows the validation results for the detected landscapes. The number of detections 461 

peaks for SP and DR landscapes when the PTV is set to 20%, 30% or 40% (Fig. 6a, b), and 462 

for GF, WL, and RB landscapes when the PTV is set to 20% or 30% (Fig. 6c–e). Thus, the 463 

PTV can be set higher (40%) for the detection of SP and DR landscapes than for the detection 464 

of GF, WL, and RB landscapes, indicating a more distinct pattern of transition in dominant 465 

land cover type along the hillslope for the former. Despite minor differences in detection 466 

numbers, we considered the highest PTV among all appropriate PTVs to be optimal to ensure 467 

the robustness of the results; i.e., the PTV is set to 40%, 40%/40%, 30%/30%, 30%/30%, and 468 

30%/30%/30%/30% to derive the global distributions of SP (Path I), DR (Path I/II), GF (Path 469 

I/II), WL (Path I/II) and RB (Path I/II/III/IV) landscapes, respectively (Figs. 4, 6, 7, and S11). 470 

The false detection of landscapes due to human factors, classification errors in the 471 

baseline data, and other factors can lead to the overestimation of the distribution of a 472 

landscape type. According to Fig. 6, mean detection accuracies for all landscape types 473 

approximate or exceed 90%, indicating a low likelihood of overestimation. An exception 474 

occurs on Path I for DR and GF landscapes, for which the mean detection accuracy is near 475 

85%, indicating a slightly greater possibility of false detection (mainly due to human impacts; 476 

Tables S1–5) than for other landscape types. In addition, on transition Path II for GFs, greater 477 

detection accuracy is observed when the PTV is set to 50% or 60%, but this value is likely to 478 

be invalid due to uncertainty in the selected samples. Based on comparison with the 479 

landscape detection results obtained with PTVs of 20%, 30% and 40%, PTVs of 50% and 480 

60% were not used for the construction of the distribution map due to evident 481 

underestimation. 482 

Overall, the validation results suggest that limited overestimation occurs in landscape 483 

detection when the appropriate threshold values are applied to the proportion of dominant 484 

land cover type. 485 



5 Discussion 486 

5.1 Comparison of the spatial distribution of hillslope-dominated landscapes with previous 487 

research findings 488 

The landscape map derived in this study largely agrees with distribution information 489 

provided in the relevant literature. The derived distribution of SPs shows strong spatial 490 

consistency with well-known regions of SP presence around the world (Safaee and Wang, 491 

2020; Schulz et al., 2015), with a small fraction of mismatches in regions such as the west 492 

side of the Caspian Sea. The GF results correspond with previously reported GF distribution 493 

information, such as that for the Pantanal and Amazonia regions in central South America 494 

(Felfili, 1995; Silva et al., 2008) and West Cameroon in Africa (Momo et al., 2018). The 495 

distribution patterns derived for WL and RB landscapes are consistent with the Global Lakes 496 

and Wetlands Database (Lehner and Döll, 2004), and they overlap with the global peatland 497 

distribution map to differing extents (Kirpotin et al., 2021; Xu et al., 2018). 498 

In addition to showing extensive overlap with documented landscape locations, the newly 499 

derived landscape map shows some landscapes that have not, to our knowledge, been 500 

previously reported. For example, we identified previously undocumented GFs in eastern 501 

Siberia (Fig. 5). Although plant growth is limited by energy (e.g., radiance and temperature) 502 

across the high-latitude regions of Eurasia (Li et al., 2021), a massive amount of dry air 503 

accumulates in the east and far east of Siberia, creating seasonal water-limited conditions 504 

(Beck et al., 2018). This regional water limitation may enhance the impact of hillslope water 505 

dynamics on vegetation patterns, leading to GF development in this region. Interestingly, in 506 

the Horn of Africa, where the climate is semiarid, a cluster of previously unreported DR 507 

landscapes was detected (Fig. 5). According to the global pattern of groundwater table depths 508 

(Fan et al., 2013), the water table is relatively shallow in this region relative to that in the 509 

surrounding area. This finding reflects the convergence of groundwater in low valleys due to 510 

hillslope water dynamics, which may contribute to DR landscape development. 511 



5.2 Comparison with the distribution of climate-dominated landscapes  512 

 513 

Figure 7. Global distributions of hillslope-dominated landscapes (blue) and climate-514 

dominated landscapes with transition patterns of one (light red), two (red), and three (dark 515 

red) changes in the dominant land cover (climate) type. Areas of overlap between climate- 516 

and hillslope-dominated landscape types are represented with green dots. The inset bar plot 517 

indicates the number of each landscape type.  518 

The strategy proposed here for the detection of hillslope-dominated landscapes can also 519 

be applied to the search for climate-dominated landscapes (Fig. 1a). Unlike hillslope-520 

dominated landscapes, where vertical land cover transitions occur within the same climate 521 

zone, vertical land cover transitions in climate-dominated landscapes occur with climate zone 522 

transitions. In addition to the map of hillslope-dominated landscape distribution presented in 523 

Fig. 4, the global distribution of climate-dominated landscapes was derived (Fig. 7; the 524 

procedure is described in Supplementary Text S3). High consistency is apparent between the 525 

distributions of climate-dominated landscapes and mountainous areas globally, such as the 526 

Sierra Nevada Mountains in the western US and the Andes Mountains of South America (von 527 

Humboldt, 1807), and especially for landscapes with multiple transitions in the dominant land 528 

cover (climate) type (red and dark red dots). Fig. 7 also shows the locations where climate- 529 

and hillslope-dominated landscapes overlap (examples shown in Fig. S8), most of which are 530 

distributed near the boundary between the two landscape types.  531 

About 5,500 climate-dominated landscapes were detected worldwide, indicating that the 532 

global coverage of these landscapes is smaller than that of hillslope-dominated landscapes 533 

(~8,500). This result suggests that hillslope water dynamics have had more extensive impacts 534 
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more accurate representation with the catchment-based strategy than with the grid-551 

downscaling method, and negative (𝜑ௗ௜௙ ) values indicate greater accuracy with the grid-552 

downscaling method than with the catchment-based strategy. The bar plots show the numbers 553 

of locations corresponding to various levels of difference in representation accuracy for 554 

tropical, arid, temperate, cold, and polar climate types and globally. The categories 555 

represented with bars of different colors match those on the global map. 556 

To investigate the merit of accurately resolving explicit land cover heterogeneity, the 557 

catchment-based strategy is compared with the downscaling of a rectangular grid from larger 558 

to smaller units. Specifically, we compare the ability of 10 height bands and 3 × 3 rectangular 559 

grid units to approximate the explicit land cover distribution, as described in Supplementary 560 

Text S4. The explicit land cover heterogeneity is neatly resolved by assigning the dominant 561 

land cover type to the entire calculation unit (height band or grid cell). This use of the 562 

dominant land cover type to represent land cover heterogeneity inevitably leads to inaccurate 563 

representation. Thus, we determined the accuracy of representations obtained using the two 564 

strategies and the difference (𝜑ௗ௜௙) between them. Despite minor differences (between -0.05 565 

and 0.05) for most locations, the 𝜑ௗ௜௙ values reveal geographic patterns (Fig. 8). 566 

The catchment-based strategy provides significantly more accurate representations of 567 

land cover heterogeneity in flat regions with humid conditions (e.g., northern Siberia and 568 

Canada, as well as river mainstems and major tributaries in Amazonia, where WL landscapes 569 

are widespread) and regions with high topographic relief (e.g., the Tibetan Plateau and Alps). 570 

In topographically flat regions where the climate is homogeneously wet, the catchment-based 571 

strategy effectively captures vertical land cover gradients shaped by hillslope water 572 

dynamics. In regions with high topographic relief where the climate is distinctly 573 

heterogeneous, the catchment-based strategy also generates more accurate representations, 574 

indicating that vegetation patterns induced by climate impacts align strongly with the 575 

topographic gradient. 576 

On the other hand, the proposed strategy generates less accurate representations of land 577 

cover heterogeneity in flat regions with arid climates (e.g., the Sahara and Arabian 578 

Peninsula). Separately, the representation by the catchment-based strategy is favorably 579 

accurate (Fig. S9), justifying the extensive detection of SPs in the corresponding regions (Fig. 580 

4). Despite the better infiltration conditions in flat terrain than in high-relief terrain due to 581 

longer residence of surface water (Han et al., 2020; Huang et al., 2018), the unpronounced 582 



hillslope water dynamics impedes water convergence in lowland valleys and may have 583 

resulted in reduced accuracy. In addition, an extremely dry climate leads to substantial 584 

evaporation and thus insufficient moisture for plant uptake in the soil root zone. These two 585 

factors may collectively attenuate the impact of hillslope water dynamics on local vegetation 586 

patterns, explaining the lesser accuracy of representations obtained using the catchment-587 

based strategy. 588 

Overall, with the masking out of locations with trivial differences in representation 589 

accuracy, the ratios of locations labeled in red (more accurate representation with the 590 

catchment-based strategy) and blue (less accurate representation with the catchment-based 591 

strategy) to total locations are 67% and 33%, respectively. These results indicate that the 592 

proposed strategy has the advantage of resolving explicit land cover heterogeneity shaped by 593 

both climate and hillslope impacts over the simple downscaling of a rectangular grid from 594 

larger to smaller units.  595 

5.4 Limitations of the catchment-based strategy 596 

Some landscapes reported in previous studies are absent from Fig. 4. For example, as a 597 

typical desert vegetation type in the southwestern US, DR landscapes have been frequently 598 

studied at the regional scale (Hultine et al., 2015; Nguyen et al., 2015). The impact of 599 

waterlogged conditions on plant growth in temperate regions across North and South 600 

America, Europe, and South and East Asia has been discussed intensely (Schulz et al., 2015; 601 

Zúñiga-Feest et al., 2017). Nevertheless, only a fraction of WL landscapes was detected in 602 

Scotland, UK; Tasmania, Australia; and New Zealand (Fig. 4). Missed detection of the five 603 

landscape types may be attributed to the following reasons: 604 

1) The size of a single landscape is ambiguous, as the spatial coverage may range from a few 605 

hundred meters to several kilometers. Any pre-defined unit catchment size might be too 606 

coarse or too fine to detect landscapes that are visible on satellite imagery. When the 607 

catchment is coarsely discretized into height bands, the explicit land cover distribution may 608 

be represented inaccurately by the dominant land cover type (Fig. S10). This issue arises 609 

because the catchment-based strategy treats the lower height band as the “mainstem” and 610 

secondary tributaries as part of the hillslope. Although the satellite imagery shows that trees 611 

also line along secondary tributaries (Fig. 3f), these trees are not resolved accurately using the 612 

height bands (Fig. 3d). Hence, land cover heterogeneity remains partially resolved. With the 613 

development of a finely discretized boundary map of unit catchments and treatment of 614 

tributaries as “mainstem” areas, further improvement of the representation accuracy detection 615 



of additional landscapes can be expected. Aside from hillslope water dynamics, other factors 616 

such as wind, wildfires, and the hillslope aspect affect local vegetation patterns in various 617 

manners (Fan et al., 2019; Gerlach, 1993; Smith and Finch, 2018). To represent this 618 

heterogeneity and thereby improve the proposed strategy, multiple tiles in each height band 619 

could be used to represent different hydrological response units (Chaney et al., 2018). 620 

2) Landscape detection with the current catchment-based strategy begins from the lowest 621 

band, focusing on the identification of landscapes on the lower part of the hillslope. The 622 

detection procedure terminates when a change in climate type occurs. However, the climate 623 

in alpine regions could exhibit significant vertical heterogeneity within single unit catchments 624 

(Beck et al., 2018). Water dynamics may have a greater impact on the middle or upper part of 625 

the hillslope when they control vegetation patterns in those areas (von Humboldt, 1807; Zou 626 

et al., 2023).  627 

3) The exclusion of anthropogenic factors can lead to incomplete detection results. In the 628 

southwestern US and many other places, built areas and croplands are often located near 629 

riparian areas due to their proximity to stream water. Anthropogenic land coverage is large in 630 

temperate regions due to the favorable climate conditions. Human influence explains the 631 

missed detection of a large number of landscapes in Fig. 4. This finding may reflect the 632 

substantial underestimation of hillslope impacts, as hillslope water dynamics also have great 633 

impacts on the natural distribution of land cover types in unit catchments where human 634 

impacts are less significant. 635 

4) The limitations of baseline land cover data also hinder accurate detection. The distribution 636 

of hillslope-dominated landscapes was derived from a composite intra-annual land cover 637 

product (Table 1). Landscapes influenced by seasonal changes in land cover might be 638 

neglected in that dataset. For example, in temperate regions where precipitation has a strong 639 

seasonal pattern, seasonally flooded WL landscapes are observed widely during the rainy 640 

season. These conditions place a significant constraint on local vegetation, but are not 641 

represented in the derived map (Fan et al., 2017; Schulz et al., 2015). Aside from 642 

discrepancies between land cover types, different sub-categories of the same land cover type 643 

may differ in their adaptation to extreme water conditions. However, different sub-categories 644 

of land cover in the LULC dataset have been merged into general types (e.g., broadleaf, 645 

needle-leaf, and alpine trees are all categorized as “tree”). The lack of representation of such 646 

sub-categories affected the detection results as well. 647 



In light of these factors, we emphasize that we did not intend to create a map that 648 

perfectly incorporates all landscape locations in this study. Rather, this study provides an 649 

overview of landscapes that are influenced by hillslope water dynamics and an unprecedented 650 

global inventory of locations with such landscapes (Fig. 4). The results underline the crucial 651 

roles of hillslope impacts in shaping various landscape types that hold hydrological and 652 

ecological significance. 653 

6 Conclusion 654 

In this study, a globally applicable catchment-based strategy is proposed to neatly resolve 655 

explicit land cover heterogeneity using discretized height bands along hillslopes. Our results 656 

show that: 657 

1) Using the catchment-based strategy, we present an unprecedented global inventory of 658 

landscapes in which the vegetation pattern is shaped by hillslope water dynamics. The 659 

validated detection results for hillslope-dominated landscapes show high overall 660 

accuracy. 661 

2) The detected hillslope-dominated landscapes have wide global coverage. Compared 662 

with climate factors, hillslope water dynamics affect vegetation patterns more 663 

extensively around the world. 664 

3) Some landscapes, e.g., GFs in northeastern Russia and DR in the Horn of Africa, are 665 

newly revealed in this study. These findings demonstrate the strong impact of 666 

hillslope water dynamics on vegetation patterns in dry boreal and semiarid regions. 667 

4) The proposed strategy more accurately resolves land cover heterogeneity than does 668 

the simple downscaling of a rectangular grid from larger to smaller units. In 67% of 669 

terrestrial areas with a distinct difference in representation accuracy, the proposed 670 

strategy provides more accurate representation of explicit land surface heterogeneity. 671 

Some hillslope-dominated landscapes, such as DR and GFs, occur near the boundary 672 

between climate classification zones, and thus are susceptible to climate change (Fig. S11). 673 

Climate change in the coming decades could profoundly affect the status of those landscapes 674 

(Beck et al., 2018; Hagedorn et al., 2019). To investigate their spatiotemporal variation 675 

patterns from the past to the future, comprehensive elucidation of the underlying mechanism 676 

and proper inclusion in LSMs are essential. Classic LSMs provide lower boundary conditions 677 

to the atmosphere, and thus address vertical fluxes at a coarse scale and are incapable of 678 

tracing water at and near the land surface. To assess the water budget in hillslope-landscape 679 



landscapes, an effective approach to the resolution of lateral flow must be incorporated into 680 

LSMs. The proposed catchment-based strategy should greatly aid such analysis by enabling 681 

the simulation of land surface processes in existing LSMs at sub-grid scales. 682 
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