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Network for Volumetric Segmentation of Brain

MR Images
Debanjan Konar, MIEEE, Siddhartha Bhattacharyya, SMIEEE, Tapan K. Gandhi, SMIEEE ,

Bijaya K. Panigrahi, SMIEEE , and Richard Jiang, SMIEEE

Abstract— This paper introduces a novel shallow self-
supervised tensor neural network for volumetric segmenta-
tion of brain MR images obviating training or supervision.
The proposed network is a 3D version of the Quantum
Inspired Self Supervised Neural Network (QIS-Net) archi-
tecture and is referred to as 3D Quantum-inspired Self-
supervised Tensor Neural Network (3D-QNet). The under-
lying architecture of 3D-QNet is composed of a trinity
of volumetric layers viz. input, intermediate and output
layers inter-connected using a 26-connected third-order
neighborhood-based topology for voxel-wise processing
of 3D MR image data suitable for semantic segmentation.
Each of the volumetric layers contains quantum neurons
designated by qubits or quantum bits. The incorporation
of tensor decomposition in quantum formalism leads to
faster convergence of the network operations to preclude
the inherent slow convergence problems faced by the self-
supervised networks. The segmented volumes are obtained
once the network converges. The suggested 3D-QNet is
tailored and tested on the BRATS 2019 data set exten-
sively in the experiments carried out. 3D-QNet has achieved
promising dice similarity while compared with the inten-
sively supervised convolutional network-based models 3D-
UNet, Vox-ResNet, DRINet, and 3D-ESPNet, thus facilitat-
ing annotation free semantic segmentation using a self-
supervised shallow network.

Index Terms— Quantum Computing, Volumetric Medical
Image Segmentation, QIS-Net, 3D-UNet, Vox-ResNet

I. INTRODUCTION

Automatic volumetric brain Magnetic Resonance (MR)
image segmentation assisted by contextual information

yields Volumes of Interest (VOIs), which are critical to glioma
patients. Deeply supervised Convolutional Neural Networks
(CNN) have achieved respectable accuracy in 2D medical
image segmentation [1]. However, in automatic 3D MR im-
age data segmentation, deeply supervised 3D-CNNs suffer
from manually affected challenges viz. acquiring sufficient
3D annotated data for suitable training, high heterogeneity
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and dimensionality of 3D MR images, complex anatomical
environments and the need for optimizing the 3D neural net-
works [2], [3]. Hence, structural neuro-imaging research calls
for self-supervised learning for accurate and fast segmentation
of brain images with different modalities.
Given 3D MR image data, the primary aim of our proposed
3D-QNet architecture is to perform volumetric segmenta-
tion for brain tumor identification alleviating supervision or
training. Our proposed 3D-QNet architecture is centered on
the self-supervised bi-directional counter propagation of the
quantum states obviating the time-intensive quantum back-
propagation algorithm for faster convergence. The network
hyper-parameters associated with the gray-level thresholding
are adaptive in nature, and voxel-wise context-sensitive infor-
mation is exhibited in quantum formalism as reported in this
article. The current voxel-wise segmentation work has signif-
icant contributions over 2D brain image segmentation [4]–[6]
as given below.

1) We propose a shallow voxel-wise quantum-inspired self-
supervised neural network referred to as 3D-QNet which
has significant relevance on volumetric MR image seg-
mentation.

2) In this work, 26-connected quantum fuzzy context-
sensitive voxel information is processed to integrate
the appearance of low-level and high-level local image
features with wide intensity variations and implicit shape
of the VOIs, thereby enabling accurate volumetric seg-
mentation of 3D MR images.

3) A novel generalized quantum-inspired self-supervised
learning is proposed using a tensor representation of
weight vector for high dimensional data and employed
in our suggested 3D-QNet for brain MR image segmen-
tation.

4) The convergence analysis of the proposed 3D-QNet is
also demonstrated with super-linearity. The primary aim
at incorporating quantum computing in our proposed
3D network architecture is to exploit the features of
quantum correlation and to accelerate the speed of
convergence of the network operation, simultaneously
improving the discrimination ability to yield fast and
accurate segmentation.

The organization of the remaining sections of the
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manuscript is as follows: a comprehensive literature review
about various deep learning-based volumetric segmentation of
medical images and the challenges are presented in Section II.
Section III illustrates the fundamental concepts of quantum
computing. The novel self-supervised 3D-QNet architecture
with quantum-inspired tensor network model for voxel-wise
segmentation of three dimensional MR images is introduced
in Section IV. The experimental outcome and discussions
are provided in Section V. Section VI states the concluding
remarks of the proposed work and sheds light into the future
directions of research.

II. RELATED WORKS

Recent years have witnessed a surge in the application of
deep learning networks in brain lesion segmentation [7]–[10].
However, in contrast to automated volumetric segmentation
of brain MR images, 2D convolutional neural network archi-
tectures (CNNs) [7], [9], [10] process the MR images in 2D
independent slice-wise fashion which leads to non-optimal use
of 3D contextual feature information of volumetric MR image
data. In turn, 3D CNN based architectures extract rich spatial
and contextual features and perform voxel-wise segmentation
of volumetric brain MR images [11]–[13]. Kamnitas et al. [11]
suggested a dual path 3D CNN incorporating local and larger
contextual feature information to obviate the computationally
complex 3D MR image processing and to exhibit dense
inference on medical image segmentation. A flexible network,
3D-UNet architecture [13] achieved remarkable success on
brain MR image semantic segmentation. Of late, to exploit
the 3D contextual information, Brebisson et al. [14] employed
2D CNNs on three orthogonal 2D patches and formed 3D
patches in combination to reduce the memory requirements.
However, 3D CNN networks suffer from slow convergence
problems owing to computationally exhaustive 3D convolution
operations and extensive training procedures. However, despite
popularity among medical and computer vision researchers, U-
Net architectures [13] fall short in scalability and are unable
to distinguish the distinctive features (shape, size, intensity,
location etc.) learned at the convolutional layers. Moreover, it
suffers from the vanishing gradient problem when the number
of feature layers is increased for better representation of the
features. Various deeper network architectures obviating the
vanishing gradient problem have been proposed concurrently
for voxel-wise medical image segmentation including VoxRes-
Net [15], DRINet [16] and 3D-ESPNet [17]. However, these
deeply supervised network architectures suffer in computa-
tional complexity and slow-convergence with an increase in
the number of feature layers in the network architecture.
Currently, self-supervised/semi-supervised/weakly supervised
networks have gained significant attention among computer
vision and medical research community due to lack of an-
notated images for deep supervision [18], [19]. Nevertheless,
these self-supervised networks [18], [19] for volumetric brain
segmentation rely on pre-trained 3D CNN models, and hence
these are not fully self-supervised networks. It inspires us to
develop 3D self-supervised neural network architectures for
volumetric brain segmentation.

The main problem with the classical self-supervised neural
network models lies in the fact that they do not converge fast
and hence the segmented outcome is distorted due to slow
convergence problems [20]–[22]. Numerous quantum neural
networks have been evolved in the last few decades replicating
classical neural networks and offering faster processing while
compared with the classical counterparts [23]–[28]. The quan-
tum version of the classical self-supervised neural network
architectures [29]–[32] offer a potential solution for faster
and efficient image segmentation and surpasses the classical
counterparts. Konar et al. recently developed quantum-inspired
neural network models referred to as QIS-Net [4] and QIBDS-
Net [5] suitable for brain MR image segmentation. These
networks have been found to attain promising outcome in
complete brain tumor segmentation. The optimized version of
the network (Opti-QIBDS Net) [6] is also proposed for optimal
segmentation of brain tumors and serves the motivation behind
assimilation of quantum-inspired computing in the current 3D-
QNet architecture.

A. Motivation

Despite the remarkable success achieved in volumetric brain
MR image segmentation, 3D CNN architectures still face some
inherent challenges owing to deeper and complex network
architectures [11], [13]–[15]:

1) Owing to complex anatomical properties of 3D MR
brain images, majority of 3D CNN architectures require
a large number of parameters to capture 3D contextual
representative feature information.

2) High computational (GPU) and memory resources re-
quired for large scale 3D CNNs pose a potential concern
in widespread clinical applications.

3) Automated volumetric brain MR image segmentation
using 3D CNN architectures often confronts over-
fitting, slow-convergence and vanishing gradient prob-
lems. Moreover, it is a paramount task to manipulate
the hyper-parameters of the underlying 3D architecture.

4) In addition, the availability of 3D annotated data for
training a 3D CNN is not sufficient and very expensive
resulting in lack of image-specific adaptability.

III. FUNDAMENTALS OF QUANTUM COMPUTING

The basic concept of quantum computing deals with the
principles of quantum mechanics and offers to demonstrate
the quantum computing algorithms which rely on quantum
bits having quantum operations on qubits [33].

A. Quantum Bits and Tensor Products

The basic element equivalent to classical bits in quantum
computing is known as quantum bit or qubit and is represented
using Dirac notations |0〉 and |1〉. However, unlike classical
computing, quantum bits are expressed as a linear combination
of probability amplitudes often known as superposition as
follows [28].

|φ〉 = cos
α

2
|0〉+ ei

θ
2 sin

α

2
|1〉 (1)
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where, 0 ≤ α ≤ π and 0 ≤ θ ≤ 2π.
Hence, qubits reside in the Hilbert space parametrized by
the continuous variables θ and α. In quantum formalism,
the tensor products of the subspace form the full Hilbert
Hyperspace, H as

H = ⊗nt=1Ht (2)

A set of n basis states (designated as |φj〉) comprising 0− 1
can form a qubit system |ψ〉, of size log n in the Hilbert space,
H as follows.

|ψ〉 =

n∑
j

pj |φj〉 (3)

where, pj is the probability amplitude and |φj〉 = |φ1〉 ⊗
|φ2〉 ⊗ . . . |φn〉. For example, using two qubits, four distinct
tensor sub-spaces can be created as basis |0〉 ⊗ |0〉, |0〉 ⊗ |1〉,
|1〉 ⊗ |0〉 and |1〉 ⊗ |1〉 often represented as |00〉, |01〉, |10〉,
and |11〉, respectively.

B. Input Data Encoding and Tensor Decomposition
A tensor product basis relies on the local input feature map
{Φdj (αj)} in the Hilbert space of functions over αj ∈ [0, 1]
as [27].

|Φd1,d2,...dN (α)〉 = |φd1(α1)〉 ⊗ |φd2(α2)〉 ⊗ . . .⊗ |φdN (αN )〉
(4)

where, dj varies from 1 . . . N (N-dimensional vector). A
function, f l(α) can be realized using the tensor product of
input local feature map φdj (αj) and the network weight
decomposition Ψ, as follows.

f l(α) = Ψl·Φ(α) =

|Ψd1d2...dN 〉|φ(αd11 )〉 ⊗ |φ(αd22 )〉 . . .⊗ |φ(αdNN )〉
(5)

Hence, the local feature map φdj (αj) forms a basis for a
Hilbert space of functions defined over α ∈ [0, 1] and the
tensor product basis Φd1,d2,...dN (α) forms a Hilbert space of
functions defined over α ∈ [0, 1]N . Considering the dimen-
sions of the input feature vector restricted to N = 2, φ(α) is
defined as

φ(0) = [0, 1]

φ(1) = [1, 0]
(6)

In order to enhance and extract the contextual information
from high dimensional data, Trcuker tensor decomposition is
suitable for neural network layer decomposition [34].

IV. 3D QUANTUM-INSPIRED SELF-SUPERVISED TENSOR
NEURAL NETWORK (3D-QNET) ARCHITECTURE

In this article, a 3D version of the QIS-Net [4] referred to as
3D Quantum-inspired Self-supervised Tensor Neural Network
(3D-QNet) with self-supervised tensor learning is proposed
for automatic voxel-wise segmentation of MR images. The
3D-QNet comprises trinity of volumetric layers of quantum
neurons arranged as input, intermediate and output layers.
A schematic outline of the proposed 3D-QNet architecture
is shown in Figure 1. The input volume (M × N × P )
is normalized and propagated from the 3D input layer to

the successive 3D hidden and output layers of the 3D-QNet
architecture for processing through 3 × 3 × 3 voxels. Each
of the three volumetric layers of 3D-QNet architecture is
fully intra-linked with qubits using a 3D-matrix representation.
Each 3D layer of the proposed architecture is intra-connected
through quantum neurons with intra-connection strengths set
to π

2 (Quantum 1 logic). The basic processing unit of each
volumetric layer of the 3D-QNet architecture is a 26-connected
neighborhood-based voxel-wise orientation of each candidate
neuron as illustrated in Figure 1.

The relevant details about the principle of operation of the
proposed 3D-QNet are provided in the following subsections
using a self-supervised Tensor learning model in quantum
formalism.

A. Quantum-Inspired Self-supervised Tensor Network
Model

In the suggested 3D-QNet architecture, the high dimensional
weight vector Ψ is represented using tensor to optimize the
network operations and to facilitate the extraction of signif-
icant semantic feature information in the quantum-inspired
supervised model. The internal kernels associated with the
network operate in parallel, thereby accelerating convergence
of the 3D-QNet. The input quantum neurons containing the
pixel intensity are expressed as qubits and the inter-connection
weights are modified using quantum rotation gates. The clas-
sical intensity of any ith normalized gray-scale image pixel
of MR volume (denoted as αi ∈ [0, 1]) is transformed into
quantum state using a mapping function φ(αi) as follows.

φ(αi) =
[
cos(

π

2
αi) sin(

π

2
αi)
]
∀i = 1, . . .M, j = 1, . . . N

(7)
The angle of rotation is measured using the relative difference
of fuzzy intensity of the candidate pixel and the neighborhood
pixels in quantum formalism. This relative measure helps to
segment the foreground and background regions of an image.

ωi,j = 1− (αi − αi,j); j ∈ {1, 2, 3, . . . 26} (8)

Hence, ωi,j is designated as the angle of rotation and measured
as relative intensity difference between the candidate pixel
(αi) and one of its neighborhood pixels αi,j . The strength
of inter-connection between neuron j (neighborhood of the
candidate neuron i) of a layer to the corresponding candidate
neuron of the adjacent layer is mapped using ϕ. The classical
interconnection weight [0, 1] is transformed into quantum
formalism as

|ϕ(ωi)〉 =
[
cos(

π

2
ωi) sin(

π

2
ωi)
]

(9)

In this proposed tensor network model, the 3D-QNet layer
is decomposed as voxel (core tensor) using Tucker Tensor
decomposition [34] to reduce the input dimensions and the
interconnection wight as factor matrices. Let us consider tensor
V,Ψ ∈ Rm×n×p, where V is the voxel-wise input of 3D
MR images and the corresponding inter-connection 3D weight
matrix as evaluated in Eq. 9, respectively (m,n, p denote the
row, column and slice number and V,Ψ are third order tensors
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Fig. 1: 3D Quantum-inspired Self-supervised Tensor Neural Network (3D-QNet) architecture (Only three Inter-layer connection
is illustrated for better visibility).

(1 ≤ m ≤M, 1 ≤ n ≤ N, 1 ≤ p ≤ P )). According to Tucker
Tensor decomposition [34],

X = V ×1 Ψ1 ×2 Ψ2 ×3 Ψ3 (10)

where, X ∈ Rm×n×p the tensor outcome, Ψn is the weight
matrix in terms of n factor matrix and ×n is the mod − n
product of tensor with a matrix. Each layer of the proposed
3D-QNet architecture is transformed to lower dimensional
tensors. Such types of M×N×P tensors in terms of voxel are
formed for each layer in the underlying network architecture.
Each volumetric layer of the 3D-QNet architecture forms
M × N × P volumetric patches (voxels) of size 3 × 3 × 3
corresponding to the candidate pixels as

v = vox(V) (11)

Here, V comprises all 3D-patches (voxels), v ∈ Rm×n×p of
a network layer in the proposed 3D-QNet architecture. The
spatial features in terms of neighborhood pixels of every seed
pixel at the network layer are extracted and propagated to
next subsequent layers as input guided by a Quantum-inspired
voxel-wise multi-level Sigmoidal (Vox-QSig) activation func-
tion, σ3D−QNet as follows.

yl = σ3D−QNet(v
l−1 ∗ϕl(ω)) (12)

where, vl−1 ∈ RM×N×P , ϕl(ω) ∈ RM×N×P×K at the
network layer l = 2, 3, yl ∈ RK and ∗ is the inner product
operator. The fuzzy context-sensitive activation (designated as
χi) for semantic segmentation in quantum formalism is defined
as follows.

|χi〉 =

[
cosϑi
sinϑi

]
(13)

where, the angle of rotation, ϑi is evaluated using the summa-
tion of the intensities of third order 26-connected neighbor-
hood pixels (denoted as αi,j , j = 1, 2, . . .K) of a candidate

pixel i (neuron) in quantum formalism using the following
equation.

ϑi = 2π × (

K∑
j=1

αi,j) (14)

Quantum fuzzy context-sensitive thresholding determines the
bi-directional propagation of quantum information between
the layers of the 3D-QNet architecture by means of self-
organization of the inter-linked weight matrices. Reduction of
feature dimensions using tensor decomposition followed by
voxel-wise information processing of the proposed 3D-QNet
architecture is inspired by the basic quantum neural network
input-output model [6] as follows:

|φl(αdi )〉 = σ3D−QNet(

m×n×p∑
j

f l−1(αdi )〈ϕlj |χ
l,d
i 〉) (15)

where, |φl(αdi )〉 denotes the intermediate output of the ith seed
quantum neuron at the 3D network layer in the lth sample with
depth (slice#) d = 1, 2, . . . P . σ3D−QNet is the Quantum-
inspired voxel-wise multi-level Sigmoidal activation (QSig)
function with activation as |χl,di 〉 described in the following
subsection IV-B. The output |φl(αdi )〉 can be written as

|φl(αdi )〉 = f(
π

2
δl,di −

arg{
m×n×p∑

j

f l(ωdj,i)f
l−1(αdi )− f l(χdi )}) = σ3D−QNet

(

m×n×p∑
j

f l−1(αdi )(cos(ωl,dj,i − ϑ
l
i) + γ sin(ωl,dj,i − ϑ

l
i)))

(16)

Here, the designated rotation angles associated with the inter-
connection weights between input neuron j to output neuron i
are represented by ωl,dj,i and δl,di is the phase transfer parameter.
The true classical output state (|1〉) from the ith quantum



5

neuron is obtained considering the imaginary section (sin) of
the above expression where, γ is an imaginary unit. Assume
that the inter-connection weights between the input and hidden
layer of the 3D-QNet architecture are denoted by |Ψl,d

k,j〉 and
for the hidden layer to output layer are denoted by |Ψl,d

j,i〉 in
the lth sample sets. The activation at the hidden and output
layers are designated using |χl,dj 〉 and |χl,di 〉, respectively.
Considering any quantum seed neuron k from the sample of
input neurons at the input layer, the corresponding seed neuron
at the hidden layer be j and the output seed neuron be i, the
response at the ith neuron with depth d in the lth sample sets
is expressed as

|φl(αdi )〉 = σ3D−QNet(

m×n×p∑
j

f(
π

2
yl,dj )〈ϕl,dji |ϑ

l,d
j 〉)

= σ3D−QNet(

m×n×p∑
j

f(
π

2
× σ3D−QNet(

m×n×p∑
k

f(
π

2
yl,dj )

〈ϕl,dkj |ϑ
l,d
k 〉)〈ϕ

l,d
ji |ϑ

l,d
j 〉)

(17)

i.e.,

|φl(αdi )〉 = σ3D−QNet(

m×n×p∑
j

f(
π

2
× σ3D−QNet(

m×n×p∑
k

f(
π

2
yl,dj ) cos(ωl,dk,j − ϑ

l,d
j )

cos(ωl,dj,i − ϑ
l,d
i ) + γ sin(ωl,dk,j − ϑ

l,d
j ) sin(ωl,dj,i − ϑ

l,d
i ))))

(18)

B. Quantum-inspired Voxel-wise multi-level Sigmoidal
(Vox-QSig) activation function

In this 3D-QNet architecture, a modified version of the
QMSig [4] activation function is suggested and referred to
as Quantum-inspired voxel-wise multi-level Sigmoidal (Vox-
QSig) activation function for voxel-wise processing of 26-
connected spatially oriented neighborhood-based pixels. The
Vox-QSig activation function, σ3D−QNet with slope λ and
activation υ, is defined as

σ3D−QNet(x) =
1

βτ + e−λ(x−υ)
, 0 ≤ βτ ≤

π

2
(19)

where, βτ describes the multi-level class responses exhibited
by the 26-connected third order neighborhood pixels expressed
as

βτ =
χN

ρτ − ρτ−1
(20)

where, ρτ and ρτ are the τ th and (τ − 1)th class outcomes,
respectively and the contribution of the 26-connected neigh-
borhood gray-level pixels is χN . The generalized form of
V ox−QSig is obtained by leveraging the activation function
hyper-parameters employed in Equation 19 as

σV ox−QSig(x;βτ , ρτ ) =

L∑
τ=1

1

βτ + e−λ(x−(τ−1)ρτ−1−υ)

(21)

where, L corresponds to the number of class levels. The
multi-class responses for various hyper-parameters employed
in V ox − QSig activation functions are provided in Figure
2. Brain MR volumes exhibit heterogeneous responses over

(a) L = 3 (b) L = 5

(c) L = 6 (d) L = 8

Fig. 2: Multi-level class response of Vox-QSig activation
function for λ = 15, 20, 25.

the local intensities in the 26-connected neighborhood regions,
owing to the wide variations of gray-levels. Inspired by the
authors’ previous works [4], [22], [35], [36], the proposed
Vox-QSig activation function employs four different adaptive
thresholding schemes suitable for efficient gray-scale segmen-
tation in the 3D-QNet architecture.
(1) Activation guided by β-distribution of the intensity of 26-
connected neighborhood voxels (υβ).
(2) Activation guided by 26-connected voxels based on Skew-
ness (υχ).
(3) Activation guided by 26-connected heterogeneous voxel
intensities (υξ).
(4) Activation guided by 26-connected fuzzy voxel cardinality
estimates (υκ).
In addition, to investigate a number of optimal thresholds
{T1, T2, · · · , TCl−1} in multi-class image thresholding, Otsu’s
method [37] is explored. The optimal thresholds maximize the
class variance as follows [37].

O = hn{T1, T2, · · · , TCl−1}θi(µi − ω) (22)

where Cl represents the number of defined classes in C
={C1, C2, . . . , CCl} and

θi =
∑
i∈Cl

pi , µi =
∑
i∈Cl

ipi/θl (23)

where, the ith pixel is defined as pi. The probability of class
Ci is represented as µi and its mean value is given by µi. ω
is known to be the mean of class C.
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C. Adjustment of Inter-connection Weights of 3D-QNet
and Loss Function

Each inter-connection link of the 3D weight matrix of size
3 × 3 × 3 for each candidate pixel of brain MR volume and
its corresponding activation is updated using quantum rotation
gates thereby enabling faster convergence of the proposed 3D-
QNet architecture. The inter-connection weight, ϕl,d and its
activation, χl,d are updated as follows.

|ϕl+1,d〉 =

(
cos4ωl+1,d − sin4ωl+1,d

sin4ωl+1,d cos4ωl+1,d

)
|ϕl,d〉 (24)

|χl+1,d〉 =

(
cos4ϑl+1,d − sin4ϑl+1,d

sin4ϑl+1,d cos4ϑl+1,d

)
|χl,d〉 (25)

where,
ωl+1,d = ωl,d +4ωl,d (26)

and
ϑl+1,d = ϑl,d +4ϑl,d (27)

Equations 26 and 27 refer to updating the angles of rota-
tion and activation, respectively. The error or loss function,
ζ(ωl,d, ϑl,d) in the suggested 3D-QNet is evaluated in terms
of Root Mean Square Error (RMSE) of the 3D-weight matrices
at depth d (or the slice #d) in the lth epoch and is defined
on the phase angles ωl,d, ϑl,d as

ζ(ωl,d, ϑl,d) =

1

N

N∑
i=1

26∑
j=1

[
ϕij(ω

l+1,d
ij , ϑl+1,d

i )− ϕij(ωl,dij , ϑ
l,d
i )
]2 (28)

The convergence analysis of the proposed 3D-QNet is illus-
trated in Appendix Section A.

V. RESULTS AND DISCUSSION

A. Data Set
The proposed 3D-QNet is validated extensively using the

BRATS 2019 data-sets [38]. The BRATS 2019 dataset is
composed of 315 (239 HGG and 76 LGG) 3D MRI volumes.
Each MRI volume comprises 155 slices of resolution 240×240
with the ground truth segmented labels and includes four
different modalities of 3D MR images viz. T1, T1 with
Contrast-Enhanced (T1 − CE), T2 and FLAIR. The seg-
mented labels are annotated with three distinct tumour sub-
regions, viz. tumor core (TC), tumor enhancing (TE), necrosis
and non-enhancing core region. These three annotations form
a complete tumor (WT). The BRATS 2019 data set is divided
into 8 : 2 ratio for training (252) and testing (63) due to GPU
limitations.

B. Experimental Setup
Intensive experiments have been carried out using 3D-QNet

on 3D brain MR volumes collected from the BRATS 2019
data set of size 240×240 using a Nvidia RTX2070 GPU with
MATLAB 2020a and Python3.6 (Pytorch). The proposed 3D-
QNet is implemented with the multi-level gray-scale images
using distinct multi-class levels L = 4, 6, and 8 characterized
by the Vox-QSig activation function. The steepness λ is

varied in the range 0.23 to 0.24 with step size 0.001. It has
been observed that in majority of cases, λ = 0.232 yields
optimal performance. Moreover, the Vox-QSig is guided by
four distinct activation schemes (υβ , υξ, υζ , υκ) [4], [22], [35].
Highly representative volumetric segmentation is followed by
k-means algorithm [39] for false-positive reduction in brain
tumor detection and to refine the segmentation accuracy and
dice score. The lesion or complete brain tumor detection mask
is binarized using a threshold of 0.5. Experiments have also
been performed using the 3D-UNet [13] architecture, Deep
Voxel-wise Residual Network (VoxResNet) [15], Dense-Res-
Inception Net (DRINet) [16], and 3D-ESPNet [17] on the
BRATS 2019 data set [38]. We have trained 3D-UNet [13]
and VoxResNet [15] rigorously using the Stochastic Gradient
Descent (SGD) algorithm on Caffe library1. The 3D-ESPNet
is implemented using Pytorch from the code available in
Github2 with 100 epochs using adam optimizer with a learning
rate of 0.0001. The DRINet is implemented using adam
optimizer with learning rate of 0.001 and kernel size of
3 × 3. The segmented output images resemble in size with
the dimensions of the binary mask and the outcome 1 is
considered as tumor region and 0 as background in detecting
complete tumor. The pixel by pixel comparison with the
manually segmented regions of interest or lesion mask allows
evaluating the dice similarity (DS) [9], which is considered as
a standard evaluation procedure in automatic medical image
segmentation. The evaluation process involves the manually
segmented lesion mask as ground truth, and each 2D pixel
is predicted as either True Positive (TRP ) or True Negative
(TRN ) or False Positive (TRN ) or False Negative (FLN ). The
empirical goodness measures [Positive Predictive Value (PV ),
Sensitivity (SS), Accuracy (AC) and Dice Similarity(DS) [9]]
are assessed to evaluate the results.

C. Experimental Results
Extensive experiments have been performed in the cur-

rent setup, and experimental outcomes are reported with
the demonstration of numerical and statistical analyses us-
ing the proposed 3D-QNet, 3D-UNet [13], VoxResNet [15],
DRINet [16], and 3D-ESPNet [17]. It is evident from the
experimental data reported in Table I that the proposed 3D-
QNet performs optimally for complte brain tumor segmen-
tation of four different modalities of MR volumes (viz. T1,
T1 − CE, FLAIR, and T2) using the activation guided by
26-connected heterogeneous voxel intensities (υξ) with L = 8
in comparison with other thresholding schemes under the
four evaluation parameters (AC,DS, PV, SS) [9]. The 3D-
QNet segmented brain MR slices collected from two different
volumes BRATS19-CBICA-AAG and BRATS19-CBICA-AAB
using class level L = 8 with activation schemes, υξ are shown
in Figure 3 and 4, respectively. The human expert annotated
ground truth slices for all the four different modalities are
illustrated in Figure 5. It has been observed from the seg-
mented MR slices that our 3D-QNet is suitable in segmenting
the correct position and size of the complete tumor while

1https://doi.org/10.1145/2647868.2654889
2https://github.com/sacmehta/3D-ESPNet

https://doi.org/10.1145/2647868.2654889
https://github.com/sacmehta/3D-ESPNet
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compared with the ground truth segmentation. However, it is
not efficient in mapping the sharp contour of the core and
enhanced tumor sub-regions outlined in the annotated slices.
Table II presents the quantitative results reported using the pro-
posed 3D-QNet, 3D-UNet [13], VoxResNet [15], DRINet [16],
and 3D-ESPNet [17] on evaluating the average accuracy (AC),
dice similarity score (DS), positive prediction value (PV ),
and sensitivity (SS) [9]. It has been observed from the 3D-
QNet segmented brain MR slices and the results reported in
Table II, that optimal segmentation is achieved for FLAIR
and reported an average of 0.821 dice score (DS) for FLAIR.
The proposed 3D-QNet marginally outperforms the convolu-
tional based architectures (3D-UNet [13], VoxResNet [15],
DRINet [16], and 3D-ESPNet [17]) in predicting complete
brain tumor detection. However, it may be noted that our 3D-
QNet does not intend to predict the core, enhanced tumor
and necrosis sub regions owing to lack of optimization of
the parameters in the suggested 3D-QNet. The box plots are
also demonstrated in Figure 6 citing the outcome reported in
Tables II. Moreover, to show the effectiveness of our proposed
3D-QNet over 3D-UNet [13], VoxResNet [15], DRINet [16],
and 3D-ESPNet [17], we have conducted one-sided two-
sample Kolmogorov-Smirnov (KS) [40] test with significance
level α = 0.05. It is interesting to note that despite being
characterized by a fully self-supervised quantum learning, the
3D-QNet has shown similar accuracy (AC) and dice simi-
larity (DS) in comparison to 3D-UNet [13], VoxResNet [15],
DRINet [16], and 3D-ESPNet [17]. Hence, the performance of
the 3D-QNet model on the BRATS 2019 data set is statistically
significant and offers a promising solution to self-supervised
deep learning for 3D-medical image segmentation.

VI. CONCLUSION

A 3D Quantum-inspired Self-supervised Tensor Neural Net-
work (3D-QNet) architecture characterized by 26-connected
voxel-wise processing for fully automated semantic segmen-
tation of Brain MR volume is presented in this work. Intensive
validation using the BRATS 2019 data set shows the efficacy
of the proposed self-supervised 3D-QNet to promote automatic
semantic segmentation of Brain MR volumes in real-time with
minimum human intervention which is still considered as an
uphill task in the field of medical image segmentation. The
incorporation of quantum-inspired computing and tensor-based
learning in the suggested network model aims to provide faster
convergence of the 3D-QNet, thereby enabling accurate seg-
mentation results. Despite being a 3D self-supervised network
model, 3D-QNet achieved similar dice similarity score on
complete tumor detection as deeply supervised 3D-UNet, Vox-
ResNet, DRINet and ESPNet, thus promoting self-supervised
network learning for volumetric segmentation of medical im-
ages. In principle, the proposed 3D-QNet is a general self-
supervised network architecture and to be extended in many
other 3D medical image segmentation avenues, where the
segmented annotations are limited. However, the 3D-QNet
fails to yield optimal outcome for multi-level segmentation
on the BRATS 2019 data sets. Authors are currently engaged
in extending the 3D-QNet by up-scaling the intermediate

(a) Slice#44 (b) Slice#59 (c) Slice#64 (d) Slice#69

(e) Slice#44 (f) Slice#59 (g) Slice#64 (h) Slice#69

(i) Slice#44 (j) Slice#59 (k) Slice#64 (l) Slice#69

(m) Slice#44 (n) Slice#59 (o) Slice#64 (p) Slice#69

Fig. 3: 3D-QNet segmented Brain MR volume (a − d)
BraTS19-CBICA-AAG-1-flair, (e−h) BraTS19-CBICA-AAG-
1-t2, (i− l) BraTS19-CBICA-AAG-1-t1ce, (m− p) BraTS19-
CBICA-AAG-1-t1 from the BRATS 2019 data set [38]

(a) Slice#52 (b) Slice#60 (c) Slice#71 (d) Slice#95

(e) Slice#52 (f) Slice#60 (g) Slice#71 (h) Slice#95

(i) Slice#52 (j) Slice#60 (k) Slice#71 (l) Slice#95

(m) Slice#52 (n) Slice#60 (o) Slice#71 (p) Slice#95

Fig. 4: 3D-QNet segmented Brain MR volume (a − d)
BraTS19-CBICA-AAB-1-flair, (e−h) BraTS19-CBICA-AAB-
1-t2, (i− l) BraTS19-CBICA-AAB-1-t1ce, (m− p) BraTS19-
CBICA-AAB-1-t1 from the BRATS 2019 data set [38]
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TABLE I: Results obtained using proposed 3D-QNet for complete tumor detection (CT) on BraTS19-CBICA-AAG-1-flair-
slice#69

Level Modality AC =
TRP+TRN

TRP+FLP+TRN+FLN

DS =
2TRP

2TRP+FLP+FLN

PV =
TRP

TRP+FLP

SS =
TRP

TRP+FLN
υβ υχ υξ υκ υβ υχ υξ υκ υβ υχ υξ υκ υβ υχ υξ υκ

L = 4

T1 0.99 0.99 0.99 0.99 0.62 0.80 0.80 0.79 0.44 0.66 0.65 0.65 0.99 0.99 0.99 0.99
T1− CE 0.99 0.99 0.99 0.99 0.79 0.80 0.79 0.80 0.66 0.66 0.66 0.66 0.99 0.99 0.99 0.99
FLAIR 0.99 0.99 0.99 0.99 0.62 0.80 0.80 0.79 0.44 0.66 0.66 0.65 0.99 0.99 0.99 0.99
T2 0.99 0.99 0.99 0.99 0.62 0.80 0.80 0.79 0.44 0.66 0.66 0.65 0.99 0.99 0.99 0.99

L = 6

T1 0.99 0.99 0.99 0.99 0.62 0.80 0.80 0.79 0.44 0.66 0.66 0.65 0.99 0.99 0.99 0.99
T1− CE 0.99 0.99 0.99 0.99 0.62 0.80 0.80 0.79 0.44 0.66 0.66 0.65 0.99 0.99 0.99 0.99
FLAIR 0.99 0.99 0.99 0.99 0.62 0.80 0.80 0.79 0.44 0.66 0.66 0.65 0.99 0.99 0.99 0.99
T2 0.99 0.99 0.99 0.99 0.62 0.80 0.80 0.79 0.44 0.66 0.66 0.65 0.99 0.99 0.99 0.99

L = 8

T1 0.99 0.99 0.99 0.99 0.82 0.82 0.82 0.81 0.70 0.69 0.69 0.68 0.99 0.99 0.99 0.99
T1− CE 0.99 0.99 0.99 0.99 0.81 0.81 0.81 0.81 0.68 0.68 0.68 0.68 0.99 0.99 0.99 0.99
FLAIR 0.99 0.99 0.99 0.99 0.84 0.84 0.84 0.84 0.73 0.73 0.73 0.72 0.99 0.99 0.98 0.98
T2 0.99 0.99 0.99 0.99 0.82 0.82 0.82 0.82 0.69 0.69 0.70 0.70 0.99 0.99 0.99 0.99

(a) Slice#44 (b) Slice#59 (c) Slice#64 (d) Slice#69

(e) Slice#52 (f) Slice#60 (g) Slice#71 (h) Slice#95

Fig. 5: Annotated Brain MR volume (a−d) BraTS19-CBICA-
AAG-1-seg, (e − h) BraTS19-CBICA-AAB-1-seg from the
BRATS 2019 data set [38]

volumetric features in the network and optimizing its hyper-
parameters to yield optimal segmentation outcome.

APPENDIX

A. Convergence Analysis of 3D-QNet
Le us assume the optimal phase angles at depth d for the weighted matrix

and the activation are denoted as ωd and ϑd, respectively. Now, consider

Wl,d = ωl,d − ωd (29)

Vl,d = ϑl,d − ϑd (30)

and
Dl,d = ωl+1,d − ωl,d =Wl+1,d −Wl,d (31)

Pl,d = ϑl+1,d − ϑl,d = Vl+1,d − Vl,d (32)

The loss function ζ(ωl,d, ϑl,d) is differentiable with respect to ωl,d and ϑl,d
as

∂ζ(ωl,d, ϑl,d)

∂ωl,dij

=
2

N

N∑
i=1

26∑
j=1

4ϕl,dij (ωl,dij , ϑ
l,d
j )

[
∂ϕl+1,d

ij (ωl+1,d
ij , ϑl+1,d

j )

∂ωl+1,d
ij

−
∂ϕl,dij (ωl,dij , ϑ

l,d
j )

∂ωl,dij

] (33)

∂ζ(ωl,d, ϑl,d)

∂ϑl,dj

=
2

N

N∑
i=1

26∑
j=1

4ϕl,dij (ωl,dij , ϑ
l,d
j )

[
∂ϕl+1,d

ij (ωl+1,d
ij , ϑl+1,d

j )

∂ϑl+1,d
j

−
∂ϕl,dij (ωl,dij , ϑ

l,d
j )

∂ϑl,dj

] (34)

TABLE II: Comparative analysis of proposed 3D-QNet with
3D-UNet [13], VoxResNet [15], DRINet [16], and 3D-
ESPNet [17] [The bold values reflect evaluation metrics with
significance level α = 0.05 conducted with one sided two
sample KS test [40]]

Methods Modality AC DS PV SS

3D-UNet [13]

T1 0.990 0.811 0.736 0.941
T1− CE 0.990 0.807 0.732 0.938
FLAIR 0.992 0.823 0.737 0.943
T2 0.989 0.812 0.735 0.944

VoxResNet [15]

T1 0.990 0.810 0.737 0.937
T1− CE 0.989 0.813 0.732 0.943
FLAIR 0.991 0.822 0.751 0.942
T2 0.990 0.807 0.729 0.944

DRINet [16]

T1 0.989 0.793 0.701 0.958
T1− CE 0.988 0.800 0.711 0.959
FLAIR 0.989 0.805 0.708 0.969
T2 0.987 0.789 0.700 0.958

3D-ESPNet [17]

T1 0.989 0.801 0.709 0.961
T1− CE 0.989 0.813 0.721 0.966
FLAIR 0.989 0.800 0.715 0.959
T2 0.988 0.802 0.714 0.957

3D-QNet

T1 0.989 0.801 0.736 0.965
T1− CE 0.989 0.811 0.740 0.957
FLAIR 0.991 0.821 0.751 0.957
T2 0.990 0.814 0.736 0.960

where,

4ϕl,dij (ωl,dij ϑj) = |ϕ
l+1,d
ij (ωl+1,d

ij , ϑl+1,d
j )− ϕl,dij (ωl,dij , ϑ

l,d
j )| (35)

The following equations evaluate the change in phase or angles (4ω and
4α) of the rotation gates as

4ωl,dij = −ρl,dij {
∂ϕ(ωl,d, ϑl,d)

∂ωl,dij

ϕ(ωl,d, ϑl,d)}
1
τ (36)

4ϑl,dj = −κl,dj {
∂ϕ(ωl,d, ϑl,d)

∂ϑl,di

ϕ(ωl,d, ϑl,d))}
1
τ (37)

where, ρij and κj refer to the learning rates for the adjustments of weights
and activation, respectively and are evaluated as

ρl,dij = X l,di −X l,dij ∀j = 1, 2 . . . 8

κl,dj = (
∑
j

X l,di,j )∀j = 1, 2 . . . 8 (38)

The sequences of {ωl,d} and {ϑl,d} converge super-linearly subject to the
following conditions [41].

lim
l→∞

||ωl+1,d − ωd||
||ωl,d − ωd||

≤ 1 (39)
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(a) AC (b) DS (c) PV (d) SS

(e) AC (f) DS (g) PV (h) SS

(i) AC (j) DS (k) PV (l) SS

(m) AC (n) DS (o) PV (p) SS

(q) AC (r) DS (s) PV (t) SS

Fig. 6: Illustration of Box plots for the results reported using
(a − d) 3D-UNet [13], (e − h) VoxResNet [15], (i − l)
DRINet [16], (m− p) 3D-ESPNet [17] and (q − t) 3D-QNet

and

||Wl+1,d|| = O||Dl,d|| (40)

Also,

lim
l→∞

||ϑl+1,d − ϑd||

||ϑl − ϑd||
≤ 1 (41)

and

||Vl+1,d|| = O||Pl,d|| (42)

The convergence of the sequence {ωl,d} according to L-Lipschitz continuity
is illustrated as [42]

ζ(ωl+1,d) ≤ ζ(ωl,d) + 〈∇ωζ(ωl,d), ωl+1,d − ωl,d〉+
L

2
||ωl+1,d − ωl,d||2

= ζ(ωl,d) + 〈∇ωζ(ωl,d)− ρ∇ωζ(ωl,d)〉+
L

2
|| − ρ∇ωζ(ωl,d)||2

= ζ(ωl,d)− ρ||∇ωζ(ωl,d)||2 + ρ2
L

2
||∇ωζ(ωl,d)||2

= ζ(ωl,d)− ρ(1− ρ
L

2
)||∇ωζ(ωl,d)||2

≤ ζ(ωl,d)−
ρ

2
||∇ωζ(ωl,d)||2 (Assuming, ρ ∈ (0,

1

L
])

≤ ζ(ωd) + 〈∇ωζ(ωl,d), ωl,d − ωd〉 −
ρ

2
||∇ωζ(ωl,d)||2,

(ζ is convex)

= ζ(ωd) + 〈∇ωζ(ωl,d), ωl,d − ωd〉 −
ρ

2
||∇ωζ(ωl,d)||2+

1

2ρ
(||ωl,d − ωd||2 − ||ωl,d − ωd||2)

= ζ(ωd) +
1

2ρ
(||ωl,d − ωd||2 − (||ωl,d||2 − 2〈ωl,d, ωd〉+

||ωd||2 − 2ρ〈∇ωζ(ωl,d), ωl,d − ωd〉+ ρ2||∇ωζ(ωl,d)||2))

= ζ(ωd) +
1

2ρ
(||ωl,d|| − ωd||2 − (||ωl,d − ρ∇ωζ(ωl,d)||2−

2〈ωl,d −∇ωζ(ωl,d), ωd〉+ ||ωd||2))

= ζ(ωd) +
1

2ρ
(||ωl,d − ωd||2 − ||ωl+1,d − ωd||2)

∴, ζ(ωl+1,d)− ζ(ωd) ≤
1

2ρ
(||ωl,d − ωd||2 − ||ωl+1,d − ωd||2)

Similarly, it can also be shown that

ζ(ϑl+1,d)− ζ(ϑl,d) ≤
1

2ρ
(||ϑl+1,d − ϑd||2 − ||ϑl+1,d − ϑd||2) (43)

Now, according to Thaler formula

ζ(ωl+1,d, ϑl+1,d)− ζ(ωl,d, ϑl,d) = (44)

[
4ωl,dij 4ϑl,dj

]
∂ζ(ωl,d,ϑl,d)

∂ω
l,d
ij

∂ζ(ωl,d,ϑl,d

∂ϑ
l,d
j

+O
[
||4ωl,dij 4ϑl,di ||

]

≈
[
{−ρl,dij

∂ζ(ωl,d, ϑl,d)

∂ωl,dij

}2 + {−κl,dj
∂ζ(ωl,d, ϑl,d)

∂ϑl,dj

}2
]
{ζ(ωl,d, ϑl,d)}

1
ι

(45)
It is obvious that (ζ(ωl+1,d, αl+1,d)−ζ(ωl,d, ϑl,d)) ≤ 0 and the sequences
of {ωl,d} and {ϑl,d} are monotonically decreasing as

lim
l→∞

ζ(ωl,d, ϑl,d) = (ωd, ϑ
d
) (46)

and

lim
l→∞

||ζ(ωl+1,d, ϑl+1,d)− (ωd, ϑ
d
)||

||ζ(ωl,d, ϑl,d)− (ωd, ϑ
d
)||

≤ 1 (47)
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