
Optimizing Convolutional Neural Network
Parameters for Better Image Classification

Manik Dhingra
mdhingra@lakeheadu.ca

Department of Computer Science
Lakehead University

Sarthak Rawat
srawat@lakeheadu.ca

Department of Computer Science
Lakehead University

Jinan Fiaidhi
jinan.fiaidhi@lakeheadu.ca

Department of Computer Science
Lakehead University

Abstract—The concept of convolution in neural networks has
been one of the most challenging and rewarding fields in the
field of deep learning. It has improved the way neural network
look at and process images, videos and text (Natural Language
Processing), anything which can be converted to numbers for
processing by a machine. The purpose of this report is to tackle
the problem of image classification using convolutional neural
networks in terms of optimizing the parameters to be used for
such problems. The experiments performed for comparison
of certain techniques to achieve specific goals incline towards
the ultimate objective of classifying images with reasonable
accuracy and within time constraints. For the final part of
the project, the classification model developed is deployed as a
web-service on cloud for better visualization of its working.

Index Terms—Convolutional Neural Networks (CNN), Nat-
ural Language Processing (NLP), hyper-parameters, Extreme
Learning Machine (ELM), web-services, MNIST, classification
accuracy

I. INTRODUCTION

The relevance of neural networks can be seen in machine
learning applications worldwide. It is with no doubt that a
neural network is one of the most widely known methods
of solving machine learning (ML) problems. However, with
passage of time, neural networks have displayed limitations
when it comes to processing of large-scale data-sets and
other types of data, such as images or video, text, audio
signals, and many more. The development of Convolutional
Neural Networks (CNN) was a breakthrough in the field of
ML for solving these problems.

A neural network is essentially a mathematical model
which tries to map an input to either a continuous or a
discrete target function, usually unknown to the machine.
The aim of developing such machines if to minimize the
error between the actual target values and the predicted
values. The problem statement for this project is the task of
image classification – the machine takes as input an image of
certain dimensions and outputs the class to which it belongs,
such as objects, places, or even handwritten digits.

This report covers the entire development process and
tasks involved in deploying of the classification model im-

plemented to improve performances for image classification.
Previous works in the domain of ML for the task of image
classification are vividly reviewed in section II. The data-set
used for the training and testing of the classifier is discussed
elaborately in section III and the network structures of
various techniques to improve performances are explained
in sections IV, V and VI. Finally, section VII reports the
analysis of experiments for the problem statement and the
results of the research study and demonstrates the ultimately
developed web-service for the task.

II. LITERATURE REVIEW

The concept of a neural network was first coined back in
1957, when Dr. Frank Rosenblatt invented the first neural
network model, Perceptron [1]. Dr. Bernard Widrow is
believed as the ‘Father of Neural Networks’, and was the
co-inventor of the Widrow-Hoff least square filter [2]. The
first recurrent neural network (RNN) was invented in 1982
by Dr. John J. Hopfield [3]. The method of ‘backpropa-
gation’ was first proposed in Dr. Paul Werbos’ 1974 PhD
thesis. Developments in late 1980s and early 1990s were
significant in the field of Machine Learning, with the advent
of Support Vector Machines (SVM), Radial Basis Function
(RBF) network, maxpooling, and one of the most renowned
research topics today, the CNN. With such a magnificent
contribution towards the exploration of machine intelligence,
researchers like Dr. Yann Lecun, Dr. Andrew Ng and Dr.
Feifei Li, to name a few, implemented deep neural networks
for sophisticated problems pertaining to images, like the
LeNet model [4], the ImageNet project [5], the Places
database [6], etc.

The first convolutional neural network model invented was
the LeNet-5 by Dr. Yann LeCun in 1998 [4], which aimed to
solve the document recognition problem using CNNs. Many
state-of-the-art neural network models which have achieved
human level accuracy for image classification task have
been developed. Using a CNN, a high-dimensional image
(or text) can be ‘encoded’ in lower-dimensional data as a



means to reduce the complexity of models. Some of these
image classification models include AlexNet [7], VGGNet
[8], GoogleNet [9] and ResNet [10].

The performances of neural networks for the task of
classification on tabular data was further improved by intro-
ducing deep neural networks with a large number of hidden
neurons in many hidden layers, thus contributing to the
architecture complexity. Although the development of better
and faster processors and graphic cards aided this, a much
better and faster solution to the problem was introduced by
Huang et al., (2006) [11] – the Extreme Learning Machine
(ELM). The concept of ELM is based on random networks,
randomly generating input-layer weights for and employing
a one-shot learning mechanism (single run) using those
random weights. This significantly improved the training
times of models.

In addition to this, working on image data can be laborious
and time consuming in terms of training the classification
model for better accuracy. As a step towards this, the
ImageNet project was introduced by Deng et al., (2009)
[5] which is an enormous collection of 14M+ images cat-
egorized into more than 21K classes. However, this was a
database of object-centric images. The Places database was
yet another set of 10M+ scene-centric images of 400+ unique
scene categories [6]. As improvements to the existing CNN-
based image classifiers, they were now being trained on these
huge data-sets and the trained models are available open-
source for anyone to use. These pre-trained CNN models
converged much faster as compared to those trained from
scratch.

III. DATASET SPECIFICATION

There are a plethora of image data-sets available today
which have a variety of image types – clothes, digits,
vehicles, scenes – an infinite number of options to choose
from. Even one class of images can be obtained through
more than one data-sets. For the task of image classification
in our project, we decided to use the MNIST Handwritten
Digits data-set [12], which consists of images of the digits
from 0 to 9, ten classes in total. The data-set in total contains
60,000 images in the training-set and 10,000 images in the
test-set, each image is of 28× 28 pixels and is gray-scaled.
The data-set can be downloaded online, or from the keras
library in python environment, and some examples from the
corpus can be viewed in Figure (1).

IV. DATA AUGMENTATION

One of the most crucial steps in improving performances
for any task is to have a large number of training samples
for the model. This is essential in cases where limited
volume of data is present since it gets extremely difficult
for the machine to learn patterns form that data. Creating
new data instances can sometimes prove to be beneficial

Fig. 1: MNIST Data-set for Handwritten Digit Recognition
[12]

and sometimes not. In our case, creating (new) fake images
from existing ones will increase the size of training samples
as well as enable the classifier to be more robust if some
images have noise or are distorted. There are a number of
ways of augmenting the data-set for better training – (1)
affine transformation, (2) rotation, (3) blur, (4) flip (not
useful for digits since a flipped image can be a different
digit, for instance ‘5’ and ‘2’), (5) distortion, etc. Such image
augmentation tasks were implemented in our project which
yielded new images to be fed to the model for training (can
be seen in Figures 2–6).

Fig. 2: Image Augmentation by Rotation (clockwise
30°)

Fig. 3: Image Augmentation by Adding Noise (blur)

As part of an experiment, it was observed that with a
general classification model, better performances can be
achieved by augmenting the data-set with new generated
images than with the original data-set. The types of data aug-
mentation methods used for the analysis on MNIST dataset
include the affine transformations and elastic distortions, and
the results obtained are displayed in Table I.

2



Fig. 4: Image Augmentation by Flipping (not useful
here since the digit 5 when flipped looks like the digit
2)

Fig. 5: Image Augmentation by Affine Transforma-
tions

V. EXTREME LEARNING MACHINE (ELM)

Based on the concept of one-shot learning, the Extreme
Learning Machine (ELM) architecture is relatively simple to
understand and implement. For a single-layer feed-forward
ELM network, the structure consists of one input-layer,
one hidden-layer, and one output-layer, as in Figure (8), as
compared to the dense fully-connected feed-forward network
which uses backpropagation for training over a number of
epochs, as in Figure (9).

One important step for using the ELM-based architecture
is that the data needs to be in a tabular form, i.e. organized
in rows and columns. Relating to our problem statement,
we plan to use ELM to classify images (not rows and
columns, but also channels). Due to this reason, and for
better comparisons between ELM and other iterative learning
methods, we use a different tabular data-set, called the letter-
recognition data-set. This can be downloaded online on the
UCI (University of California, Invine) data-set repository
[13]. A snapshot of the data-set can be seen in Figure (7),
in which the total number of input features is 16, and the
last column of the data-set is the class-label – one of the
26 alphabets. The letter-recognition data-set contains a total
of 20,000 instances, which are divided into 14,000 training
and 6,000 testing samples.

Unlike the traditional backpropagation-based feed-
forward networks, the ELM does not use a gradient-based
learning algorithm. With this method, all the parameters are
tuned exactly once and not iteratively. The input weights for
such a network are randomly generated (without training
or fine-tuning) and the hidden-layer weights are calculated
based on the target mappings. The most important step in
implementing an ELM is the selection of number of hidden

Fig. 6: Image Augmentation by Elastic Distortion

Transformation Training Testing
None 97.21% 90.26%

Affine Transformation 97.61% 93.16%
Elastic Distortion 98.02% 95.37%
Affine + Elastic 98.34% 96.16%

TABLE I: Data Augmentation Performance Comparison

layer nodes and the penalty factor. The comparison of ELM
with a traditional dense feed-forward network is shown
in Table II. This comparison is for a simple multi-class
classification problem of alphabet letter-recognition based
on 16 input features. In addition to this, the comparison
between the two models in terms of training times is also
shown in Figure (10).

Model Performance Training
Type Training Testing Time

Traditional 90.73% 90.56% 30m 56s
ELM 98.77% 94.76% 02m 04s

TABLE II: ELM vs Traditional Feed-forward Network

VI. TRANSFER LEARNING

Transfer Learning is best understood as training a clas-
sification model on a huge data-set and then using those
trained neuron-weights to test on a relatively smaller data-
set. It is one of the most frequently used techniques to
boost classification performances, specially in the case of
images. Pre-trained CNN weights can be easily found online
and used for any task. This technique works much better
and converges much earlier then those models trained from
scratch. Moreover, since a large data-set is used to train these
weights, the performance on the smaller data-set is almost
always high.

As mentioned before, a number of CNN architectures
are used today for image-related problems, such as the
VGGNet, AlexNet, and more. There also exist pre-trained
weights for the same classification models. These belong
to two categories – (1) pre-trained on Imagenet (for object-
centric images), or (2) pre-trained on Places365 (better suited
for scene-centric images). Models tested using pre-trained
weights and those trained from scratch were evaluated on a

3



Fig. 7: Data-set For ELM and Dense Network Models
Comparison

Fig. 8: Extreme Learning Machine Architecture

small data-set, the Scene-15, which consists of 4,485 images
divided unequally over 15 scene classes. After a 50-50 split
between training and testing images, the two said models
obtained the following performances, Figure (12).

VII. WEB SERVICE

Now with the sub-optimal model architecture has been
designed for image classification, the focus was on develop-
ing a web-service to better visualize the predictions made
by the proposed model. For the purpose of deploying a
computationally intensive CNN model on Google Cloud,
there had to be certain constraints to work with:

· small model size
· high performance
· fast speed

For this, the aforementioned model architectures were
compared and the analysis is done to get the best fit model
for the task, i.e. fast and accurate predictions along with a

Fig. 9: Dense Feedforward Network Architecture

Fig. 10: ELM vs Dense Network Time Comparison

small size for easy deployment. The results are tabulated in
Table III.

VGG-16
Transfer ELM LeNet-5
Learning

Model Size 300MB 60KB 105KB
Accuracy 98% 92% 96%

Training Time 1 hour 20 secs 15 mins

TABLE III: Deployment Model Comparison Metrics

Due to the size and performance trade-off, the LeNet-5
model architecture was used to be deployed on cloud for
predictions.

The ultimate goal of our project was the create the web-
service which could host our designed image classification
model for handwritten digits’ prediction. There were a
number of sub-goals to be met with the web-service, some
of the most important ones are:

· black board for drawing the digit
· variable-size marker for drawing
· label to display the prediction

The web-service is developed using the Flask framework
in the python environment. Flask is a lightweight Web

4



Fig. 11: Web-service: first page

Fig. 12: Transfer Learning Performance Comparison

Server Gateway Interface (WSGI) web application frame-
work. WSGI is a specification that describes how a web
server communicates with web applications, and how web
applications can be chained together to process one request.
Flask is designed to make getting started quick and easy,
with the ability to scale up to complex applications. It began
as a simple wrapper around Werkzeug and Jinja and has
become one of the most popular Python web application
frameworks.

Flask offers suggestions, but doesn’t enforce any depen-
dencies or project layout. It is up to the developer to choose
the tools and libraries they want to use. There are many
extensions provided by the community that make adding new

functionality easy.

Fig. 13: Web-service: startup page layout (empty
black-box to draw the digit)

Fig. 14: Web-service: get predictions for the drawn digit

When the web-service is started, the web-page shows a
black-box in the middle of the screen along with a bunch
of placeholder labels, Figure (11). The user is supposed to
draw a (single) digit – from 0 to 9, inside the black-box
using the pointer (mouse), as can be seen in Figure (13).

5



After having drawn the desired digit, the user can click
one of ‘Predict’ and ‘Clear’ buttons just below the black-box
– ‘Predict’ will give a prediction of the image captured inside
the black-box, and ‘Clear’ will clear with contents of the
box, i.e. erase the drawing completely. On clicking ‘Predict’,
the processing is pushed to the back-end server, where our
designed classification model is run and the predictions are
obtained for the extracted image, and can be seen as in
Figure (14).

VIII. CONCLUSION

The task of image classification is one of many in the
field of deep learning. There have been many proposals for
enhancement in CNN performances, some of which have
been tested in our project. Moving above from images, one
can use similar techniques to achieve higher performances
for text-based problems such as Spam Classification, Text
Generation, Sentiment Analysis, and even video analysis,
such as Video Segmentation, Object Detection/Tracking, etc.
This is one of the future scopes of this project, that these
approaches are useful even for such cases. In addition, the
model trained by us just works for digit-recognition, which
can be improved to detecting more than single-digit numbers
and even letters (alphabets). The scalability of deep learning
solutions are endless, and as for us, the sky is the limit.

REFERENCES

[1] F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain.,” Psychological review, vol. 65,
no. 6, p. 386, 1958.

[2] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” tech. rep.,
Stanford Univ Ca Stanford Electronics Labs, 1960.

[3] J. J. Hopfield, “Neural networks and physical systems with emer-
gent collective computational abilities,” Proceedings of the national
academy of sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition, pp. 248–255,
Ieee, 2009.

[6] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places:
A 10 million image database for scene recognition,” IEEE transactions
on pattern analysis and machine intelligence, vol. 40, no. 6, pp. 1452–
1464, 2017.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, pp. 1097–1105, 2012.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1–9, 2015.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770–778, 2016.

[11] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
theory and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489–
501, 2006.

[12] D. Keysers, “Comparison and combination of state-of-the-art tech-
niques for handwritten character recognition: topping the mnist bench-
mark,” arXiv preprint arXiv:0710.2231, 2007.

[13] “Letter recognition data-set.” http://archive.ics.uci.edu/ml/datasets/
Letter+Recognition.

6


