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Two equivalent multi-sensor Kalman filters with
variable delays and intermittent measurements

Babak Tavassoli, Parisa Joshaghani

Abstract—Kalman filtering of measurement data from multiple
sensors with time-varying delays and missing measurements is
considered in this work. Two existing approaches to Kalman
filtering with delays are extended by removing some assump-
tions in order to have equivalent filtering methods and making
comparisons between them. The computational loads of the two
methods are compared in terms of the average number of floating
point operations required by each method for different system
dimensionalities and delay upper bounds. The results show that
the superiority of the methods over each other depends on the
comparison conditions.

Index Terms—Kalman filter, time-varying delays, intermittent
measurements, data packet losses, multirate sampling.

I. INTRODUCTION

There is a wide variety of filtering applications where time-
varying delays, missing measurement samples, and multiplic-
ity of sensors are issues in many of them. Delays and missing
measurements can be for example due to processing time or
communication constraints [1], [2]. Kalman filtering with only
random data packet losses is considered in a number of works
including [3], [4], [5], [6] where the dimensionality of filter is
the same as the dynamical system. However, the filter becomes
more complex in the presence of delays.

There are three main approaches to filter design with de-
layed measurement information. The first approach is to revisit
the past values of the recursive Kalman filtering variables
upon receiving a delayed measurement sample. To reduce
the complexity of this approach, the covariance matrix is
calculated regardless of delay occurences in [7], [8] which
causes some estimation errors. These error can be avoided by
storing the past filtering variables in finite length buffers as
suggested in [9] where data packet losses are also taken into
account. Some researchers attempt to combine the recursive
filter equations for the previous time steps insteed of using
buffers which can increase the complexity of filter [7], [10],
[11]. This complexity can be reduced to some extend by
making simplifying assumptions for example about order or
availability of data samples in [12], [13], [14], [15]. The
second approach is based on augmentation of the state vector
with the delayed measurements. This converts the delayed
system to a delay-free system such that the ordinary Kalman
filter can be applied [2], [16], [17], [7]. The third approach
applies H∞ analysis of time delay systems to design filters
with bounded error covariance [18], [19], [20], [21]. The result
is not a Kalman filter in the sense that it does not produce the
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optimal estimation. It is relatively straightforward to design
robust filters based on this approach [22], [23], [24].

This work aims to extend the first two Kalman filtering
approaches mentioned above into equivalent methods such that
a comparison between them is made possible. The extensions
allow for tackling intermittent measurements from multiple
sensors subject to time-varying delays. For the first approach,
the filtering method in [9], which is found to be a more
general formulation among the existing results, is extended
to the case of multi-sensor measurements while modifying
the underlying notation. The result is presented as a self-
contained optimal filtering algorithm. The formulation of the
second approach is also extended by adding the capabilities
to handle missing measurements and simultaneous or miss-
ordered arrival of measurement samples from the previous
time steps. Then, the computational loads of the two methods
are compared for different values of delay upper bound and
system’s dimentionality by evaluating the average count of
floating point operations (flops) required for each case. The
results show that each method can overtake the other one in
a subset of conditions.

Notation: The set of integers {a, a+1, · · · , b} is denoted by
{a..b}. For an ordered set S, a set of elements Mi for i ∈ S
is denoted as {Mi}i∈S or {Mi}bi=a if S = {a..b}. Vertical
and diagonal concatenations of matrices {Mi}bi=a are denoted
by cat{Mi}bi=a and diag{Mi}bi=a respectively. The expected
value of a random matrix V is denoted by E{V }. A matrix
with zero elements is simply denoted as 0 if its dimensions
can be inferred from the containing formula. An empty matrix
is denoted by 00 which is allowed to be concatenated with an
arbitrary matrix M as cat{M, 00} = diag{M, 00} = M .

II. PROBLEM STATEMENT

The problem under consideration in this work is to optimally
estimate the state of a dynamical system described by

xk = Fkxk−1 +Bkuk + wk (1a)

yik = Hi
kxk + vik (1b)

in which k is the discrete time step, xk ∈ Rnx is the state vec-
tor, uk ∈ Rnu is the input vector, yik ∈ Rni is the ith measured
output vector for i ∈ {1..m} with

∑m
i=1 ni = ny , wk ∈ Rnw

and vik ∈ Rni are uncorrelated, zero-mean white Gaussian
noise vectors with covariance matrices Rik = E{vikvikT } and
Qk = E{wkwTk }.

The ith output sample yik is received by the estimator after
a time-varying delay defined as

d ik = t− k if the estimator receives yik at t ≥ k. (2)
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It is assumed that the measurement samples are time-
stamped such that, the delay for each data sample can be
calculated from its time-stamp by the estimator. Missing
measurements are also assumed to be probable for example
due to multirate sampling or communication errors. A missing
measurement can be considered as a sample received with
infinite delay. If a measurement sample is not missed, it is
assumed to be received after a delay bounded by dmax such
that

d ik ∈ {0..dmax} ∪ {∞} ∀ k ≥ 0 (3)

The optimal estimation of the state xk is given by

x̂k|k = E{xk| Ik} (4a)

Ik = {yij | j + d ij ≤ k} (4b)

in which Ik is the information set which is available to the
estimator at the time step k.

If there are no delays or missing measurements (i.e. d ik = 0),
then the optimal estimation x̂k|k is calculated by the means
of the ordinary Kalman filter in the appendix. In presence
of the delays or missing measurements, the ordinary Kalman
filter cannot be applied. In the following two sections, two
equivalent approaches are presented for extension of Kalman
filtering to measured data from multiple sensors, with variable
delays and missing measurements according to (3).

Remark 1: The problem formulation in this section is capa-
ble for tackling multirate sampling systems. For this purpose,
it is only needed to virtually assume that d ik =∞ if no sample
is taken from the ith sensor at the time step k.

III. BACKWARD RENOVATION KALMAN FILTER

In the first method, if yik is received at the time step t, then
the state estimator has to repeat the recursive calculations of
filter from k to t. To formulate this method, the following
notation is introduced for the variables yik, vik, Hi

k, Rik.

ϕ̃i,tk =

{
ϕik if yik is received until t,
00 otherwise,

(5)

ϕ ∈ {y, v,H,R}.

The set of measurements that are sampled at k and received
until t are concatenated into a vector ỹtk defined as

ỹtk = cat{ỹi,tk }
m
i=1 (6)

which can be written as

ỹtk = Ht
kxk + ṽtk, (7a)

Ht
k = cat{H̃i,t

k }
m
i=1, (7b)

ṽtk = cat{ṽi,tk }
m
i=1, (7c)

in which ṽtk is a new zero-mean noise vector with covariance

Rtk = E{ṽtkṽt
T

k } = diag{R̃i,tk }
m
i=1. (8)

Defining the information set Itk as

Itk = {ỹi,tj | j ≤ k, 1≤ i≤m}, (9)

then we have Ikk = Ik according to (4b) and (5) for ϕ = y.

The optimal estimation of xk in (24) and the corresponding
error covariance given the information set Ith for time steps t
and h satisfying t ≥ k ≥ h are written as

x̂tk|h = E{xk | Ith} (10a)

P tk|h = E{(xk − x̂tk|h)(xk − x̂tk|h)T | Ith} (10b)

Since Ikk = Ik, the optimal estimation in (4) satisfies

x̂k|k = x̂kk|k (11)

For a given time step t, the ordinary Kalman filer equations
in the appendix can be applied to write

x̂tk|k−1 = Fkx̂
t
k−1|k−1 +Bkuk, (12a)

P tk|k−1 = FkP
t
k−1|k−1F

T
k +Qk, (12b)

Kt
k = P tk|k−1H

tT

k (Ht
kP

t
k|k−1H

tT

k +Rtk)−1 (12c)

x̂tk|k = x̂tk|k−1 +Kt
k(ỹtk −Ht

kx̂
t
k|k−1), (12d)

P tk|k = (I −Kt
kH

t
k)P tk|k−1. (12e)

By the definition in (5), the variables ϕ̃i,tk for ϕ ∈ {y,H,R}
remain constant with respect to t if t ≥ k+ dmax. Hence, the
equations (12) are the same for t ≥ k + dmax such that

k < t− dmax =⇒

{
x̂tk|k = x̂t−1k|k
P tk|k = P t−1k|k

. (13)

Therefore, at every time step t the estimator only needs to
recalculate x̂tk|k and P tk|k for k ∈ {t− dmax..t} by repeating
the recursive filtering calculations in (12). For this purpose, it
is needed that the estimator is equipped with data buffers of
length dmax to store x̂tk|k, P tk|k for k ∈ {t− dmax..t}.

The estimator also needs to keep track of yik, vik, Hi
k, Rik

to update ϕ̃i,tk in (5) for ϕ ∈ {y,H,R} that are required for
repeating the recursive calculations. For this purpose, the set
Jt which indexes the samples received at t is defined as

Jt = {(j, i) | d it−j = j} (14)

which according to (3) satisfies

Jt ⊆ {0..dmax} × {1..m}. (15)

The equations in this section can be converted to the
Algorithm 1 which gets the newly arrived information at every
time step t given by {yit−j , Hi

t−j , R
i
t−j}(j,i)∈Jt

and calculates
x̂t|t in (4). For this purpose, the algorithm stores x̂tk|k and
P tk|k for k ∈ {t − dmax..t} in buffers x̄, P̄ with finite length
` ∈ {0..dmax}. The additional buffers ȳ, H̄, R̄ are also used to
store the received samples of yik and the corresponding Hi

k and
Rik for k ∈ {t−dmax..t} and i ∈ {1..m}. These value are used
for repeating the recursive filter calculations between lines 8
and 13 of the algorithm. The non-stored auxiliary variables are
denoted using non-italic names. In particular, x and P stand
for x̂tk|k−1 and P tk|k−1. The value of ` starts from zero and
grows step by step up to dmax after which the buffer lengths
remain constant. At t = 0 the buffers must be initialized as

(`, x̄0, P̄0)← (0, x̂0, P0|0) (16a)

(ȳi0, H̄
i
0, R̄

i
0)← (00, 00, 00) ∀ i ∈ {1..m} (16b)
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1 function BRF
(
t,Jt, {yit−j , Hi

t−j , R
i
t−j}(j,i)∈Jt

,

`, x̄0..`, P̄0..`, ȳ
1..m
0..` , H̄

1..m
0..` , R̄

1..m
0..`

)
2 `← `+ 1 ;

3 for every i ∈ {1..m} do
(ȳi`, H̄

i
`, R̄

i
`)← (00, 00, 00);

4 for every (j, i) ∈ Jt do
(ȳi`−j , H̄

i
`−j , R̄

i
`−j)← (yit−j , H

i
t−j , R

i
t−j);

5 s← max [{j|(j, i) ∈ Jt} ∪ {0}] ;

6 for every j ∈ {`− s..`} do
7 k ← t− `+ j ;

8 H = cat{H̄i
j}mi=1 ;

9 P← FkP̄j−1F
T
k +Qk ;

10 K← PHT (HPHT + diag{R̄ij}mi=1)−1 ;

11 x← Fkx̄j−1 +Buk ;

12 P̄i ← (I − KH)P ;

13 x̄i ← x + K(cat{ȳij}mi=1 − Hx) ;
14 end
15 if ` > dmax then
16 (x̄0..`−1, P̄0..`−1, ȳ

1..m
0..`−1, H̄

1..m
0..`−1, R̄

1..m
0..`−1)

← (x̄1..`, P̄1..`, ȳ
1..m
1..` , H̄

1..m
1..` , R̄

1..m
1..` ) ;

17 `← dmax ;
18 end
19 x̂t|t ← x̄` ;

20 return
(
x̂t|t, `, x̄0..`, P̄0..`, ȳ

1..m
0..` , H̄

1..m
0..` , R̄

1..m
0..`

)
;

21 end
Algorithm 1: Backward renovation filtering algorithm

IV. AUGMENTED SYSTEM FILTERING

In the second method for obtaining the estimation of state
in (4), the system (24) is augmented as

ξk = F̄kξk−1 + B̄kuk + w̄k, (17a)
ξk = cat{xk, yk, · · · , yk−dmax

} (17b)

yk = cat{yik}mi=1, (17c)
w̄k = cat{wk, Hkwk + vk, 0} (17d)

Hk = cat{Hi
k}mi=1 (17e)

with the matrix coefficients

F̄k =


Fk 0 · · · 0 0

HkFk 0 · · · 0 0
0 Iny · · · 0 0
...

...
. . .

...
...

0 0 · · · Iny
0

 , B̄k =


Bk

HkBk
0
...
0

 (18)

and the covariance matrix for w̄k given by

E{w̄kw̄Tk } = diag
{[

Qk QkH
T
k

HkQk Rk +HkQkH
T
k

]
, 0

}
. (19)

The set of samples that are received by the estimator at t
can be concatenated to a vector ysk defined as

ysk = cat{yik−j}(j,i)∈Jk
(20)

with Jk in (14) which can be written as

ysk = H̄kξk, (21a)

H̄k =
[

0 diag{Īi}(j,i)∈Jk

]
(21b)

Īi =
[

0ni×
∑i−1

j=1 nj
Ini

0ni×
∑m

j=i+1 nj

]
(21c)

The system (17a) with output ysk in (21a) is a delay-free
system and the ordinary Kalman filter in the appendix can be
applied to estimate ξk in (17b) which includes xk. As a result,
the estimation x̂k|k in (4) is obtained as

x̂k|k = [I 0 · · · 0] ξ̂k|k (22)

V. NUMERICAL EXAMPLE

In this section the proposed filtering methods are applied
to an example system and their computational loads are
compared. For this end, the time-dicretized state space model
for a chain of nx integrators is considered as

xk+1 = Fxk +Buk + wk (23a)
yk = Hxk + vk (23b)

F = eFch, B =
∫ h
0
eFcτBcdτ

Fc =

[
0 Inx−1
0 0

]
, Bc =

[
0
1

]
, H = [ 1 0 ]

in which xk ∈ Rnx is the vector of integrator outputs, uk ∈ R
is the input, h = 0.05, wk ∈ Rnx and vk ∈ R are uncorrelated
Gaussian white noises with E{wkwTk } = 0.1I and E{v2k} =
0.1. To stabilize the system, a linear quadratic (LQR) state
feedback controller uk = Kxk is applied which minimizes
the quadratic cost function J =

∑∞
0 (xTk x+ u2k).

The backward renovation filter (BRF) in section III and the
augmented system filter (AGF) in section IV are equivalent
and produce the same result, since they both generate the state
estimation in (4). The simulation results for the state xk of the
system (23) and the corresponding estimation x̂k|k using either
of the two filters are plotted in Fig. 1a through Fig. 1c. The
delays dk are generated randomly with P{dk = ∞} = 0.05,
and equal probabilities P{dk = i} for i ∈ {0..dmax} with
dmax = 20. The delay values are plotted in Fig. 1d in which
the missing measurements are indicated by a 4 symbol at the
corresponding time step with zero height.

The computational loads of the two filtering methods are
compared in terms of the average count of floating point
operations (flops) per time step during a simulation with 300
time steps. The flop counts are calculated by summing the
flop counts for individual matrix operations required by each
method. The comparison is made over nx ∈ {3, 10, 30},
dmax ∈ {5, 10, 20, 50} and the results are presented in Table
I. According to the results, the load of computations increases
with nx and dmax for both methods. However, the increase
of flop count with respect to nx is much faster in the case
of BRF method. On the other hand, the flop count increases
more rapidly with the increase of dmax in the case of the AGF
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Fig. 1. Simulation of the methods for Kalman filtering with delays.

TABLE I
FLOP COUNTS OF BACKWARD RENOVATION FILTER (BRF) AND

AUGMENTED SYSTEM FILTER (AGF) FOR DIFFERENT CONDITIONS.

Flop count

nx Method dmax = 5 dmax = 10 dmax = 20 dmax = 50

3
BRF 1.52×105 2.33×105 3.89×105 6.76×105

AGF 6.86×105 2.23×106 9.94×106 5.63×107

10
BRF 4.59×106 7.11×106 1.21×107 2.17×107

AGF 3.21×106 6.83×106 2.06×107 8.66×107

30
BRF 1.18×108 1.89×108 3.08×108 5.53×108

AGF 3.17×107 4.61×107 8.67×107 2.28×108

method. Therefore, it is advisable to use the BRF method in
the case of long delays and to use the AGF method for systems
with larger dimensionality.

VI. CONCLUSION

Two existing approaches to Kalman filtering with delays
have been extended to equivalent methods for optimal estima-
tion in presence of multiple effects. These effects include time-
varying delays in multiple measurement channels, missing
measurements (e.g. due to packet losses or multirate sam-
pling), and miss-ordered arrival of data. The extension of first
approach which is based on recalculation of the past filtering
variables has been presented as an algorithm using finite length
memory buffers. The second approach which is based on
system augmentation has been also extended to tackle missing
measurements and the other effects. The computational loads

of the resulting equivalent filtering methods were compared
in terms of the flop counts for filtering integrator chains of
various lengths. The comparison results suggest that the first
method performs better for long delays while the second
method can be more efficient for larger systems.

APPENDIX A
KALMAN FILTER FOR LINEAR SYSTEMS WITH VARYING

OUTPUT DIMENSIONALITY

Consider a dynamical system system described by

xk = Fkxk−1 +Bkuk + wk (24a)

yk = Hkxk + vik (24b)

with xk ∈ Rnx , uk ∈ Rnu , and yk ∈ Rnk where nk varies with
k, and uncorrelated, zero-mean white Gaussian noise vectors
wk ∈ Rnw and vk ∈ Rnk with Rk = E{vikvikT } and Qk =
E{wkwTk }. The optimal estimation of xk is defined as

x̂k|k = E{xk | Ik} (25)

with Ik = {yi | i ≤ k}. Given x̂0|0 and P0|0, it is straight-
forward to show that the estimation x̂k|k can be calculated
recursively according to

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk, (26a)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk, (26b)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1, (26c)

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1), (26d)
Pk|k = (I −KkHk)Pk|k−1. (26e)

If nk = 0 for some k, then Hk and Kk in (26) become
0×nx and nx×0 empty matrices respectively, and the product
KkHk in (26e) is defined to be a nx × nx zero matrix.
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