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Abstract 

The dragonfly algorithm developed in 2016. It is one of the algorithms used by the researchers to optimize an 

extensive series of uses and applications in various areas. At times, it offers superior performance compared to the 

most well-known optimization techniques. However, this algorithm faces several difficulties when it is utilized to 

enhance complex optimization problems. This work addressed the robustness of the method to solve real-world 

optimization issues, and its deficiency to improve complex optimization problems. This review paper shows a 

comprehensive investigation of the dragonfly algorithm in the engineering area. First, an overview of the algorithm 

is discussed. Besides, we also examined the modifications of the algorithm. The merged forms of this algorithm with 

different techniques and the modifications that have been done to make the algorithm perform better are addressed. 

Additionally, a survey on applications in the engineering area that used the dragonfly algorithm is offered. The 

utilized engineering applications are the applications in the field of mechanical engineering problems, electrical 

engineering problems, optimal parameters, economic load dispatch, and loss reduction. The algorithm is tested and 

evaluated against particle swarm optimization algorithm and firefly algorithm. To evaluate the ability of the 

dragonfly algorithm and other participated algorithms a set of traditional benchmarks (TF1-TF23) were utilized. 

Moreover, to examine the ability of the algorithm to optimize large scale optimization problems CEC-C2019 

benchmarks were utilized. A comparison is made between the algorithm and other metaheuristic techniques to show 

its ability to enhance various problems. The outcomes of the algorithm from the works that utilized the dragonfly 

algorithm previously and the outcomes of the benchmark test functions proved that in comparison with participated 

algorithms (GWO, PSO, and GA), the dragonfly algorithm owns an excellent performance, especially for small to 

intermediate applications. Moreover, the congestion facts of the technique and some future works are presented. The 

authors conducted this research to help other researchers who want to study the algorithm and utilize it to optimize 

engineering problems. 

 

Keywords: Dragonfly Algorithm, Swarm Intelligence, Metaheuristic Algorithm, Optimization Algorithm, Single and 

Multi-objective optimization, DA. 
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As scientific texts use different notations for vectors, matrices, random variables, derivatives with respect to vectors, 

Table 1 provides the convention applied in this paper. 

Table1: List of symbols used in the paper 

Symbol Meaning 

f Attraction towards food 

s separation 

w inertia weight 

c cohesion 

a alignment  

e distraction outwards predators  

L1 Lower Bound 

Ui Upper Bound 

 

1. Introduction 

Many researchers in various areas use Swarm Intelligence (SI). The ability of natural swarm systems amazed natural 

scientists and biologists to study the behaviors of swarms and creatures. Swarm-based algorithms are part of the nature-

inspired population-based algorithm’s family.  Regarding complex real-world problems, these algorithms produce good 

results in terms of cost, speed, and robustness [1]. Bonabeau mentioned SI as the evolving of the combined intellect of 

sets of modest representatives [2]. Swarm intelligence systems consist of several agents that form a population. They 

consist of a collection of intellectual performance of systems that are self-organized and decentralized. Collective 

clustering and sorting, building nests, and foraging groups of social insects are examples of SI based techniques [3]. As 

discussed in [2], labor division and self-organization are two basic concepts of SI. Self-organization here means the 

capability of having procedures for developing agents with no support from external sources. On the other hand, the 

labor division indicates the implementation of numerous feasible with meek jobs by people. In SI, agents follow simple 

rules, and no centralized control structure exists to control the behaviors of individuals. In reality, the individual’s 

behaviors are local and random to an extent. Artificial individuals, however, interact with each other, which produces 

intelligent and new actions [4]. SI recently has been applied to different problems in continuous and combinatorial 

optimization, robotics, telecommunications, etc., and often-magnificent results were produced [5]. Lately, the researchers 

have proposed some new techniques. Particle Swarm Optimization (PSO) was suggested by Kennedy and Eberhart [6]. 

PSO is one of the first-born algorithms in the swarm intelligence field. It mimics the behaviors of a collection of fish or 

birds. In the exploration space, each particle is a particular agent with a location. Since inventing the PSO, its original 

and improved versions have been used to optimize many complex problems, for example, references [7-9]. Additionally, 

He et al. proposed Group Search Optimizer (GSO) [10]. GSO mimics the searching behavior of animals. Cuckoo Search 

(CS) algorithm imitates the process of reproduction in the cuckoo family [11]. Later in 2014, Mirjalili et al. developed 

Grey Wolf Optimizer (GWO) [12]. It imitates the hunting behavior of wolfs. Later, in reference [13], Mirjalili proposed 

Dragonfly Optimization Algorithm (DA). DA mainly mimics the behaviors of hunting and migration of dragonflies. 

Harmony Search Algorithm (HA) is proposed in [14]. It mimics the process of improving music by the musician. The 

musician tries to provide better harmony depending on his/her experiences. Donkey and Smuggler Optimization (DSO) 

algorithm suggested in [15]. DSO imitates the attitudes of donkeys to select and search routes. Yazdani et al. developed 

another example of nature-inspired algorithms, which is called the Lion Optimization Algorithm (LOA) [16]. The LOA 

mimics the lion’s cooperation behavior and their unique lifestyle. Based on social organization, the lions divide into 

residents and nomads. The residents consist of several lions that live together, and they are called pride. Nomads, on the 

other hand, are mostly seen in pairs and sometimes singularly. Lions may change their lifestyle from nomads to residents 

or vice versa. Moreover, Rahman, C. and Rashid have proposed a new Learner Performance-Based Behavior (LPB) 

algorithm [17]. The LPB mimics the process of accepting graduated students from high school in different colleges. 

Similar to other algorithms, LPB produces the initial population randomly. In the later steps, depending on the fitness of 

the individuals, the population is divided into a number of sub-populations. The optimization process starts from the sub-

population that contains the best individuals, and then the next best sub-population, and so on. This procedure avoids 



 

 

locating into local optima, and also provides a good balance between exploration and exploitation. Multi-objective 

versions of metaheuristic algorithms are also utilized to optimize multi-objective problems, such as reference [18]. 

 

Different researchers have used DA in numerous diverse applications and it gave satisfactory results. Until the end 

of working on this review paper (March 2019), almost 300 different works cited the dragonfly algorithm in different 

areas. It produced satisfying results in almost all applications. Additionally, the authors of this review paper published 

another review paper on the DA and its applications in applied science [19]. In that review paper, the authors cantered 

their review on the applied science area (such as image processing, machine learning, wireless, and networking). 

Dragonfly algorithm is used for optimizing a huge number of problems in various disciplines. One review paper cannot 

cover all the articles that used the DA. Thus, in this paper, DA and its engineering applications are focused and 

reviewed. 

 

The main objectives and contributions of the work are: 1) Presenting one of the newly developed metaheuristic 

algorithms for optimization called DA. 2) Moreover, discussing the engineering problems that utilized the DA. 3) 

Comparing the DA to a number of metaheuristic optimization algorithms including (FA, GWO, MFO, HHS). 4) 

Examining the ability of DA against a number of benchmarks and comparing the results to the (GWO, PSO, and GA). 5) 

Nevertheless, collecting the works that used DA in the field of engineering in one paper to help researchers who want to 

use the algorithm in this field.  

 

This work first shows a short overview of the dragonfly algorithm in section two. Next, we discuss the variants of 

the algorithm in section three. Afterward, in section four, the authors address some of the hybridization versions related 

to the DA algorithm with other algorithms. In section five, the applications that were solved by the DA in the field of 

engineering are presented. Additionally, in section six, the DA is compared with other metaheuristics. In section seven, 

advantages and disadvantages of the reviewed algorithm are presented. In section eight, the algorithm is evaluated using 

the traditional benchmark functions and the Congress on Evolutionary Computation set (The 100-Digit Challenge) or so-

called (CEC) benchmark functions. The evaluations are then compared with the GWO, PSO, and GA. Furthermore, in 

section nine, a discussion and some problems that encounter the DA’s operators are dealt with in conjunction with giving 

explanations and prospect works for enhancing the capability of DA. Lastly, the key points of this research work are 

established in section ten. 

 

2. Dragonfly Algorithm  

In the last few decades, the natural behavior of creatures has widely motivated metaheuristic optimization algorithms. 

Swarm intelligence is the main inspiration for the metaheuristics [6, 20]. DA is a metaheuristic optimization method. It 

imitates the swarming attitudes of dragonflies [13]. 

 

Dragonflies are little predators. They hunt insects in nature. The main reason for the dragonflies swarming is 

hunting and migration; in other words, these are two phases; static and dynamic swarms, respectively. In the first phase, 

which is the static swarming, a set of dragonfly generate sub-swarms and search through different small areas. On the 

other hand, the second phase, which is dynamic swarming, a set of dragonflies can fly in a much bigger swarm. They fly 

in one direction towards the most promising global optimum area [13]. 

 

In dynamic swarming, dragonflies maintain a reasonable separation and cohesion (intensification or exploitation). 

In static swarming, conversely, alignment is too big; cohesion is small for attacking prey (diversification or exploration). 

Therefore, small cohesion and great alignment weights will be assigned to individuals once exploring the search space. 

However, they will be assigned to high cohesion and low alignment weights while exploiting the search space. The 

neighborhood radii proportionally enflamed to the iteration number for changeover between intensification and 

diversification. Another way for balancing intensification and diversification is tuning the swarming weights adaptively 

during the process of optimization. The swarming weights are; attraction motion towards food (f), separation (s), inertia 
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weight (w), cohesion (c), alignment (a), and distraction outwards predators (e). The Following are the equations for the 

swarming weights: 

 

Reynolds in [21] mentioned that Equation (1) can be used for computing separation: 

 

 

𝑆𝑖 = − ∑ X 

𝑁

𝑗=1

− X𝑗  

(1) 

 

X signifies the current individual’s position.  

Xj specifies the jth dragonfly’s position in the neighborhood.  

N designates the dragonflies’ number in the neighboring.  

S signifies the ith dragonfly’s separation motion. 

 

The alignment can be calculated through using Equation (2) [13]. 

 

 
𝐴𝑖 =

∑ 𝑉𝑗
𝑁
𝑗=1

𝑁
 

(2) 

 

Ai specifies the motion of alignment for ith dragonfly. 

V specifies a jth dragonfly’s velocity in the neighborhood. 

 

Equation (3) for calculating cohesion: 

 

 
𝐶𝑖 =

∑ 𝑋𝑗
𝑁
𝑗=1

𝑁
− 𝑋  

(3) 

 

C specifies the ith dragonfly’s cohesion. 

N specifies the neighborhood size. 

Xj specifies the jth dragonfly’s position in the neighborhood.  

X specifies the present individual. 

 

Equation (4) is for calculating attraction motion towards food: 

 

 𝐹𝑖 =  𝑋+ −  𝑋 (4) 

Fi specifies the attraction of food of the ith individual. 

X+ specifies the food source’s position. 

X specifies the current individual’s position.  

 

Equation (5) is for calculating distraction outwards predator: 

 

 𝐸𝑖 =  𝑋− +  𝑋 (5) 

𝐸𝑖 specifies the distraction motion of the enemy for the ith dragonfly. 

𝑋− specifies the position of the enemy. 

X specifies the dragonfly’s current position. 

 



 

 

Individuals’ positions of the artificial dragonfly are updated in the exploration space utilizing vectors, namely; X, 

which is called step vector and X, which is called position vector. X in the dragonfly algorithm is equivalent to the 

velocity in particle swarm optimization. Updating the position of individuals in DA mainly depends on the PSO 

algorithm. Whereas X specifies the movement direction in dragonfly individuals. X can be computed as follows [13]: 

 

 𝛥𝑋𝑡+1 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 +  𝑐𝐶𝑖 +  𝑓𝐹𝑖 + 𝑒𝐸𝑖) +  𝑤𝛥𝑋𝑡 (6) 

s specifies the weight of separation.  

Si specifies the ith individual separation. 

a specifies the weight of alignment. 

Ai specifies ith dragonfly’s alignment. 

c specifies the weight of cohesion. 

Ci specifies ith dragonfly’s cohesion. 

f specifies the weight of food attraction. 

Fi specifies the ith individual food source. 

e specifies the weight of enemies' distraction. 

Ei specifies the ith dragonfly’s enemy position. 

w specifies the weight of inertia. 

t indicates a counter for iterations. 

 

Once calculating the X, the calculation for the X starts in this manner: 

 

 𝑋𝑡+1 =  𝑋𝑡 +  𝛥𝑋𝑡+1 (7) 

t specifies current iteration. 

 

We should add a random move to the searching technique to upsurge the exploration likelihood of the entire choice 

space through an optimization technique. When neighboring solutions do not exist to flyover throughout the exploration 

space, the dragonflies would use a method of random walk or so-called Lévy flight. Here, the dragonfly’s position is 

modified as follows: 

 

 𝑋𝑡+1 =  𝑋𝑡 +   𝐿é𝑣𝑦(𝑑)  ×  𝑋𝑡 (8) 

As mentioned t indicates the present iteration and (𝑑) specifies the position vector’s dimension.  

 

Reference [22] stated that although using the Lévy flight improves the performance of DA, however, it might cause 

very long steps. In the mentioned reference, to avoid this drawback, Brownian motion was used in place of Lévy flight. 

The motion of Brownian is another mechanism of random motion. The free liquid or gas molecules movement has 

inspired this. The modified DA complexity was O; the size of the population multiplied by the iteration number. The 

calculated complexity proved that using Brownian motion did not have an impact on the complexity time of the original 

DA. By using the Brownian motion, the massive jumps caused by the Lévy flight were corrected. However, occasionally 

sudden moves may still be required to avoid trapping into local optima. For objectives with local minima, the Brownian 

motion produced better solutions in a shorter time. 

 

For the changeover between exploitation and exploration, dragonfly individuals change their weights adaptively. To 

adjust the flying path during the process of optimization, the neighborhood area should be enlarged, hence before the 

optimization process ends; the whole swarm becomes one group for converging to the global optimum. 
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3. Variants of Dragonfly Algorithm 

Dragonfly algorithm has three different versions: 

3.1. Single Objective Problems-Dragonfly Algorithm 

Like most Si-based optimization algorithms, DA initially creates a solution set randomly for the optimization problem in 

hand. At first, the position and step vectors of individuals were assigned to arbitrary values between both upper and 

lower variables’ bounds. Positions and step vectors are updated for all dragonflies per iteration. For updating the vectors; 

position and step, the dragonfly’s region is selected through the Euclidean distance calculation between all the 

individuals. Iteratively, the individual’s position updating continues until the end criterion is met.  

3.2. Binary Dragonfly Algorithm 

Since in binary search space only 0 or 1 can be assigned to the position vector, adding step vectors to position vector 

cannot update the position of search agents. The transfer function produces a binary technique from a continuous SI 

technique. The velocity (step) values work as an input to the transfer function, and then the transfer function yields a 

number between (0 and 1) as result, which states the likelihood of moving the individuals and updating their position. 

Alike to continuous optimization, the transfer function reproduces unexpected variations in particles by significant 

velocity.  

 

Equation (9) is for computing the probability of changing the positions of all dragonflies [23]. 

 

 
𝑇(∆𝑋) =  |

∆𝑋

√∆𝑋2 + 1
| 

(9) 

 

 

 

In binary search spaces and after utilizing Equation (9), Equation (10) updates the location of the search agent.  r 

ranges between 0 and 1. 

 

 
𝑋𝑡+1 = { 

¬𝑋𝑡          𝑟 < 𝑇(∆𝑋𝑡+1)
  𝑋𝑡          𝑟 ≥ 𝑇(∆𝑋𝑡+1)

 
(10) 

 

Binary Dragonfly Algorithm (BDA) assumes that all of the individuals are in one swarm. Hence, it adaptively tunes 

the swarming factors such as: s, f, c, a, e and w to simulate intensification and diversification. 

 

Reference [24] used BDA for feature selection. This work proved the importance of the role of the transfer function 

for producing the discrete space from the continuous one and an enhanced balance concerning the phases of exploitation 

and exploration. The proposed work stated that Equation (9) does not provide the right balance concerning the phases of 

exploitation and exploration, where in the start of the optimization, the exploration rate should be higher than 

exploitation. Hence, to raise the BDA’s performance and avoiding falling into local optima, time-dependent Transfer 

Function (TF) was used. 

 

The value of time-dependent TF linearly gets bigger as the step vector of the search agents gets more significant. 

Consequently, in the early steps of the algorithm, higher exploration is provided. However, as time passes the probability 

of exploitation increases, and the probability of exploration decreases.  As proved in this work, the examined TF was 

enhanced the performance of the BDA. The main reason for this was providing the correct balance concerning the phases 

of exploitation and exploration of the BDA.  

 



 

 

The computational complexity of the BDA using the time-dependent TF is the same as the original BDA, and it is 

O(ISD).  Where I indicates the iteration number, S indicates the solution number, and D indicates the dimension number. 

3.3. Multi-Objective Dragonfly Algorithm 

These problems have more than one objective. The answer to this type of difficulties can be often known as a set of 

Pareto optimal. The finest compromise among the existing objectives present in the Pareto optimal set [25]. The Pareto 

optimal dominance compares two solutions in multi-objective search space [26]. DA is first provided with an archive for 

saving superior solutions of Pareto optimal throughout the process. The food source would come from the archive to 

update the position, and the rest of the procedure is similar to that of the DA.  

 

Likewise, the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm [27], for finding the best Pareto 

optimal front, the food source can be chosen from the minimum populous zone of the present Pareto optimal front. For 

including the entire solutions, a hypersphere can be defined. In each iteration, equal sub-hyper-spheres are produced by 

dividing the hyper-spheres. Whenever the segments are produced, for each segment a roulette-wheel technique with a 

specific probability is utilized for the process of selection [28]. 

 

Multi-Objective Dragonfly Algorithm (MODA) has a better likelihood of selecting the food source from a smaller 

amount of populous segments. Contrarily, to choose hunters from the record or archive, the equation chooses the worst 

or most populous hyper-sphere, so that the dragonfly individuals are discouraged to hunt about unpromising zones. 

 

In each iteration, the archive updates regularly, and it may become full during the process of optimization. Hence, 

to prevent that situation there should be a technique. If as a minimum one of the habitations govern the solution, then it 

should not go into the records. On the other hand, if the solution controls some of the solutions of Pareto optimal, then 

the solution will be added to the record, and all the Pareto optimal solutions will be deleted. If the archive or record 

becomes full, some solutions from the most populated segments will be deleted [28]. MODA has two extra parameters, 

which do not exist in the DA: one of the parameters is for describing the max number of hyper-spheres, and the second 

one is for defining the size of the archive.  

 

In reference [29], the authors modified the multi-objective DA. The proposed algorithm was named as 

Multiobjective Dragonfly Algorithm based on Reference point (RMODA). In the examined work, a sequence of 

reference points was placed. Every individual in the population was set with a smallest reference point with is Euclidean 

distance. Every reference point is corresponded to a number of individuals. To keep the population size, individuals are 

selected from the key layer to be inserted to the population. In the procedure of selection the reference points with 

minimum number of correlated solutions are preferred. If the number of associated reference is not zero, the point is 

deleted; if not, the solution owns the minimum distance to the reference point is selected by one of the key layers. This 

process continuous until the size of the Pareto optimal solution set equals to the population size. To improve the 

distribution ability of the proposed algorithm, an external archive was utilized. Whenever the number of individuals 

becomes bigger than the size of the population, the cutting technique from the Improved Strength Pareto Evolutionary 

Algorithm (SPEA2) [30] is utilized to keep the size of the population. The proposed algorithm was utilized to optimize 

the Wind-Solar-Hydro power generation system. The provided results were compared to the results of the NSGA-III [31] 

to solve the same problem. The results showed that the distribution of the solutions provided by RMODA, and the 

convergence of the RMODA were better compared to the NSGA-III.  
 

 

4. Hybridized Versions of Dragonfly Algorithm 

One of the most popular techniques to enhance the ability of metaheuristic algorithms is merging the strong properties of 

different algorithms. As a result, a novel algorithm will be produced based on the features of the amalgamated 

algorithms [32]. Some of the hybridized DA versions in other areas are discussed in [19]. The rest of the hybridized 

versions of the DA can be discussed in this section. 
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As mentioned, the exploitation and exploration phases of DA are examined through alignment, cohesion, 

separation, and attraction toward food and distraction against enemies. The aforementioned searching technique 

improves the exploration and diversity of the solutions. On the other hand, a huge number of social interactions in DA 

cause trapping into local optima, less accuracy, and improper balance between exploitation and exploration. 

Additionally, DA fails to secure the best founded solution in the previous iteration. Consequently the algorithm may not 

converge to global optima and the exploitation ability of the algorithm decreases. To overcome these deficiencies, in 

reference [33], DA combined with Improved Nelder-Mead (INM) algorithm for improving the local exploration of the 

algorithm, and avoiding falling into local optima. The INM is a two-way extensive search algorithm. It is an improved 

version of the Nelder-Mead (NM) unidirectional search algorithm. Throughout the searching procedure of the NM, 

updating the worst and best position of population entirely depend on the position of the current individual. If the 

foremost global individual found so far is not the global optimal solution, for other particles it impulsively traps into 

local optima. To conquer this behavior of the NM, a two-way extensive searching technique dependent on centroid 

search is designed in the INM algorithm. In the INM, the algorithm’s centroid is moving continuously towards the global 

best with a precise weight and outwards the worst position. Consequently, in the end of the process, the centroid is very 

close to the global best position and faraway from the worst one. The best properties of INM algorithm include good 

performance of optimization, and protecting the best and worst position and centroid which improves the ability of local 

search of the algorithm and avoiding trapping into local optima. The mentioned properties of the INM can avoid the 

weak points of DA. Hence, they are combined to produce a better algorithm. Two techniques were added to the DA to 

enhance its ability for optimization: in the first technique, a memory matrix was added to save the best founded solutions 

in the previous iterations; in the second technique, the saved solutions were then utilized as initial input to the INM 

algorithm for more exploitation. The produced INM-DA hybrid (INMDA) can be divided into two steps, in the first step, 

the DA utilized to explore the solution space. It provided a necessary exploration ability to the artificial dragonflies to 

find the global optimum. The second step utilized the INM algorithm to find the worst and the best point, and calculating 

the population centroid. The key feature of the INM was that the centroid of the population utilized to update the 

position. Hence, the chance of trapping into local optima is reduced. For high-dimensional problems, the produced 

results proved that the examined work performed better compared to the DA and Memory-Based Hybrid Dragonfly 

Algorithm (MHDA) and that they are not a good choice for solving high dimensional problems as they rapidly run into a 

dimensional curse. The high performance of the proposed work came from the improved ability of both exploitation and 

exploration of reverse learning techniques. 

 

In reference [34], the DA’s strength is combined with Artificial Bee Colony (ABC). The ABC algorithm mimics 

the behaviors of honeybees. It consists of three main phases, each phase conforms behaviors of a specific class of 

honeybees. The classes are: onlookers, employed, and scout bees. Each class has a part in the foraging procedure, 

collecting information about the quality of the food and assessing the source of the food based on the provided 

information. The quality of a solution is examined depending on the quantity of nectar in the source of the food. 

Information about the location of food sources is collected by the employed bees. The collected information by the 

employed bees is then returned to the beehive. The onlookers work on the collected information by the employed bees 

and decide on the best food source. The mentioned procedure continuous for a number of iterations, and when no 

improvements occurred in the standard of food source for some employed bees, the source of food is abandoned, and the 

employed bee turns to a scout bee. A new stochastic search is started by the scout bee to discover new food sources. The 

ABC owns a good ability to find local optima through the employed and onlooker phases. It mainly depends on selecting 

the individuals that enhance the local search. Onlooker and employed bees phases are recognized as the local search 

operators. However, the scout bees phase is recognized as the global search, which reduces the speed of convergence 

throughout the searching procedure. The position updating procedure in the DA algorithm utilizes the Levy Flight, which 

causes large moves and makes finding the global optima difficult. In reference [28], the DA and ABC were combined to 

eliminate the convergence speed problem and falling into local optima by providing a better steadiness concerning local 

and global search constituents of the contributed techniques. The proposed hybrid algorithm is called Hybrid ABC/DA 

approach (HAD). It consists of three phases: the Onlooker Bee, the Dragonfly Bee, and the Modified Scout Bee. Two 

main enhancements were made in the proposed hybrid algorithm; first, modifying the scout bee phase to enhance the 



 

 

diversity of searching procedure and improving the efficiency of global search in the ABC. The second enhancement 

was to replace the employed bee phase in the ABC algorithm with operators from the DA. The enhanced operator was 

called Dragonfly Bee Phase. The main idea behind the HAD was to combine the exploration of ABC with the 

exploration and exploitation of DA. The exploitation of the original DA is great, and the exploration of the ABC is good. 

Hence, combining them in the proposed hybrid algorithm provide a very good performance and convergence. Providing 

two exploration steps to the HAD algorithm widens the searching space of the algorithm which improves the diversity of 

individuals. Thus, the HAD algorithm searches and exploits a larger area to find the global optima. The proposed hybrid 

algorithm examined against a number of benchmarks and problems. The results were compared to original DA and ABC, 

and a set of other algorithms. It was shown that the proposed HAD algorithm provided better results and performance in 

most of the cases. 

  

Reference [35] proposed an adaptive DA to optimize frame structures. In this article, Coulomb Force Search 

Strategy (CFSS) combined with and a new hybrid algorithm produced. The proposed algorithm named as Coulomb 

Force Search Strategy-Based Dragonfly Algorithm (CFSS-DA). CFSS is a new searching technique which is utilized for 

fastening the convergence. The CFSS inspired by the power among charges in an electromagnetic field. One of the main 

characteristics of CFSS is that when some charges repulse, the other charges attract one another, which is alike the 

exploration and exploitation phases.  In the CFSS, the position and velocity of individuals are updated using data on 

many optimal solutions. Here, two dragonflies are assumed to be attracting each other. The exploratory constant 

parameter (k) is one of the essential parameters in the Coulomb force search strategy. This work examined the utilization 

of adapted value (k) in the course of the searching procedure of the dragonfly algorithm. The dragonflies encouraged for 

searching in the search space with giant steps at the beginning of the process and small steps at the end of the process. 

The above-mentioned adaptive strategy improved the convergence of the algorithm. Hence, it produced an optimal result 

in a short time evaluated against the standard algorithm, then the compared results to the DA and BDA from the 

proposed technique proved this. The proposed algorithm is used to optimize the front axle of an automobile. In the 

examined problem, the front axle beam was selected. The outcomes substantiated that the convergence speed of the 

CFSS-DA compared with the BDA and DA is much better and that the proposed hybrid algorithm can be utilized to 

optimize engineering problems and produce reliable optimal solutions in a few number of iterations. 

 

5. Applications of DA in Engineering 

The ability of DA encourages numerous academics to apply it to optimize different applications in various areas. In the 

following subsections, we discuss applications of the dragonfly algorithm in Engineering and Physics. 

5.1. Mechanical Engineering 

Network configuration is the practice of altering the position of open or close switches to make changes in the 

distribution network’s topological structure. In [36], a new reconfiguration schema was developed to reduce the net 

deviation among the nominal voltage value, and the node voltages using a dragonfly optimization algorithm. Dragonfly 

Optimization Algorithm Based Reconfiguration Method (DORM) enhanced the Voltage Profile (VP) by the Net Voltage 

Deviation (NVD) minimization. The proposed technique was examined without making any thermal violations. It has 

also kept the radial structure. In this study, the results obtained using DORM compared to some other nature-inspired 

algorithms for solving configuration problems, such as PSO [37], GA [38], and BBO [39]. According to the study, the 

obtained results proved that the DORM provided better configuration through minimizing NVD and providing a good 

VP. To share the loads with the conventional power plant, distribute generation units utilized. The mentioned units are 

also used to give the power to the loads individually. Wind Turbine (WT), Photovoltaic (PV), Gas Turbine (GT), Micro-

Turbine (MT) and Storage Battery (SB) are the most typical distributed generation units in this type of application. 

 

In reference [40], a novel optimal scheme of a different Hybrid Power Generation System (HPGS) is generated. 

The introduced design consisted of a combination of PV, WT, GT, and SB. Natural gas distribution networks are utilized 

to fuel the GT of the system. To find the optimal design of the proposed work, two metaheuristic techniques; DA [13] 
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and GWO [12] were examined. The system considered different weather conditions. Both metaheuristic algorithms in 

this work used for minimizing the annual cost and entire emission functions for the system. It concluded that the DA 

produced better results in respect of the total yearly cost comparing to GWO. In contrast, regarding the system pollution, 

the GWO technique produced better results than the DA technique. 

 

Perforated plates are part of many industrial applications in recent years. Perforated plate cutouts are mostly used to 

decrease the structure weight or to build a point of exit and entry. Cutouts in the plates can change the geometry of the 

plate, which leads to severe local stresses or called stress concentration throughout the cutouts. This can cause a 

reduction in strength and premature failure in structures. Therefore, knowing useful parameters to reduce stress 

concentration in various structures is crucial. In reference [41], DA used to optimize the involved parameters in 

analyzing the stress of the perforated orthotropic plates. The aim was to achieve the minimum stress value nearby the 

quasi-triangular cutout positioned in a boundless orthotropic license plate. Dissemination of stress computed employing 

the suggested technique established on the analytical solution of Lekhnitskii. The variables that were designed using the 

proposed technique included load angle, material properties, bluntness, fiber angle, and cut-out orientation angle. The 

outcomes were compared to the PSO and Genetic Algorithm (GA). The factors of the stated algorithms are shown in 

Table 2. The outcomes evidenced that the regular of best values of stress produced via the DA was smaller compared to 

other algorithms. It concluded that the values of both average and standard deviation for the DA were smaller than the 

GA and PSO [42]. The comparison of these techniques proved that DA showed excellent performance to solve the 

problem mentioned above, and it operated more steadily. It was also determined that the high exploration and 

exploitation rates in the DA made the algorithm to perform better. Moreover, DA converged much earlier (18th iteration), 

whereas PSO and GA converged in the iterations 95th and 146th, respectively. Additionally, depending on the results, it 

was observed that the most significant levels of stress in all cutout bluntness or w happened on 45-load angle. 
 

Table 2: Parameter Settings of the Algorithms [41] 

 

DA GWO PSO GA 

Population size = 100 

Max. No. Of iterations = 1000 

Random values = r1 = r2 = [0, 1] 

Separation weight (s) = 0.1 

Alignment weight (a) = 0.1 

Cohesion weight (c) = 0.7 

Food factor (f) = 1 

Enemy factor (e) = 1 

Inertia factor (+ = 0.9-0.2 

Constant () = 1.5 

Population size = 100 

Max. No. Of Iterations = 1000 

 

Population size = 100 

Max. No. Of Iterations = 1000 

Cognitive component = c1 = 2 

Social component = c2 = 2 

 = 
0.1

|1
𝑐

2
  

√|𝑐2−4𝑐|

2
|

, c = c1 + c2 

Population size = 100 

Max. No. Of Iterations = 1000 

Probability of crossover (Pc) = 

0.8 

Probability of Mutation (Pm) = 

0.03 

ncrossover = 2*round(npop 

*Pc/2) 

nmututation = npop*Pm 

 

The robust non-linear link concerning the array factor and the array’s elements that marks the Concentric Circular 

Antenna Array (CCAA) problem synthesis challenging. A high Maximum Side Lobe Level (MSL) is a problem of 

CCAAs. Reference [43] used DA to design CCAA in a way that was able to get low side lobes. A Sub-Structured Neural 

Network (SSANN) was used instead of a single Artificial Neural Network (ANN), which improved the forecast accuracy 

of the effectiveness of requalification sub-ANNs and the engine working process. The proposed work aimed at observing 

and exploring the effectiveness of the DA technique. Moreover, in this work, four different CCAA design cases were 

used to study DA efficiency. Then, the results evaluated against approaches like BBO [44], SOS [45], SQP [44], CSO 

[46], OGSA [47], EP [48], and FA [49]. The proposed work utilized two three-ring designs; CCAA with 4-, 6-, 8- plus 8-

, 10-, 12-, besides two cases well-thought-out for each model: CCAA without, and with the center component. For each 

scheme test, the space between neighboring elements in every ring was fixed to 0.55, 0.606, and 0.75 from the center to 

the outermost ring. The outcomes of the DA evaluated against the techniques in the literature of the work, and a uniform 

array was utilized. The outcomes showed that the DA had better performance for the mentioned problem, and it was 

competitive with other methods for decreasing MSL. 



 

 

 

In reference [50], automatic generation control of an interconnected two-area multi-source hydrothermal power 

system is considered. The performance of the scrutinized system was evaluated and planned with Proportional-Integral 

(PI), Proportional Integral Derivative (PID), and 2 Degrees Of Freedom PID (2DOF PID). The DA was used to optimize 

the controller gains. It concluded that the DA provided superior results compared to classical methods. Furthermore, the 

2DOF PID controller optimized by DA produced smaller values for overshoot (OS), settling time (ST), and undershoot 

(US). Moreover, smaller values of the objective function are provided compared to the 2DOF PID controller optimized 

by Differential Evolution. 

 

Optimization can significantly affect the process of grinding by improving the quality of products and reduce 

operational costs and time of production. Optimizing the grinding process is a challenging process in the engineering 

field because of the complexity and nonlinearity of the process. In reference [51], multi-objective DA is used for 

obtaining solutions of non-dominated Pareto optimal. In this work, an experimental example in [52] was used. Then, the 

outcomes were evaluated against the outcomes of an experimental model using NSGA-II in [52]. The solutions of Pareto 

optimal produced via MODA conquered the attained solutions via the NSGA-II. The outcomes showed that MODA 

accomplished better compared to the NSGA-II in resolving the multi-objective mathematical model of the grinding 

process, the reason for this superiority was due to the MODA’s efficient operators evaluated against the simple operators 

of NSGA-II (crossover and mutation).  The solutions produced by MODA improved surface roughness significantly and 

reduced the costs and the total grinding time. The results proved that all the objectives were optimized by MODA 

simultaneously through the algorithm’s efficient operators. MODA used 30 individuals and 1000 iterations to examine 

the mathematical model of tri-objective of the grinding process. On the other hand, NSGA-II utilized 100 chromosomes 

and 1000 iterations that caused a 100,000 number of function evaluations. The results proved that the MODA’s 

computational cost was much lower than the NSGA-II’s.  

 

Reference [53] used MODA for optimizing the performance of Switched Reluctance Motor (SRM) powered by 

autonomous stacked Proton Exchange Membrane Fuel Cells (PEMFC). MODA is used to produce the best sets of 

driving circuit’s turn-on/off angles. As mentioned, the best sets produced via DA could improve the savings in energy 

and increase the performing of isolated PEMFC-SRM. Dragonfly’s ability in developing the initial stochastic population 

and the good exploitation and exploration of DA were the reasons aimed at the superiority of the algorithm for solving 

this problem. Furthermore, DA provides a high uniformly disseminated Pareto optimal set of solutions in problems of 

multi-objective [54].  

 

5.2. Electrical Engineering 

A new technique for designing, modelling, and optimizing a uniform serpentine meander based on MEMS switch 

incorporating beam puncture effect discovered in [55]. A new analytical model was suggested, which aimed at pull-in 

voltage in this research work. An optimization technique was introduced for finding the best configuration of the switch 

to accomplish the least possible pull-in voltage. Here, the analytical model was used as an objective function. For this 

purpose, the author utilized several great evolutionary optimization methods for achieving the best measurements with 

less cost computationally and more simplicity. The conducted techniques included PSO, DE, a hybrid PSO with 

Differential Evolution (DEPSO), DA, WOA, and Human Behavior Based PSO (HBPSO). A comparison among the 

applied algorithms showed that the DA had the best minimum pull-in voltage with the smallest errors. The parameter 

settings for DA in the proposed work were: dimension = 8, search agents = 50, alignment weight, separation weight, and 

cohesion weight were random between -0.2 and 0.2, food attraction weight was a random, and enemy distraction weight 

was a value between -0.1 and 1. The results showed that the DA performance was the best to minimize pull-in voltage 

with minimum errors. 

 

In the power transmission system, the stability of voltage is a significant concern due to inconsistency between 

demand and power generation. Reference [56] utilized the Eigenvalue Decomposition (EVD) method and DA in 
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partitioned Y-admittance matrix to identify weak buses for implementing the compensators of reactive power. In this 

work, DA used to enhance the static VAR compensator’s size and cost. Regarding the objective function, line flows, 

voltage deviation, and reactive power limit was examined as the design constraints. The results proved that the proposed 

technique maximized the cost of static VAR compensator and the cost of installation with the loading condition. In 

addition, the voltage deviation and the actual power loss in the DA were much smaller compared to the PSO. Moreover, 

the DA could show its superiority in reducing real power loss for the IEEE 30 bus system compared to the other 

algorithms, additionally, DA converged earlier. 

 

The Atomic Generation Control (AGC) problem was examined in reference [57] by using DA. In this work, the DA 

optimized the control parameters, for example, scaling factors of fuzzy logic and PID gains. The criterion of Integral of 

Time Multiplied Absolute Error (ITAE) was used to minimize the settling time with a minimized peak overshoot. The 

ITAE is employed for optimizing the scaling factor and PID gains controller. The addressed control strategy was 

examined through two equal non-reheat thermal interrelated power system areas. The work stretched to two 

hydrothermal power system areas joined via a High Voltage Direct Current (HVDC) transmission link and an AC tie 

line. To deal with non-linearity, the Generation Rate Constraint (GRC) effect counted. The results proved that in terms of 

lowest damping oscillations, settling time, peak undershoots, and overshoot in the interrelated three-area power system 

through GRC non-linearity, the proposed metaheuristic algorithm based fuzzy PID controller provided superior results 

evaluated against further control methods. The results proved that the DA as an optimization technique produced better 

optimum solution of AGC for non-linear and linear interconnected power systems’ frequency regulation. Furthermore, 

the combined fuzzy PID controller proposed in this work proved its superiority over the fuzzy logic and optimized PID 

controller.  

 

5.3. Optimal Parameters 

Reference [58] optimized the factors in the examining stress of perforated orthotropic plates. In this work, the DA 

utilized to compute the stress distribution based on the analytical solution of Lekhnitskii. Fiber angle, load angle, 

orientation cutout, bluntness, and material properties included in the study design variables. The results obtained from 

the dragonfly algorithm in this work evaluated against the results of GA [59] and PSO [6]. The results proved that in 

comparison to the PSO and GA, the DA converged earlier. Besides, avoiding local optimum and producing better results 

proved the DA’s supremacy compared with the other two algorithms. The DA also produced smaller average values of 

optimum stress compared to the other algorithms. Furthermore, by using the DA, a standard deviation closer to zero was 

produced, which was smaller to the ones produced using the PSO and GA.  

 

Providing reliable and continuous supply to customers is a critical ambition of utility and meets the expectations of 

power balance and the loss of transmission when the generators operate within a specified limit. For achieving this 

purpose, the value of emission and the fuel cost ought to be as insignificant as conceivable. The allowed deviation in 

feasible tolerance and fuel cost is named as Emission Constrained Economic Dispatch (ECED) problem. Reference [60] 

used DA for finding an explanation for the problem of ECED. In this work, the value of emission and the fuel cost 

alongside quadratic function was treated as a problem with many objectives. To convert the problem to a single-

objective, the price penalty factor technique is used. The consequences of penalty factors, such as Min-Min, Min-Max, 

Max-Max, Max-Min emission value of different gas exhalations, and price penalty factors mentioned in this work. As 

the results in this work showed that using “Min-Max” as the price penalty factor produced less fuel cost compared to the 

other penalty factors, however, increasing ECED fuel cost by 17% could reduce emission by almost 23% in comparison 

with the price penalty factor of “Min-Max”. The author mentioned that nowadays having a small amount of ECED fuel 

cost to operate a thermal power plant with “Min-Max” price penalty creates contamination in the environment and 

causes premature death in humans leaving near the thermal power plant. 

 

Reference [61] introduced a new technique to participate in online engine calibration and to control increasing the 

performance of the engine, and decreasing gas emission of the greenhouse. For this purpose, the mentioned reference 



 

 

used a robust model centered on a multi-objective genetic algorithm or NSGA-II, multi-objective dragonfly algorithm, 

fuzzy dependent on inference system, and Sub-Structural Neural Network (SSANN). Throttle angle, injection angle, 

engine rpm, and injection time were used as the inputs for SSANN. The Fuel Flow (FF), CO, torque, and NOx were used 

as outputs. Initially, the data from GT-POWER used to train SSANN. Based on various engine speeds, 15 working 

points were selected randomly to examine the accuracy of SSANN. Linear regression was utilized for assessing the 

linear relationship between the measured and predicted outputs. For this problem, MODA converged earlier (at the 40 th 

generation), and it had better Inverse Generation Distance (IGD). However, NSGA-II converged after the 80th 

generation. In addition, it was discovered that with increasing the number of iterations MODA showed better 

convergence. It was because of the use of the food/enemy selection technique in the MODA.  

 

In reference [62], the vibrant strength of the Hybrid Energy Distributed Power System (HEDPS) is considered. The 

HEDPS was subject to wind power and load variations. A controller with Three Degrees Of Freedom (3-DOF) 

Proportional-Integral-Derivative (PID) was implemented and designed in the HEDPS to balance frequency fluctuations 

and power after the perturbation. Unlike the Single-Degree-Of-Freedom (1-DOF) controller, the 3-DOF controllers own 

the ability of an outstanding set-point tracking, and it produced superior regulations for the input disturbance. DA used 

for optimizing the factors of 3-DOF PID controllers. Also, Integral Time Absolute Error (ITAE) was used as an 

optimizer to optimize the 3-DOF controller gains. The achieved outcomes were evaluated against the outcomes of other 

popular metaheuristic algorithms, such as Zeigler-Nichols (ZN). The isolated, interconnected modes of hybrid energy 

and distributed power system are implemented for assessing the proposed controller's performance. For qualitative 

assessment, the convergence of DA was evaluated against the other participated algorithms. The outcomes demonstrated 

that the dragonfly algorithm established the value of global optimum by a quicker rate and that lesser minimum value for 

the fitness function generated compared to the other participated algorithms. For this work, all the algorithms generated 

the optimal global point between 60 to 70 generations, which gave the choice of having 100 iterations. Furthermore, the 

results concluded that the DA outpaced the other stated algorithms with regards to faster convergence and the value of 

minimum fitness.  

5.4. Economic Load Dispatch 

A wind integrated system with the valve-point effect was considered in [63]. DA used to overcome the problem of 

Economic Load Dispatch (ELD) along with the valve-point effect. The Weibull distribution function was used to model 

the stochastic nature of wind. Furthermore, a closed integral function was used to analyze the 

overestimation/underestimation cost. In the proposed work, the optimization technique started by generating a set of 

random solutions for the assumed problem. The dragonfly’s vectors (position and step) were randomly initialized within 

the upper and lower bounds of generators. The outcomes exhibited that the DA successfully resolved the power system 

of the economic dispatch of the wind thermal integrated system. Two cases and the IEEE-30 bus system were 

implemented for calculating the performance. The problem of non-convex economic dispatch was solved in the first 

case. The obtained results from this case compared to a Sequential Quadratic Programming Particle Swarm Optimization 

(SQP-PSO) technique. ELD with wind power penetration was solved using DA in the second case. Moreover, the 

performance of the work in case 2 compared to SQP-PSO [64]. In both cases, 1200MW considered as a load demand. 

The results showed that the DA found a global optimum solution and it was remarkably unrestricted from locating into 

local optima. 

 

In reference [65], the dragonfly algorithm applied to improve a novel technique to resolve economic dispatch 

incorporating solar energy. In carrying out the economic dispatch, the mentioned reference considered prohibited 

operating zone and valve-point loading constraints. The beta distribution function is applied for modeling the solar 

energy system and the objective function. The output is predicted to include four diverse periods. Various loading 

circumstances are considered for each. The proposed work addressed that compared to other optimization methods 

dragonfly algorithm gave a low cost, minimum power loss, and converges in the minimum running time. It is concluded 

that more power could be generated if the availability of the sun was abundant in the chosen location. Moreover, in the 

case of using the produced system power correctly, the economy will maximize, and the system loss will minimize. The 
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proposed work considered three different cases. In case 1, the system used for testing consisted of six generators and 

1263 MW.  The results from the first case study compared to the most recent optimization methods. The results proved 

that the DA was the best regarding the convergence time, the smallest objective function, power loss, and evaluations. 

Similarly, in terms of generations, cost, and transmission loss, DA was the best. Concerning case 2, the number of used 

generators was 15, and 2630 MW considered. Here, the total cost generation for the DA was minimum. In case 3, the 86 

bus test system was utilized in south Indian. It consisted of 7 generators, 131 lines, and 86 buses. This case considered 

ramp rate constraint, transmission loss, down reserve constraints, and up the reserve. Here, the obtained results proved 

that the optimal cost of DA was much smaller than the completive algorithms. 

5.5. Loss Reduction 

The research work [66] is based on the BDA. A new technique for wrapper-selection was proposed in the research work. 

The suggested technique aimed at diminishing the number of characteristics concerning the standard feature set and 

obtain better accuracy in classification at the same time. The K-Nearest Neighborhood (KNN) classifier is applied to test 

the selected subset of the feature. The subset of feature selection is a problem of multi-objective. Problems of multi-

objective study two diverse goals. The proposed work aimed at maximizing the accuracy of classification, and 

diminishing the features. Equation (11) shows the objective function. The proposed approach was evaluated against 18 

UCI datasets. A comparison made between the proposed technique and similar techniques that used GA, and PSO. The 

comparison was concerned with the accuracy of classification and number of the carefully chosen attributes. The 

outcomes proved that BDA had a superior ability in examining the space of features and choosing the features with more 

information for the task of classification. 

 

 
𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑎𝑦𝑅(𝐷) + 

|𝑅|

|𝐶|
 

(11) 

 

𝑦𝑅(𝐷) shows the rate of error of the classification used. 

|R| represents the selected subset’s cardinality. 

|C| signifies the whole number of characteristics included with the dataset. 

𝑎 And  signify factors representing the classification importance and length of the subset, respectively. 

𝑎 ∈ [0, 1] and  = (1- 𝑎), the author adopted these from [67]. 

 

Reference [68] solved a nearly-zero-energy-building design problem. A comparison was made in terms of 

performance among seven multi-objective algorithms. In the utmost of the cases, the attained solutions were enhanced 

by increasing the generation number. Each algorithm ran 20 times with moderately raising the evaluation number. The 

optimization results in most running cases proved that the results of MODA were uncompetitive. In terms of contribution 

and running time, MODA was not competitive, and it was slow. According to this work, MODA did not have any 

outstanding features.  

 

Power loss, electric distribution system’s maximum loadability, and Voltage Stability Margin (VSM) are greatly 

affected by inadequate reactive power generation. To solve these problems, in reference [69], optimal concurrent as well 

as multiple separate installations of Distributed Generation (DG), and capacitor were examined. For this work, 

minimizing the total of Reactive Power Loss (QL) counted as the primary objective, and DA used to optimize the 

problem. Standard 33-bus distribution systems utilized to test the methodology proposed in this work. The proposed 

work handled different capacitor and DG installation cases. The results of the proposed work compared to weight 

improved particle swarm optimization or WIPSO technique. The results proved that the primary behavior of DA for 

updating the individual’s position provided an enhance QL reduction compared to the other methods. The results also 

showed a better convergence rate by producing fitter solutions in 15 to 20 iterations. 

 

 



 

 

6. A Comparison between Dragonfly Algorithm and Other Algorithms 

Reference [70] addressed an assignment of court cases that has an impact on enhancing the effectiveness of the 

jurisdictional structure. The effectiveness of the jurisdictional structure extremely relies on punctuality and operating the 

court cases efficiently. In the proposed work, Mixed-Integer Linear Programming (MILP) utilized to solve the problem 

of assigning cases in the justice court. The objective function of this issue was assigning N cases to M groups. Each 

group might cope with the cases altogether. However, because of the requirement of the cases, personal potentiality, and 

other assigned cases, the necessary time for each group to solve the same case was not the same. To find the best 

solution for the proposed work, DA and the Firefly Algorithm (FA) utilized [47]. Two problems were assessed in a 

uniform distribution. In the form P1: Lower bound (Ll) = (1, 30), Upper bound (Ui) = (1, 90), efficacy rate (i) = (1, 90), 

and P2: Lower bound (Ll) = (1, 60), Upper bound (Ui) = (1, 90), efficacy rate (i) = (1, 90). The outcomes exhibited that 

for finding the best solution the DA required less time and an average percentage deviation to maximize efficacy 

compared to the firefly algorithm. The outcomes proved that in 50 cases and three-justice groups aiming at trial 

parameters: P1 (50:3, 4, 5) and P2 (50: 3, 4, 5), the DA was greater compared to FA.  

 

In [71], GWO, DA, and Moth-Flame Optimization (MFO) algorithms were assessed for optimizing the best sitting 

of the capacitor in several Radial Distribution Systems (RDSs). The loss sensitivity factor examined for discovering the 

candidate buses. The authors considered 33-, 69-, and 118-bus RDSs to prove the efficiency and effectiveness of the 

addressed optimization technique. This study aimed at minimizing the total cost with voltage profile improvement and 

power loss. The outcomes were evaluated against the outcomes of the PSO for showing the advantage of the utilized 

methods. The GWO-, DA-, and MFO-based techniques produced better outcomes about the PSO-based technique 

concerning number of iterations and the convergence speed for the addressed issue. Furthermore, for the 69-bus 

distribution system case, DA-, GWO-, and MFA-based optimization exhibited an enhanced convergence level. 

Additionally, GWO, DA, and MFO were assessed using statistical tests. The results showed that GWO, DA, and MFO 

had an acceptable Root-Mean-Square Error (RMSE).  

 

Reference [72] introduced a novel binary multi verse optimization algorithm. In the article, the authors compared a 

new algorithm to some other binary optimization algorithms, including BDA. BDA ranked as the second-best algorithm, 

among others, this was because of the excellent stability between DA’s exploitation and exploration phases. 

Furthermore, the sudden changes in the variables provided a quick convergence to the BDA.  

 

Reference [73] compared DA with the Harris Hawks Optimization Algorithm (HHS). The algorithms utilized to 

enhance the multi-layer perceptron’s performance, which was used to analyze the stability of two-layered soil. The work 

compared the accuracy and computational time of the algorithms. Mean Absolute Error (MAE), the area under the 

receiving operating characteristic curve (AUC), and Mean Square Error (MSE) utilized for evaluating the predictive 

models’ performance. In general, both algorithms helped to improve the applicability accuracy of the MLP. However, 

the DA reached the lowest error within 500 iterations, whereas the HHS needed 1000 iterations for the same task. Hence, 

the DA provided a better convergence comparing to the HHS for the problem mentioned above. 

 

7. Advantages and Disadvantages of Using DA 

The good sides of the DA that attract the researchers to utilize it in many applications include: 

1. The implementation of the algorithm is not difficult. 

2. It suits very well with engineering problems and even other problems in different areas. This behavior of the 

algorithm attracts many researchers to use it for optimizing various problems in different fields. 

3. Its selection procedure avoids locating into local optima and searching around a non-promising area.  

4. It has few parameters to tune. 

5. It has a good convergence time. 
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On the other hand, the algorithm has some drawbacks, such as: 

1. It does not have an internal memory, which causes trapping into local optima. However, this problem is fixed in 

reference [74]. 

2. The high exploitation rate of the algorithm leads the DA to trap into local optima. 

3. Utilizing the Levy flight mechanism caused overflowing in the search area and an interruption in the stochastic 

flights. 

 

8. Results and Evaluations 

The results of the applications in the literature showed that the dragonfly algorithm is suitable to optimize various 

applications in the engineering field. The provided outcomes proved the superiority of the algorithm. Here, to 

demonstrate the ability of the DA, it is evaluated against the traditional benchmark functions. To examine the ability of 

the algorithm and its performance, three groups of traditional benchmark functions utilized with various characteristics 

in the original work. The groups of the traditional test functions consist of three groups, which are unimodal (F1-F7), 

multi-modal (F8-F13), and composite test functions (F14-F23). Unimodal test functions examine the exploitation and 

convergence ability of the algorithm. As their name shows, this group of benchmark functions has a single optimum. On 

the other hand, multi-modal benchmarks have a single global optimum, and more than one local optimum. The algorithm 

should have the ability to avoid all the local optima and go toward the global optima. Hence, multi-modal benchmarks 

examine the exploration ability of the algorithm and the ability of the algorithm in avoiding many local optima. The 

composite benchmarks are biased, combined, shifted, and rotated versions of the unimodal and multi-modal benchmarks 

[17]. They examine the obstacles in the real search spaces through providing a large number of local optima 

and diverse shapes to different regions. This type of test functions examines the balance between exploitation 

and exploration of the algorithm. The authors tested the DA, GWO, and PSO to examine the algorithms against the 

test functions. The results of test functions are shown in Tables 2 and 3. 

 
Moreover, to further evaluate the algorithm, it was examined on the IEEE Congress of Evolutionary Computation 

Benchmark Test Functions or CEC-2019, also known as “the 100-digit challenge” [75]. CEC-2019 benchmarks examine 

the ability of the algorithm to optimize large scale optimization problems. The CEC01 to CEC03 own different 

dimensions as shown in Table 4. However, the rest of the CEC benchmarks are 10-dimentional problems in the [-100, 

100] ranges, and they are rotated and shifted test functions. All the CEC benchmarks have global optima towards 1. To 

evaluate all the algorithms 100 search agents over 1000 iterations over 30 independent runs were utilized for all the 

participated algorithms and test functions. The results of all the benchmarks are shown in Tables 3 and 5. The results 

in bold indicate the superior results. 

 

It can be seen in Table 3, the DA provided better results in 3 unimodal test functions out of 7. Hence, in optimizing 

unimodal test functions the DA outperformed the GWO, PSO, and GA.  The results of the unimodal test functions are 

evident that the DA has outstanding exploitation and better convergence speed compared to the other participated 

algorithms. Nevertheless, the results from the references mentioned in the paper are another evidence for the speed of 

convergence of the DA. Reference [47] utilized the DA and FA for optimizing the same problem. The results showed the 

high convergence of the DA. 



 

 

Table 3: Classical Benchmark Results of DA, GWO, PSO, and GA 

Test 

Functions 

Measurements DA GWO PSO GA 

TF1 Mean 0 1.02972476885246e-

177 

1.00885499599309e-57 0.00115137781562392 

Std. 0 0 3.00874945514207e-57 0.00117730979184216 

Time (Sec.) 4427.518096 20.641365 11.368635 897.760482 

TF2 Mean 0.346105250457283 2.68628277893028e-99 1.43990230057245e-21 0.00472661522708145 

Std. 1.82441635559704 5.80256327360805e-99 3.39557465863375e-21 0.00403239542723310 

Time (Sec.) 3346.272200 24.371195 13.382481 173.993546 

TF3 Mean 0 2.68197560527247e-86 1.68861236134112e-18 17.1472265934958 

Std. 0 7.27762974655797e-86 5.48465114022047e-18 12.2898587657973 

Time (Sec.) 3240.021810 46.182206 42.488767 159.290370 

TF4 Mean 0 1.22497881456461e-57 9.99789072283524e-17 0.291636037814873 

Std. 0 2.15924903796066e-57 1.95740963479449e-16 0.0893850074302745 

Time (Sec.) 3130.959784 20.685333 11.413006 78.483755 

TF5 Mean 125.910484817663 5.97036252298473 3.44770889218702 18.6154267152628 

Std. 640.972765080855 0.620546420114094 1.70882531582746 23.2769550298819 

Time (Sec.) 3850.276794 24.916651 18.117383 92.735804 

TF6 Mean 1.34292399356453 4.43642866073549e-07 0 0.00162926113184969 

Std. 0.752756708459943 1.24192058527820e-07 0 0.00176098997870757 

Time (Sec.) 3811.746878 21.643090 15.897804 99.301974 

TF7 Mean 0.000633011935049757 8.06568003572986e-05 0.00166365483908592 0.006739102668757681 

Std. 0.000896536807762407 7.62436276091404e-05 0.000688786606476328 0.004821545555724411 

Time (Sec.) 3802.443433 27.678768 22.298551 77.130858 

TF8 Mean -3140.99378304017 -3039.99432880358 -2746.74174287925 -3741.60266890918 

Std. 392.935454710813 335.770432754438 318.016650960271 204.313660817165 

Time (Sec.) 4479.760791 23.528453 19.729532 142.192202 

TF9 Mean 0.135097099077087 0 1.89042220847802 0.000672751769171024 

Std. 0.726281615039210 0 1.17870035792479 0.000658014717969960 

Time (Sec.) 3349.950311 20.065488 15.729011 75.932717 

TF10 Mean 8.88178419700125e-16 4.44089209850063e-15 4.44089209850063e-15 0.0129635567438434 

Std. 0 0 0 0.00865984802947136 

Time (Sec.) 3137.754139 32.066467 19.150031 142.430190 

TF11 Mean 0 0.0148131151617185 0.130078492564645 0.060199634096524 

Std. 0 0.0309176914861047 0.0926149652075663 0.0275406722596615 

Time (Sec.) 3250.038645 25.495103 23.885916 114.662938 

TF12 Mean 0.269342484156197 9.21079314060305e-08 4.71486124195438e-32 9.37245789759370e-05 

Std. 0.344192758720291 3.33881013489254e-08 1.76746048719996e-34 0.000235863174207910 

Time (Sec.) 3882.885198 48.455417 57.892857 109.184386 

TF13 Mean 0.693499718050741 5.13830672973745e-07 1.34978380439567e-32 0.000311832171596598 

Std. 0.277012042085844 1.78986623626440e-07 5.56739851370242e-48 0.000796848182889176 

Time (Sec.) 3824.597920 59.435809 63.901939 109.246994 

TF14 Mean 0.998003837821488 1.32868739097539 1.16367501486549 0.998003837800378 

Std. 1.46216765100100e-10 0.752071664102933 0.376784985644918 2.15871205008169e-11 

Time (Sec.) 3178.074526 175.376344 138.331474 195.261368 

TF15 Mean 0.00154211186710959 0.000338011460252839 0.005815436762252451 0.009810407463000232 

Std. 0.000555025989291821 0.000167180666774048 0.000268239587689150 0.000408252211563814 

Time (Sec.) 4006.598768 17.247217 17.329560 77.046801 

TF16 Mean -1.03162845346044 -1.03162845139082 -1.03162845348988 -1.03162842656173 

Std. 1.61221884746401e-10 2.35250806658275e-09 6.77521542490044e-16 1.47491527943430e-07 

Time (Sec.) 2926.022886 13.741340 5.792700 75.462114 

TF17 Mean 0.397887357729738 0.397887590554324 0.397887357729738 0.397887357729738 

Std. 3.24338745434428e-16 3.55849349665776e-07 0 0 

Time (Sec.) 3076.341415 12.927428 7.551330 63.943990 

TF18 Mean 2.99999999999992 3.00000068941874 2.99999999999992 3.00000802124552 

Std. 2.32224382025056e-15 5.26140732330268e-07 1.27488253802344e-15 4.37983852341747e-05 

Time (Sec.) 3261.595454 12.034492 9.832012 88.187258 

TF19 Mean -3.86227737322268 -3.86223673347316 -3.86278214782075 -3.75971052872133 

Std. 0.00136979970619921 0.00195411179304832 2.71008616996018e-15 0.267266881488563 
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Time (Sec.) 3305.615855 23.114955 30.854334 130.544395 

TF20 Mean -3.23240911060208 -3.25541611249950 -3.28236413114427 -3.27830816793432 

Std. 0.105022108234188 0.0643846493780909 0.0570048884719485 0.0582313584337596 

Time (Sec.) 5108.207511 31.980021 17.609688 117.322374 

TF21 Mean -9.52508869710175 -9.30788454034324 -8.12311378128791 -8.72945318519225 

Std. 1.84659874404817 1.92203630274357 2.52888434537084 2.90197010675982 

Time (Sec.) 3382.691839 58.069403 45.103100 136.935151 

TF22 Mean -9.77362416583620 -10.4026771080218 -9.87552878983335 -10.1730804844161 

Std. 1.64720106908786 0.000149398330570923 1.60928404809095 1.21798768605337 

Time (Sec.) 3432.630731 61.315575 51.764072 118.754221 

TF23 Mean -9.96571473264067 -10.5362033520525 -10.3577177141906 -10.3097071129624 

Std. 2.00266702824654 0.000103330271308728 0.978736953880816 1.22280380037701 

Time (Sec.) 3401.605909 73.988416 75.872207 149.648881 

 

The results of the test functions of the multi-modal showed the great exploration level of the dragonfly algorithm 

that aids in discovering the exploration space. Generally, the results provided by the DA and PSO for the multi-modal 

test functions were better compared to the GWO and GA. Each of DA and PSO provided better results in two multi-

modal test functions while each of GWO and GA provided better results in only one multi-modal test function. The 

results of multi-modal test functions show the great exploration ability of the DA and PSO and their ability in avoiding 

large number of local optima and go towards the global optima. 

 

Moreover, the DA outperformed the GWO, PSO, and GA to optimize the composite test function. The DA 

provided better results in 6 composite test functions, PSO in 5, GWO in 4, and GA in 3 composite test functions. The 

results for this group of benchmarks proved that the DA has a superior balance between the phases of exploration and 

exploitation compared to the GWO, PSO, and GA.  

 

In regard to the processing time, it was proved that the PSO is the fastest algorithm among the participated 

algorithms to produce the results, and that the DA is the slowest algorithm among them. 

 

Furthermore, in the original work, the CEC benchmark functions were not used to evaluate the DA. Hence, in this 

paper, the test functions of CEC-C2019 are used to assess the DA further. This group of test functions utilizes an annual 

optimization competition. Professor Suganthan and his colleges improved these benchmark functions to optimize single 

objective problems [75].  

 

Table 4: CEC-C2019 Benchmark Functions- 100-Digit Challenge [75] 

Function Name Functions Dimension Range fmin 

CEC-C01 Storn’s Chebyshev Polynomial Fitting Problem 9 [-8192, 8192] 1 

CEC-C02 Inverse Hilbert Matrix Problem 16 [-16384, 16384] 1 

CEC-C03 Lennard-Jones Minimum Energy Cluster 18 [-4, 4] 1 

CEC-C04 Rastrigin’s Function 10 [-100, 100] 1 

CEC-C05 Grienwank’s Function 10 [-100, 100] 1 

CEC-C06 Weiersrass Function 10 [-100, 100] 1 

CEC-C07 Modified Schwefel’s Function 10 [-100, 100] 1 

CEC-C08 Expanded Schaffer’s F6 Function 10 [-100, 100] 1 

CEC-C09 Happy Cat Function 10 [-100, 100]  1 

CEC-C10 Ackley Function 10 [-100, 100] 1 

 

For this group of test functions, DA compared to the GWO, PSO, and GA. The default parameter settings were not 

changed during the optimization. For this evaluation, the authors used 1000 iterations and 100 agents. As shown in Table 

5, the GWO outperformed the rest of the participated algorithms, and that the DA showed poor performance compared to 

the other algorithms.  



 

 

Similarly, In regard to the processing time, PSO again proved that it is the fastest algorithm among the participated 

algorithms to produce the results, and that the GWO is the second best algorithm, and the DA is the slowest algorithm in 

providing results. 

 

 

Table 5: The IEEE CEC-2019 Benchmark Results for DA, GWO, PSO, and GA 

Test 

Function 

Measurements DA GWO PSO GA 

CEC01 Mean 7344680255.96508 20195906.9114461 117383140915.921 4124767802.83302 

Std. 14179795998.1417 63763970.4725385 85001697002.1108 2412923816.29294 

Time (Sec.) 5845.602840 957.919637 1124.206827 976.073305 

CEC02 Mean 19.2578777353509 17.3431778874724 5917.21564947965 17.5982242432266 

Std. 0.761158449891241 9.17145135912341e-05 1887.26018240798 0.561414181151120 

Time (Sec.) 5480.316183 21.757981 13.243870 173.930683 

CEC03 Mean 12.7024204195666 12.7024042189533 12.7024042179563 12.7024042214617 

Std. 3.84195766940490e-05 1.13206887070580e-09 3.61344822661357e-15 7.18124380259203e-09 

Time (Sec.) 5780.184521 32.965731 19.407994 194.519015 

CEC04 Mean 802.818385908163 39.4605871732290 8.35771547651643 142.476006906475 

Std. 953.246774635009 17.4319699629934 33.70064011826850 49.0142274425374 

Time (Sec.) 4940.283421 21.983706 63.907078 190.371677 

CEC05 Mean 1.89296693657886 1.28523009771205 1.11835647185838 1.09472805293053 

Std. 0.487787543643066 0.186783054802480 0.0946656630897843 0.0962002842697390 

Time (Sec.) 12557.704416 22.742999 15.573494 186.515107 

CEC06 Mean 8.66021328746622 9.98231955852709 6.44047475449302 4.39133549128376 

Std. 1.24430384243394 0.666708446314702 1.84881250989753 0.926390878021783 

Time (Sec.) 5140.436560 316.270789 362.208678 358.184318 

CEC07 Mean 459.680771220159 290.835349473841 102.880891701219 215.904023663734 

Std. 187.743428228146 194.569888322255 120.590801032533 144.785286959863 

Time (Sec.) 5019.963538 23.110244 23.110244 96.631880 

CEC08 Mean 5.43805609875719 4.17900130888240 4.66981668835183 4.60223045775513 

Std. 0.569983847703406 0.870621944305451 0.674616524865225 0.734086337081485 

Time (Sec.) 4482.366124 22.587019 16.005946 93.901634 

CEC09 Mean 15.8273076560544 3.87517009427681 2.74182540592406 3.03699188466418 

Std. 19.6442833016762 0.840865518421628 0.00181347752237683 0.320573048634389 

Time (Sec.) 3869.030640 20.432201 13.141358 99.479410 

CEC10 Mean 20.2315204551779 19.7638080850226 20.0349876978763 19.8371218596057 

Std. 0.128897713654758 3.15287575519112 0.0587052740290958 4.44534723269840 

Time (Sec.) 4415.185673 27.221155 19.781788 95.262277 

9. Discussion and Future Works 

DA is modest and can be easily applied. For exploring the search space, allocate little weight of cohesion and great 

weight of alignment to individuals. Contrarily, for exploiting the exploration space, assign individuals to high cohesion 

and low alignment weights. Another way for balancing exploitation and exploration is adaptively adjusting the swarming 

weights, such as s, a, e, c, w, and f throughout the process of optimization. To make a transition concerning the 

exploration and exploitation, neighborhood radii enlarged proportionally to the number of iterations could be applied. It 

usually provides reasonable results for small to medium-scale problems. However, for large-scale optimization 

problems, more affords are required, and it causes an increase in convergence time and a reduction in performance, 

which may cause falling into local optima.  

 

With growing the complexity of optimizing real-world problems, computing demands are hard to be satisfied with 

the single version of optimization algorithms. One obstacle that may occur during using the DA is that updating position 

in this algorithm is not so much correlated with the algorithm’s population centroid in the preceding generations. 

Consequently, the produced solutions have low accuracy, and premature convergence to local optima may occur. 

Additionally, it may cause it difficult to find the global optimal solution. Furthermore, as mentioned earlier, distraction, 

cohesion, alignment, and separation in the direction of enemy sources with desirability in the direction of the sources of 
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food mainly determine the exploration and exploitation of the DA. This searching technique maximizes solution 

diversity and makes the capability of exploration of the DA stronger to some extent. Nonetheless, the performance 

reduces with a large number of exploitation and exploration operators because they enlarge the convergence time, which 

causes trapping into local optima. 

 

Similar to other metaheuristic algorithms, DA has several strong points, as well as some weak points. It owns 

powerful optimization capability. The DA has few parameters for adjusting. Most of the time, it can keep a reasonable 

convergence rate to the global optima. DA is one of the new algorithms. However, as discussed in the literature, it has 

been utilized for optimizing an enormous number of applications. The straightforwardness of DA is one of the main 

reasons for its contributions to various applications. Also, choosing the individuals from the record, the worst 

hypersphere avoids the DA from discovering the non-promised zones. Another advantage is that DA has few parameters 

for tuning. Similarly, over other optimization algorithms, the algorithm converges earlier, more stable, and more 

straightforwardly can be hybridized with diverse algorithms.  

 

Alternatively, for complex optimization problems, as examined in [33], one of the restrictions of the DA is that it 

easily traps into local optima, and it has a slow convergence speed. Internal memory does not exist in the DA, which is a 

reason for early arrival at local optimums. This overcame in [74] through emerging a new Memory-Based Hybrid 

Dragonfly Algorithm (MHDA). Additionally, as presented earlier, DA uses Levy flight as a search process when the 

neighborhood does not exist. Nevertheless, the giant steps of the Levy flight mechanism caused an interruption.  The 

original work used a step control mechanism to prevent overflowing. However, this distorts the characteristics of the 

swarm, also, it is a reason for falling into local optima. Hence, utilizing other searching techniques instead of the Levy 

flight and compared the results of the various methods is highly recommended. Moreover, using an adaptive step instead 

of the original stochastic step will help in harmonizing phases of exploration and exploitation and enhancing the DA 

performance. The position updating technique is another way to prevent trapping into local optima. Using the 

population’s centroid technique, as discussed in [76] can reduce the probability of locating into local optima.  

 

Furthermore, after assessing the algorithm in the above section, it was noted that the ability of the DA for balancing 

between the phases of exploration and exploitation is low; this was because the algorithm has a great exploration level. 

This great level of the search in the initial phases of the course of optimization is decent, though, in the last iterations of 

the algorithm, it ought to be diminished, and the exploitation level ought to be improved. For binary dragonfly 

algorithms, for example, using a time-dependent transfer function can increase the balance between both phases of the 

DA; exploitation, and exploration.  Hence, at the beginning of the optimization, the exploration level is great. The 

exploration level gradually decreases during the process and the exploitation level increases. The mentioned technique 

will provide a better performance and it prevents trapping into local optima. Tuning parameters automatically improves 

the performance of different algorithms. Moreover, it improves the stability between the two phases and the variety of 

the population [77]. On the other hand, the outcomes of the traditional benchmark function of the unimodal, and the 

produced outcomes of the majority of the literature works displayed that the dragonfly has a good convergence. The 

greater convergence of the algorithm makes it outperform most of the mentioned algorithms in the previous works in 

dealing with small to medium problem sizes. 

 

Generally, the results from the previous section and the applications in the literature proved that the DA has a 

significant level of exploration and exploitation. The reason for this is the DA’s static swarming behavior, which 

enlarges the exploration’s level, and increases the probability of trapping into local optima for simple problems. 

Additionally, enlarging the number of iterations enlarges the exploitation degree, and enhances the accuracy of the 

global optimum solution.  

 

However, hybridizing the algorithm with other techniques will give power to the algorithm to overcome the 

bottlenecks. As discussed, some hybrid versions of DA proposed to overcome the weakness of this algorithm. For 

example, MHDA was examined for overcoming the shortage that may cause premature convergence to local optima. 



 

 

Moreover, reference [78] utilized Gauss chaotic map to adjust variables. The outcomes exhibited that the hybridized 

algorithm concerning stability quality, the speed of convergence, classification performance, and the number of selected 

features provided better results. Although the DA and the hybridized DAs provided some good results for several 

problems of complex optimization, yet, more or fewer disadvantages were found. In DA, high exploration and 

exploitation acquire through desirability on the way to food and diversion on the road to enemies. The correlation of 

updating the position in the DA with the population centroid from the preceding generation is not high. Thus, it may 

solve with that traps into local optima, low accuracy, and struggles to find the global optima. Hence, finding a new 

technique for updating the position of individuals is highly recommended. Another research area that will improve the 

algorithm is finding suitable stability concerning phases of exploration and exploitation. Proper stability concerning 

exploration and exploitation will circumvent DA from falling into the local optima. Besides, merging new searching 

methods with the DA is highly recommended to researchers. Moreover, tuning parameters dynamically during the 

practice of optimization will have significant guidance on enhancing the exploitation and exploration balance of the 

algorithm. Moreover, the DA is highly recommended to be utilized in the other works, such as [79] and [80]. 

10. Conclusions 

This paper reviewed one of the new metaheuristic algorithms. The various types of the algorithm, including the merging 

versions with other techniques, were discussed. In addition, most of the optimization problems in engineering and 

physics that used DA were discussed. From the reviewed works, the authors discovered that DA is one of the practical 

techniques in the area. The simplicity of the algorithm was one of the reasons that encouraged the researchers to use the 

algorithm to optimize the problems in hand. Moreover, the accuracy and convergence speed of the algorithm are other 

reasons. For instance, in general, for small to medium problems, the algorithm provided good results. However, similar 

to other algorithms, for some problems (especially complex problems) DA cannot produce reasonable results. The 

exploration of the algorithm is high, which may cause trapping into local optima, mainly for the complex problems. 

Moreover, the produced results from the test functions (F20-F23) proved that the results of the DA are better compared 

to the GWO, PSO, and GA. However, the results of the CEC-2019 test function showed that the other participated 

algorithms outperform the DA in optimizing large scale optimization problems. Finally, reviewing the DA and its 

applications proved that the DA can be utilized successfully to optimize almost all the problems in the real world.   

 

As an extension of this work, the authors are willing to find a technique for providing a decent balance about the 

exploration and exploitation phases of DA. Likewise, the representation of the DA can be assessed and evaluated against 

other well-known and competitive algorithms, such as Donkey and Smuggler Optimization Algorithm [15], WOA-BAT 

Optimization Algorithm [81], Fitness Dependent Optimizer [82], Modified Grey Wolf Optimizer [83], etc. 
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