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Abstract—A method based on electromagnetic inversion is
extended to facilitate the design of passive, lossless, and reciprocal
metasurfaces. More specifically, the inversion step is modified
to ensure that the field transformation satisfies local power
conservation, using available knowledge of the incident field. This
paper formulates a novel cost functional to apply this additional
constraint, and describes the optimization procedure used to find
a solution that satisfies both the user-defined field specifications
and local power conservation. Lastly, the method is demonstrated
with a two-dimensional (2D) example.

Index Terms—Electromagnetic metasurfaces, inverse prob-
lems, inverse source problems, optimization, antenna design

I. INTRODUCTION

Over the past decade, metasurfaces have emerged as use-
ful devices for controlling electromagnetic radiation [1]-[6].
These subwavelength thin metamaterials can support arbitrary
field transformations in a systematic fashion by imposing
appropriate surface boundary conditions, providing a level of
control over some desired field produced by a known incident
field. This fundamental ability has led to a variety of ap-
plications, including generalized refraction and reflection [7],
polarization manipulation [8], [9], spatial processing [10], and
others.

In order to design a metasurface to support a field trans-
formation, the tangential electric and magnetic fields must
be known on either side of the boundary imposed by the
metasurface. Most existing design procedures are limited to
problems in which the output field is known analytically on
the output side of the metasurface, which is satisfactory for
well-defined problems such as plane wave refraction [11].
We recently developed a design method which facilitates
output field specifications in a less restrictive manner [12].
Using this method, the field specifications can be at arbitrary
locations external to the metasurface, either with or without
phase information. Furthermore, the desired field can also
be specified as a set of performance criteria, such as main
beam direction(s), null location(s), beamwidth, or polarization.
While this method allows for more general field specifications,
it does not take advantage of prior knowledge of the incident
field and consequently requires loss and/or gain to support the
resulting field transformation.

In this work, we extend the method presented in [12]
to allow for the design of lossless, passive, and reciprocal

metasurfaces. This method uses electromagnetic inversion to
solve for a set of tangential output (transmitted) fields that
produce some user-specified field. This work modifies the
inversion process by incorporating an additional step that
penalizes solutions that do not satisfy local power conservation
(LPC) using the known information about the incident field.
Once an appropriate solution is found that satisfies both the
field specifications and LPC, surface susceptibilities can be
computed to support the transformation.

In this paper, we begin by presenting a brief review of
the design procedure without enforcing LPC in Section II.
In Section III we discuss and derive the constraint used to
enforce LPC, and Section IV describes how the inversion
process is modified to account for this new constraint. A
preliminary example is presented in Section V, followed by
some conclusions and a discussion of possible extensions to
this work.

II. INVERSE SOURCE DESIGN FRAMEWORK

Herein, we present a brief review of the design method
presented in [12], in which the main goal is to find tangential
fields on the output side of the metasurface that satisfy some
set of user-defined field specifications S in some external
region of interest (ROI). An overview of the problem is
depicted in Figure 1. We denote the input and output surface
boundaries of the metasurface as ¥~ and YT, respectively.
The tangential fields (denoted as such by the subscript t)
that we require to design the metasurface consist of the total
fields on X7, E{ and ﬁ[ (consisting of the incident and
reflected fields), and the transmitted fields on X, E1+ and
ﬁ;‘ . The user-defined specifications S fall into three general
categories, ordered from most to least specific (i.e., most to
least information):

1) Complex (amplitude and phase) field distributions (ei-

ther in the near-field or far-field regions)

2) Phaseless field distributions (i.e., amplitude-only, power

pattern)

3) Far-field performance criteria (i.e., main beam direc-

tions(s), null locations, beamwidth, etc.)

First, an electromagnetic inverse source problem is solved
to find a set of equivalent electric (.J) and magnetic (M)
currents that produce the field specifications in the ROI. The
domain upon which the equivalent currents are reconstructed,
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Fig. 1. Visual overview of the metasurface design problem. The internal and
external surface boundaries of the metasurface are denoted by ¥~ and >+,
respectively. Some source generates an incident field inc which interacts with
the metasurface, producing both a reflected field Ul and a transmitted field
WY, The tangential components of the electric and magnetic fields on 3~
are denoted as E; and ﬁt_ , while the tangential fields on X1 are denoted
as E‘?‘ and I_{.t"' . The user-defined field specifications .S are defined on some
of interest (ROI) external to the metasurface. Since the metasurface may be
of arbitrary shape, we define the local coordinate system (i, %,7) on 3T,
where 7 is the unit outward normal to XF. © 2019 IEEE. Reprinted, with
permission, from [12] with minor modifications.

commonly referred to in inverse source problems as the ‘re-
construction surface’, is chosen to coincide with the physical
boundary imposed by the metasurface. These currents are
found by minimizing a cost functional, which we denote herein
as Cl(J_‘7 M ), using the conjugate gradient method. This func-
tional quantifies the difference between the fields generated by
the equivalent currents and the field specifications, although
the exact form depends on the category of field specifications
listed above (for more details see (12), (13), and (20) in [12]).

If Love’s equivalence condition is enforced (i.e., enforcing
that the equivalent currents produce null fields on the input
side of the metasurface), then the resulting equivalent currents
will be related to the desired transmitted fields as

Hf =—anxJ  and Ef =anx M, (1)

where « is a real-valued scaling parameter. Introducing «
does not affect the characteristics of the normalized radiated
field, but allows for some flexibility that will be utilized in
Section III.

Once the desired tangential transmitted fields are known, the
generalized sheet transition conditions (GSTCs) [13] can be
utilized to determine a set of surface susceptibilities to support
the discontinuity from the (known) incident field and (desired)
reflected field [6]. Assuming a time-dependency of e/“* and
free space on either side of the metasurface, the relationship

can be written as
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where w is the angular frequency of the time harmonic fields,
and ¢y and o are the permittivity and permeability of free
space.! The subscripts and superscripts u and v denote the
tangential components of the local coordinate system of each
unit cell defined by & x 0 = n and @ L 9. The x terms repre-
sent the electric/magnetic (first subscript) surface susceptibility
components in the presence of an electric/magnetic (second
subscript) field excitation [14]. The difference and average
fields are defined as
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The final step in the design procedure is solving (2) for the
non-zero susceptibility terms (depending on the problem, some
X terms may be assumed to be zero).

III. ENFORCING LOCAL POWER CONSERVATION

The main limitation of the procedure presented in Section II
and [12] is that the synthesized susceptibilities may require
(undesirable) loss and/or gain. To overcome this limitation, we
first note that a necessary condition for a passive and lossless
metasurface is that the input and output fields must satisfy
LPC [15], [16]. That is, the real power incident on each unit
cell must be equal to the real power transmitted from each
unit cell, as indicated by the following equation that must
hold along the metasurface:

1 - . 1

gRe(E; x H ") = 3
From this point onwards, we will assume 2D TE, polarized
fields and a 1D metasurface along the line x = 0 (ie.,
4 = 2, 0 = gy, and n = Z) for notational simplicity,
although the formulation would still hold for arbitrarily-shaped
metasurfaces and 3D fields. We denote the left hand side of (5)
evaluated at the i unit cell as

Re(E;" x H™). (5)

1
p; = 5 Re(Ey_ x H;*) . (6)

unit cell 7

The formulation shown here assumes that the normal components of the
polarization densities are zero, both for mathematical convenience and since
the tangential components are enough to uniquely define the fields.



Using (6) and the relationship between the equivalent currents
and the tangential transmitted fields in (1), we can write the
LPC constraint in (5) compactly as

Oé2

where J and M are discretized vectors of the equivalent
currents J,, and M, at each unit cell, ® represents the element-
wise Hadamard product, and p is a discrete vector of the real
incident power calculated at each unit cell, with the ih element
of p equal to p;.

Separating the equivalent currents into their real and imag-
inary parts, denoted by the subscripts R and I, we have

2
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At this point the restriction imposed by the LPC constraint
becomes immediately obvious. Previously the equivalent cur-
rents had four degrees of freedom (i.e. Jr, J;, Mg, and M)
with which to satisfy the field specifications, but as shown
in (8), the LPC constraint reduces the degrees of freedom to
three. In other words, enforcing LPC results in a reduction in
the dimension of the solution space, and may exclude some
solutions that would have otherwise have satisfied the field
constraints in an optimal manner.

We can now formulate a cost function to quantify the LPC
constraint and include it in the design procedure. This term is
formulated using (8) as

) — I3 O M+ I oM = ]

— ©
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where || - ||2 represents an Ly norm and x is a real-valued
scalar weighting parameter used to balance the contribution of
Cy during the optimization process discussed in the following
section. Since we have complete freedom in selecting the scal-
ing parameter «, it should be chosen in a way to minimize (9)
for a given set of currents. Therefore, anytime (9) is evaluated,
the « that results in the minimum of (9) is used.

IV. METHODOLOGY

Our unknowns consist of the separated real and imaginary
parts of the electric and magnetic equivalent currents, which
collectively we write for convenience as

Jr
(10)

First, C1(x) is minimized without the LPC constraint using
the conjugate gradient method as described in more detail
in [12]. This provides an estimate for x that satisfies the
field constraints and Love’s condition prior to applying the
LPC constraint. Next, particle swarm optimization is used to
minimize

C(x)=0C (x)+Ca(x), (11

with initial particle states set to the estimation for x obtained
from the previous step. Once convergence is reached, the
required tangential fields are obtained using (1).

Next, the susceptibility components required to support the
desired transformation must be computed. As noted in [16],
if we want to support a transformation of this nature without
using loss and/or gain, we require more degrees of freedom
than afforded by a monoisotropic metasurface. We overcome
this limitation by allowing for the bianisotropic terms .,
and . (tensors collectively representing the various Xen and
Xme terms in (2), respectively) to be non-zero, introducing
magnetoelectric coupling to the metasurface.

Assuming 2D TE, fields with a 1D metasurface along = =
0, (2) simplifies to

—AH, = (jweo By av) X% + (jwy/pocoH. o) Xén  (122)
—AEy, = (jwpoH av) Xom + (Jwy/B0€0 By av) Xaa-  (12b)

In order to avoid loss and gain, we first stipulate that y&%’
and xZZ must be purely real [16]. Next, we note that if Y&’
and xZZ, are passive and lossless, the remaining condition
for losslessness (i.e., ?eTm = X.,.) must also hold since the
field transformation satisfies LPC. If we enforce y&n and
Xms to be purely imaginary, then any lossless and passive
solution will also satisfy the condition of reciprocity (i.e.,
?eTm = —Xume) [11]. This results in four real unknowns that
must satisfy the two complex equations in (12), which can be
directly computed assuming the tangential fields on both sides
of the metasurface are known.

V. PRELIMINARY RESULTS

To illustrate the proposed method we attempt to design a
reflectionless 1D metasurface to transform an incident TE,
plane wave into a desired power pattern (phaseless field
information only) specified in the far-field region. In this
example, fields propagate in 2D in the zy plane, with the
metasurface placed along the line z = 0. The frequency is 1
GHz and the metasurface unit cells are A/6 in length, where
A represents the free space wavelength. The designed region
of the metasurface exists from y = —5\ to y = 5\, with
absorbing elements placed along the rest of the x = 0 line.

The incident field is a linearly tapered plane wave at normal
incidence, with |H.| = 1 A/m for |y| < 7X and linearly
decreases to zero for 7A < |y| < 10\. The desired phaseless
power pattern is produced by simulating an array of 13
uniformly spaced Z-directed elementary dipoles along the y-
axis between y = —3\ and y = 3. The specified far-field
power pattern is computed for —90° < ¢ < 90° and shown
in Figure 2.

The reconstruction surface upon which the equivalent cur-
rents are reconstructed is chosen to coincide with the meta-
surface, with the same A\/6 discretization. First, a solution
is found by minimizing the cost functional without the LPC
constraint. This solution is then used to initialize a particle
swarm optimization algorithm that minimizes (11) using a
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Fig. 2. Comparison of the (phaseless) far-field power pattern generated by the
designed metasurface as simulated using the FDFD-GSTC solver (solid blue
curve) and specified power pattern (solid red curve with circular markers).
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Fig. 3. Amplitude of H. when the designed metasurface is illuminated by
a normally incident linearly tapered plane wave, simulated using the FDFD-
GSTC solver.

swarm size of 200 and a scaling factor of 0.02 for . The
resulting solution is used to compute the four susceptibility
terms using (1) and (12), which are necessarily passive,
lossless, and reciprocal.

We then simulate the designed metasurface using a finite
difference frequency domain (FDFD) GSTC solver, which
modifies the standard FDFD formulation to impose the bound-
ary conditions described by the GSTC equations [14]. The
solution domain is 20\ x 30X in size and is bounded on
all sides by a perfectly matched layer (PML) of thickness
A. The total magnetic field resulting from this simulation is
shown in Figure 3, and the far-field pattern associated with
this simulation is shown in Figure 2. These results show that
the main features of the desired power pattern have been
generated, although significant deviation in the specified side
lobes does occur. The transmission efficiency, defined as the
ratio of the real power transmitted through the metasurface to
the real power incident on the metasurface, is 74.8%.

We speculate that the deviation from desired pattern is in
part due to the non-zero reflection, clearly present in Figure 3.
This unexpected reflection will be investigated and discussed
at the conference along with additional examples.

VI. CONCLUSION

A metasurface design method was extended to ensure that
the resulting field transformation satisfies local power conser-

vation, allowing for the design of passive, lossless, and re-
ciprocal metasurfaces. A constraint on the equivalent currents
was derived from the local power conservation relationship,
and incorporated into the design procedure using a secondary
optimization step. Non-zero magnetoelectric coupling terms
are introduced to compensate for the loss of degrees of
freedom resulting from excluding loss and gain. A preliminary
2D example was shown for the design of a passive, lossless,
and reciprocal metasurface attempting to produce a specified
(phaseless) power pattern, with relatively good agreement.
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