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Abstract21

Ambient Noise Imaging (ANI) of subsurface structures relies on seismic interferometry22

of diffuse seismic wavefields. However, the lack of effective methods to quantify and iden-23

tify highly diffuse waves hampers applications of ANI, particularly in evaluating seismic24

attenuation and monitoring structural changes with high temporal resolution. Conven-25

tional ANI approaches require data normalization, which effectively suppresses the non-26

diffuse component with large amplitude but also results in significant loss of amplitude27

and phase information in the continuous seismic records. In this study, we propose a fre-28

quency domain method to quantitatively evaluate the degree of diffuseness of seismic wave-29

fields by analyzing their statistical characteristics of modal amplitudes for stationarity30

and randomness. Tests on synthetic waveform and field nodal records show that the pro-31

posed method can effectively distinguish between diffuse and non-diffuse waveforms for32

either single- or three-component data. As an application, we identify a 60-second-long33

diffuse coda of a local M 2.2 earthquake recorded by a dense nodal array on the San Jac-34

into Fault Zone, and successfully extract high-quality dispersion curve and Q-value with-35

out performing data normalization. These results are consistent with those obtained by36

conventional methods that assess the correlation between coherency and the Green’s func-37

tion, and by modeling ballistic waves generated by road traffic. Our proposed method38

can advance the imaging of subsurface velocity and attenuation structures as well as mon-39

itoring temporal changes for scientific studies and engineering applications.40

Plain Language Summary41

Earthquakes, explosions, and traffic events can generate seismic waves that travel42

through the Earth. As these direct waves encounter heterogeneous earth interior, they43

scatter and change direction, leading to more diffusive propagation. Fully diffuse waves44

can be used to image the subsurface structures. In this study, we develop a reliable and45

efficient method to measure how diffuse a seismic wavefield is at different frequencies.46

Tests on synthetic and field data show that the developed method can reliably differ-47

entiate between diffuse and non-diffuse waves. This method can improve our ability to48

use spread out wavefields for imaging and monitoring the Earth’s interior.49
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1 Introduction50

Seismic imaging methods have undergone major advances over the past few decades,51

bifurcating into two primary routes. The first uses ballistic waves generated by seismic52

sources such as earthquakes, explosions, and traffic events. These ballistic waves provide53

key data including arrival times, dispersion properties, and amplitude decay as a func-54

tion of space and time for both body and surface waves (e.g., Nolet, 1977; Taner et al.,55

1979; Dziewonski & Anderson, 1981; Zhang et al., 2023). Modeling these measurements56

provides important insights into properties of the Earth interior, including velocity and57

attenuation structures.58

The second route emerged in the early 2000s, leveraging developments in acous-59

tics and seismology that allow reconstructing Green’s functions between pairs of receivers60

through cross-correlations of ambient seismic noise (Lobkis & Weaver, 2001; Weaver &61

Lobkis, 2001; Shapiro & Campillo, 2004; Paul et al., 2005; Weaver, 2005). As it does not62

require specific seismic sources, the Ambient Noise Imaging (ANI) method provides an63

economical and efficient approach that has been widely employed to image seismic ve-64

locity, attenuation, and anisotropy from global to local scales (Shapiro et al., 2005; Bensen65

et al., 2007, 2009; Yao et al., 2006; Yang et al., 2007; Lin et al., 2007; J. Wang et al., 2019;66

Obermann et al., 2019; Q.-Y. Wang & Yao, 2020; Zhan et al., 2020; Gu et al., 2019, 2022).67

Additional applications include monitoring temporal changes, geothermal exploration68

and mineral exploration, further demonstrating its versatility (e.g., Prieto & Beroza, 2008;69

Brenguier et al., 2014; Obermann et al., 2015; Olivier et al., 2015; Planès et al., 2020;70

Qiu et al., 2020; X. Xia et al., 2021; Q. Liu et al., 2022; S. Xia et al., 2022).71

The theoretical basis of ANI requires diffuse wavefields to derive Green’s functions72

from waveform cross-correlations (Lobkis & Weaver, 2001; Weaver & Lobkis, 2004). A73

diffuse wavefield within an elastic body of finite size has equal energy across all normal74

modes and propagates with equal intensity in all directions (Lobkis & Weaver, 2001; Weaver,75

1982; Sánchez-Sesma et al., 2008; Snieder et al., 2009; Hennino et al., 2001; Margerin et76

al., 2009). This implies that a fully diffuse wavefield is stationary and lacks correlations77

across different frequencies. Such requirements are difficult to satisfy in natural environ-78

ments with non-random distribution of sources that typically include tectonic, environ-79

mental, and anthropogenic sources that are concentrated at specific locations (e.g., Díaz80

et al., 2017; Inbal et al., 2018; Meng & Ben-Zion, 2018; Fan et al., 2019; Johnson et al.,81

2020; Diaz et al., 2023; Zhang et al., 2023).82

Efforts to tackle this challenge include the utilization of earthquake coda waves and83

the adoption of waveform normalization techniques. Successful applications have demon-84

strated the feasibility of reconstructing empirical Green functions (EGFs) from coda waves85

(Campillo & Paul, 2003; Paul et al., 2005). Additionally, recent studies utilizing corre-86

lations of long-period coda waves from large earthquakes (such as M ≥ 7) have found87

spurious signals that can illuminate the deep Earth, although the correlations do not nec-88

essarily reconstruct the EGFs extracted from ambient noise (e.g. Poli et al., 2017; S. Wang89

& Tkalčić, 2020; Tkalčić et al., 2020). However, large earthquakes are infrequent and90

predominantly occur along plate boundaries. Moreover, some studies have shown that91

their coda waves are complex and lack diffuseness over long periods (Maeda et al., 2006;92

Sens-Schönfelder et al., 2015; Poli et al., 2017). Consequently, relying solely on these rare93

events and retrieving their diffuse components for seismic imaging is not practical for94

mobile and temporary seismic arrays. To leverage ambient noise in ANI while mitigat-95

ing the influence of earthquakes and other strong sources, normalization has been proved96

effective for suppressing non-diffuse signals in continuous seismic records. This is done97

practically by averaging or clipping recorded amplitudes in both the time and frequency98

domain (Bensen et al., 2007; Schimmel et al., 2011; Seats et al., 2012; Shen et al., 2012;99

Cheng et al., 2015; Xie et al., 2020). Although the original waveforms are heavily dis-100

torted, EGFs with reliable phase can be obtained by stacking the cross-correlation func-101

tions from year- or month-long seismic records of seismic arrays in a regional or local scale,102
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respectively (e.g., Shapiro et al., 2005; Yang et al., 2007; Yao & Van Der Hilst, 2009; Ritz-103

woller et al., 2011; Poli et al., 2012; Lin et al., 2013; Roux et al., 2016; Gu et al., 2019;104

Mordret et al., 2019).105

Alternatively, EGFs with reliable amplitude and phase can be directly extracted106

by identifying diffuse waveform segments in continuous records, utilizing relatively short107

waveform lengths without the need for normalization. Multiple approaches have been108

developed to evaluate the degree of diffuseness of seismic records. Margerin et al. (2009)109

computed the energy ratio of P- and S-wave using earthquake coda recorded by a dense110

array, and interpreted the stabilization of the ratio as a signature of diffuseness. Sim-111

ilarly, Sánchez-Sesma et al. (2011) analyzed microtremor wave fields and considered the112

stabilization of normalized average autocorrelation as an indicator of diffuseness. An-113

other approach involves assessing the constituents of seismic waves at different periods,114

such as conducting a beamforming analysis to measure directionality. This approach has115

been applied to multiple M ≥ 7 earthquakes and has revealed a lack of equipartition-116

ing in the late coda of these large events (Maeda et al., 2006; Sens-Schönfelder et al., 2015;117

Poli et al., 2017). While these studies provide valuable insights, they either rely on ad-118

ditional simplifying assumptions or necessitate complex analysis of array data. A more119

straightforward approach, proposed by X. Liu and Ben-Zion (2016), evaluates the de-120

gree to which a wave field is diffuse by examining the cross-frequency coherence using121

a single component record. To further develop this approach, it is important to estab-122

lish conditions that are both sufficient and necessary indicators of a diffuse wavefield.123

In the present paper we present a methodology involving three conditions in the124

frequency domain that are both sufficient and necessary to establish that a wavefield is125

diffuse. The method named Evaluation of the Diffuseness of the Wavefield (EDWav) ex-126

amines the statistics of modal amplitudes that can be efficiently resolved using a dimen-127

sionless vector and two dimensionless metrics constructed from the Fourier transforms128

of waveform segments. To demonstrate the robustness of the method, we analyze seis-129

mic waveforms recorded by a dense seismic array centered (Figure 1) on the Clark branch130

of the San Jacinto Fault Zone (SJFZ) at the Sage Brush Flat (SGB) site near Anza, Cal-131

ifornia (Ben-Zion et al., 2015). The dense seismic array consists of 1108 vertical com-132

ponent 10 Hz nodes and recorded continuously at 500 Hz from May 7 to June 13, 2014133

in an area of about 600 m × 600 m (Figure 1b), with nominal sensor spacing of 10 m134

normal to the fault and 30 m along-strike (Ben-Zion et al., 2015; Meng et al., 2019). In135

particular, we quantitatively assess the degree of diffuseness of a local earthquake and136

discuss the widely used time- and frequency-domain normalization in the ANI prepro-137

cessing procedures proposed by Bensen et al. (2007). In addition, we examine the dif-138

fuseness of waveform packets dominated by random noise and other signals identified139

by Meng et al. (2019). Finally, we adopt the EDWav method to separate the ballistic140

wave and diffuse coda of a local M 2.2 earthquake recorded by the SGB dense array. From141

the 60-second-long diffuse coda, we successfully reconstruct EGFs with reliable phase and142

amplitude using seismic interferometry, and extract dispersion curves and Q-values.143

2 Methods144

2.1 Characteristics of diffuse wavefield in the time domain145

A wavefield can be expressed mathematically as the superposition of normal modes
(Aki & Richards, 2002). The vector expression in the time domain is given by (Campillo
& Paul, 2003)

Ψ(r, t) = Re
∑
n

anu
(n)(r)eiωnt, (1)

where an are complex modal amplitudes and are independent of direction, u(n)(r) refers
to vector normal mode eigenfunctions, r is location vector, ωn is angular frequency cor-
responding to the n-th mode, t is time, i2 = −1, and Re[·] denotes taking the real part
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Figure 1. (a) A regional map showing Southern California and the dense array on the San
Jacinto fault zone (SJFZ, red square). The red circles denote the epicenters of two local earth-
quakes with M 2.2 and M 2.0 employed in this study. The M 2.2 occurred on May 11, 2014 at
11:47:09.53 (UTC), located at 33.0458◦, −115.9205◦, with a depth of 7.73 km. The M 2.0 earth-
quake occurred on May 15, 2014 at 12:49:21.88 (UTC), located at 32.8740◦, −116.2337◦, with a
depth of 3.49 km (Vernon et al., 2014; White et al., 2019; Ross et al., 2019). (b) Zoom-in view
of the dense deployment. Circles denote the 1108 vertical nodes of the dense deployment. The
analyzed nodes R3010, R2509, and R2010 are denoted by the squares. The analyzed sub-array is
formed by the nodes marked in red. The analyzed 3C node 156 of the 9A network is denoted by
a triangle. The backgrounds of (a, b) are satellite images with superposed fault traces.
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of a complex function. When considering a single component, we project Ψ(r, t) in the
direction of the unit vector ê,

ψ(r, t) = Ψ(r, t) · ê = Re
∑
n

anu
(n)(r)eiωnt, (2)

where ê could be either vertical or horizontal. In the case of a fully diffuse wavefield, the
waveform should exhibit randomness and lack of coherence across different frequencies.
The statistics of the modal amplitudes then satisfy (Weaver & Lobkis, 2004)

E[ap] = 0, (3a)
E[apaq] = 0, (3b)
E[apa

∗
q ] = F (ωp)δpq, (3c)

where E[·] denotes expectation, superscript ∗ denotes complex conjugate, F represents146

the spectral power density of the diffuse field (Lobkis & Weaver, 2001), and δ is the Kro-147

necker delta function. Since an exists independently of direction, equations (3a)-(3c) sat-148

isfies all three components of a fully diffuse wavefield. Therefore, using a single compo-149

nent wavefield (equation (2)) form is representative, which is also a commonly used way150

by previous researchers (Lobkis & Weaver, 2001; Weaver & Lobkis, 2004). However, as-151

sessing the waveform diffuseness using the time domain equations (3a)-(3c) is imprac-152

tical due to the unavailability of the precise subsurface structure required for comput-153

ing eigenfunctions, especially at high frequencies. We therefore derive in section (2.2)154

three equivalent expressions in the frequency domain that can be used to evaluate the155

modal amplitudes, circumventing the requirement for the eigenfunctions.156

2.2 Characteristics of diffuse wavefield in the frequency domain157

Following X. Liu and Ben-Zion (2016), a truncated diffuse waveform in the frequency
domain can be expressed as

ϕ(r, ω) = F{ψ(r, t)rect[t/T ]} =
∑
n

anu
(n)(r)T sinc

[
(ω − ωn)T

2

]
, (4)

where T is window length, F{·} represents Fourier transform and rect[·] is the boxcar
function. Here, the diffuse waveform ψ(r, t) can be any component. For sufficiently long
T , the sinc function can be effectively approximated by a Kronecker delta. In this case,
for any frequency ω = ωp, the truncated recording is simplified as

ϕ(r, ωp) = apu
(p)(r)T. (5)

The expectation of a seismic record in the frequency domain can be estimated by using
numerous non-overlapping waveform segments,

E[ϕ(r, ωp)] = E[ap]u
(p)(r)T. (6)

By adopting E[ap] = 0 to the above equation, we obtain E[ϕ(r, ωp)] = 0, which means
we are able to access criterion (3a) by computing the expectation of waveform spectra.
Furthermore, considering that normal mode eigenfunctions u(p)(r) are not always zero,
the observation of E[ϕ(r, ωp)] = 0 across all frequencies implies E[ap] = 0. Therefore,
E[ap] = 0 is equivalent to E[ϕ(r, ωp)] = 0. For a more convenient evaluation, we con-
struct a dimensionless quantity A(r, ωp) by normalizing the L2-norm of E[ϕ(r, ωp)]. The
expression is given by

A(r, ωp) =
|E[ϕ(r, ωp)]|2

E[|ϕ(r, ωp)|2]
= 0. (7)

Applying similar operations to the covariance of ϕ(r, ωp) and ϕ(r, ωq), we obtain

E[ϕ(r, ωp)ϕ(r, ωq)] = E[apaq]u
(p)(r)u(q)(r)T 2. (8)
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Therefore, E[apaq] = 0 is equivalent to E[ϕ(r, ωp)ϕ(r, ωq)] = 0. A dimensionless form
B(r, ωp, ωq) corresponding to equation (3b) is

B(r, ωp, ωq) =
|E[ϕ(r, ωp)ϕ(r, ωq)]|2

E[|ϕ(r, ωp)|2]E[|ϕ(r, ωq)|2]
= 0. (9)

In addition, the covariance of ϕ(r, ωp) and ϕ∗(r, ωq) is

E[ϕ(r, ωp)ϕ
∗(r, ωq)] = E[apa

∗
q ]u

(p)(r)u(q)∗(r)T 2. (10)

If p ̸= q, E[apa∗q ] = 0 is equivalent to E[ϕ(r, ωp)ϕ
∗(r, ωq)] = 0. If p = q, E[apa∗q ] =

F (ωp) is equivalent to E[ϕ(r, ωp)ϕ
∗(r, ωq)] = F (ωp)[u

(p)(r)T ]2. A dimensionless form
C(r, ωp, ωq) corresponding to equation (3c) is

C(r, ωp, ωq) =
|E[ϕ(r, ωp)ϕ

∗(r, ωq)]|2

E[|ϕ(r, ωp)|2]E[|ϕ∗(r, ωq)|2]
= δpq. (11)

To sum up, equations (3a)-(3c) are equivalent to equations (7), (9), and (11). By
retrieving all possible ωp and ωq for these equivalent expressions, we can obtain a dimen-
sionless vector A, along with dimensionless symmetric matrices B and C. If and only
if a waveform ψ(r, t) is fully diffuse, A is a zero vector, B is a zero matrix, and C is an
identity matrix. In contrast, if any of these three conditions are not met, the evaluated
waveform is not fully diffuse. In this case, elements in A, B, and C span the range from
0 to 1 according to the Jensen’s inequality and the Cauchy–Schwarz inequality,

0 ≤ A(r, ωp) ≤ 1, (12a)
0 ≤ B(r, ωp, ωq) ≤ 1, (12b)
0 ≤ C(r, ωp, ωq) ≤ 1. (12c)

Additional details of the above equations are provided in the supporting information (Text158

S1 and S2).159

2.3 Multitaper spectrum analysis160

In practical applications, the window length T can be insufficient, leading to an in-161

adequate approximation of the Kronecker delta by a sinc function. This limitation in-162

troduces inaccurate estimation of the spectrum (ϕ(r, ω)) of the target signal due to spec-163

trum leakage caused by the side lobes of the sinc function. The leakage can affect the164

assessment of criteria A, B, and C. To mitigate this effect, we employ the multitaper165

spectrum analysis technique proposed by Thomson (1982). In comparison to spectral166

estimates obtained using the rectangular window function as shown in equation (4), the167

multitaper spectrum analysis utilizes multiple orthogonal tapers. The spectrum is sub-168

sequently constructed by taking a weighted sum of these single-tapered periodograms.169

The multitaper technique has proven effective in reducing spectral leakage and is used170

commonly in various disciplines including geophysics (e.g., Park et al., 1987; Simons et171

al., 2000; Prieto et al., 2007; Babadi & Brown, 2014). In this study, we adopt the mul-172

titaper spectrum analysis technique of Riedel and Sidorenko (1995), which uses sinusoidal173

tapers. Compared with the widely used Slepian tapers, sinusoidal tapers provide bet-174

ter flexibility and adaptability to data by allowing selecting the number of tapers with-175

out any limitation on the frequency bandwidth of the signal (A. Kuvshinov & Olsen, 2006;176

A. V. Kuvshinov, 2008; Tian et al., 2022).177

2.4 Proxies for quantitative evaluation of diffuseness178

To obtain A, B, and C of observed waveform recorded by a seismograph, we first179

divide the time series into N non-overlapping segments, where N should be sufficiently180
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large (e.g., N ≥ 30) to enable reliable statistical analysis. We then compute the multi-181

tapered spectra of the N waveform segments and construct A, B, and C using equations182

(7), (9), and (11). To assess their deviations from the desired zero vector, zero matrix,183

and identity matrix for a fully diffuse waveform, one can evaluate the condition num-184

bers, correlation coefficients, and residuals of these matrices.185

The first option is to compare the matrix condition numbers of the three observed186

conditions and their target objects. For example, for condition C, we can compute the187

condition number of matrix C to assess its proximity to an identity matrix. However,188

this proxy is not applicable to vector A. Moreover, an identity matrix needs to be added189

to condition B, which aims for a zero matrix, before computing the condition number190

to avoid singularity. This approach also depends on the size of the matrix, which can191

vary considerably depending on the duration and sampling rate of the data.192

The second choice is to calculate the correlation coefficients, such as Pearson cor-193

relation coefficient or RV coefficient (Smilde et al., 2009; Robert & Escoufier, 1976), be-194

tween the three observed conditions and their target objects. These coefficients are com-195

monly used to quantify the proximity between two sets of data. However, the correla-196

tion coefficient is singular for zero vectors or matrices, rendering it unsuitable for cal-197

culating the proxies of conditions A and B.198

The last alternative is to compute the residuals of the three observed conditions199

and their target objects. This method is intuitive, efficient, and widely applied in var-200

ious disciplines. By quantifying the norm of residuals, such as the most commonly used201

L2-norm, one can measure the deviation from observed and the target value. However,202

the conventional L2-norm calculation may lack sensitivity to certain key pattern differ-203

ences in the residual matrix, potentially leading to biased evaluations.204

Good proxies for evaluating waveform diffuseness should exhibit the characteris-
tics of simplicity, sensitivity to key pattern differences, applicability to both vectors and
matrices, and independence from matrix dimensions. Therefore, quantifying the resid-
uals is considered the most promising approach. To overcome the disadvantages men-
tioned above, we propose an improved Root Mean Square (RMS) function that quan-
tifies the results generally between 0 and 1, making them independent of the size of con-
ditions A, B, and C. The proxy calculated by the improved RMS function is

P =

√∑N
j=1 (wjxj)2

N
, (13)

where xj = |Aobs
j −Atar

j | is the jth element of the absolute value of the residual of the
observed and target of condition A with size of 1×N , wj is the weight of xj . This is
defined as

wj = (
1

2s+ 1

j+s∑
k=j−s

xk)/mean[x], (14)

where s is the scale of the window (2s+1) of the weight. Since condition A is dimen-205

sionless, 0 <= xj <= 1 for all x. In addition, all wj are distributed around 1, there-206

fore 0 <= P <= 1 for most waveform data. Smaller values of P indicate the recorded207

waveform better satisfies the characteristics of a diffuse field. By defining a dimension-208

less scale factor sf = s/N , we have 0 <= sf <= 1. Varying the scale factor assigns209

different weights, leading to variations in the calculated values. Equation (13) thus de-210

fines a scale-dependent RMS function (sRMS) applicable to both vectors and matrices.211

For matrix data, the computation can be extended by incorporating equations (13) and212

(14) into equations S18 and S19 (see Text S3). Introducing a smaller scale factor places213

greater emphasis on the deviation of each element from the collective characteristics of214

all elements. Conversely, a larger scale factor brings the weighted element closer to its215

original value. In particular, when sf = 1, sRMS is equivalent to the traditional RMS.216
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To determine the optimal choice of sf , we analyze continuous waveform data recorded217

by node R3010 at the SGB site (Figure 1) over a span of two days. The waveform is di-218

vided into 2880 non-overlapping 60-second segments. Figure S1a illustrates the varia-219

tion of proxy values for conditions A, B, and C with respect to sf . The results exhibit220

a general downward trend, with the proxy values decreasing and asymptotically approach-221

ing horizontal lines as sf increases. Examining the first-order derivative curves (Figure222

S1b), we observe that both small and large values of sf involve a trade-off between sta-223

bility and sensitivity. We consider the corner point of the first-order derivative curve as224

the optimal choice of sf (Figure S1c), which balance the stability and sensitivity of the225

proxy. The distributions of the three proxies of the 2880 waveform segments show good226

consistency, further reinforcing the reliability of the chosen sf (Figure S1d).227

3 Results228

In this section, we provide a comprehensive evaluation of the effectiveness of our229

proposed method using both synthetic and real seismic data. We begin by demonstrat-230

ing that the method can accurately quantify the diffuseness of synthetic diffuse noise,231

as well as the consistency in the evaluation of three-component measured seismic records.232

Subsequently, we present examples of non-diffuse signals by applying the method to recorded233

ground motions generated by a local earthquake, a car traffic event, and a wind gust.234

Finally, we extend the analysis of waveform anatomy conducted by Meng et al. (2019)235

to evaluate whether the detected Random Noise (RN) exhibits the characteristics of a236

diffuse field.237

3.1 Synthetic diffuse noise238

To demonstrate the application of our methodology using seismic records, we first239

generate synthetic random noise that is also diffuse. This is done first by performing Fourier240

transform of a low amplitude 500 s vertical component waveform that was recorded at241

night on node R3010 (its location reference Figure 1b). We then replace the phase term242

with a uniform distribution of values ranging from 0 to 2π. Finally, an inverse transfor-243

mation is performed on the resulting amplitude spectrum (Figure 2a) and randomized244

phase thus obtaining the synthetic diffuse noise (Figure 2b) used for test. These oper-245

ations ensure that the synthetic waveform would be stationary and random (Figure 2c),246

show no coherence across different frequencies, and therefore be diffuse.247

To quantify the conditions A, B and C, we divide the waveforms into T = 1 s248

non-overlapping sub-windows (unless otherwise specified, the length of sub-window in249

this paper is 1 second) and stably estimate the spectrum of each window using the mul-250

titaper spectrum analysis technique (Riedel & Sidorenko, 1995). Choosing a sub-window251

length of 1 s allows us to analyze high-frequency signals above 1 Hz (in the case of zero252

frequency neglect), which ensures that when we stack at least 30 sub-windows, the to-253

tal signal length will not be too long to include more event signals and contaminate the254

estimation of interest signals. Then, the spectra and the outer products with themselves255

and their conjugates are averaged according to equations (7), (9) and (11). Finally, the256

corresponding results are shown in Figures 2d-2f. Since the data is sampled at a rate of257

500 Hz, we are guaranteed to resolve 250 frequencies in interval [1, 250] Hz in the case258

of a sub-window length of 1 s. We find that all elements of conditions A and B and el-259

ements on the non-diagonal of condition C are nearly 0, while the diagonal elements of260

condition C are 1. We further compute their proxies using the sRMS with sf = 0.05261

(Figures 2d-2f). As expected, the proxies PA, PB and PC corresponding to conditions262

A, B and C are very small, all less than or equal to 0.005, indicating that the synthetic263

waveform in Figure 2b is sufficiently diffuse.264

Persistent and intensive single-frequency interference are commonly observed in seis-265

mic records due to the electric noise and other problems. Such interference can severely266
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Figure 2. (a) The observed amplitude spectrum of a 500 s vertical component waveform
recorded by node R3010 at night. (b) Synthetic diffuse noise generated using the spectral ampli-
tude in (a) with randomized phase. (c) The spectrogram of the synthetic diffuse noise. (d-f) The
conditions A, B and C of the synthetic diffuse noise in (b).

impede efforts to retrieve subsurface structures from the diffuse field. To test whether267

the proposed method can quantify such signals, we add 50 Hz and 120 Hz single-frequency268

interference to the diffuse noise waveform shown in Figure 2b. The results are presented269

in supporting information Figure S2. In Figure S3, we further show the results obtained270

by doubling the interference intensity. Although the interferences from the added single-271

frequency sources are not easily identifiable in the waveforms (Figure S2b and Figure272

S3b), the pulses at 50 Hz and 120 Hz of the condition A (Figures S2d and S3d) clearly273

reduce the diffuse characteristics of the original diffuse noise in Figure 2b. Specifically,274

the evaluation proxies of conditions A, B, and C shown in Figure 2, Figures S2, and S3275

are proportional to the amplitude of the interference intensity. This illustrates that our276

method not only correctly identifies data containing such interference patterns as dif-277

fuse or non-diffuse, but also provides a quantitative measurement of the magnitude of278

their effect on the diffuse wave.279

3.2 Evaluating three-component ambient noises280

To further validate our method using three-component seismic waveforms, we an-281

alyze the seismic waveforms recorded by node 156 in the 9A network on December 14,282

2017, 00:02:20-00:05:00 (UTC time), which is collocated with the dense vertical array283

shown in Figure 1b. The waveforms include pre-seismic ambient noises and a local M 2.1284

earthquake with its coda waves (Figure S4). Figure 3 presents the 1-minute pre-seismic285

noise of two horizontal components (GP1 and GP2) and the vertical component (GPZ).286

We evaluate the three components separately and observe consistent characteristics in-287

dicative of a diffuse wavefield. Specifically, condition A, B, C approximate a zero vec-288

tor, a zero matrix, and an identity matrix, respectively. The proxies PA, PB , and PC289
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Figure 3. Evaluation results for ambient noise segments of the three-component waveforms
recorded by station 156 on December 14, 2017, 00:02:20-00:03:20 (UTC time) in the frequency
range of 5-50 Hz. The first and second rows correspond to results for the horizontal components
GP1 and GP2, respectively, while the third row correspond to the vertical component GPZ.

of the three components all exhibit small values. This consistency confirms the validity290

of our method in assessing the diffuseness of each seismic wave component.291

The same analysis is performed on the coda waveform segments of the M 2.1 earth-292

quake, which also exhibit characteristics of a diffuse wavefield in all three components.293

Details can be found in Figure S5, illustrating that the late three component coda wave-294

form segments overall fit with diffuse wavefield characteristics are satisfactory, as indi-295

cated by small values for the PA, PB , and PC proxies. Conversely, when one component296

does not satisfy the characteristics of the diffuse wavefield, the other two components297

are not diffuse as well. As shown in Figure S6, the evaluation results of the three com-298

ponents of the 40-second-long waveform segments dominated by ballistic waves show that299

strong correlations within the 5-30 Hz range, indicating that they do not meet the char-300

acteristics of a diffuse wavefield. While conditions A, B and C may display slight vari-301

ations in characteristics across the three components in actual seismic record due to dif-302

ferent sensor noise and coupling effects, it is noteworthy that all components consistently303

exhibit either large or small proxy values, which are able to distinguish between diffuse304

or non-diffuse waves. In practical applications, our method offers flexibility, allowing users305

to apply it either to single- or three-component data.306

3.3 Evaluating non-diffuse waveforms307

During the deployment at the SGB site, the dense seismic array recorded ground308

motions inducted by small local earthquakes, cars, airplanes, wind gusts, etc. To eval-309

uate the performace of our method on non-diffuse waveform examples, we analyze the310

vertical waveforms of a few such sources recorded by node R3010 (Figure 1).311
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Figures 4a(I-V) show from the top to bottom the recorded waveform, the corre-312

sponding spectrogram, and the evaluated conditions A, B, and C, respectively. Notably313

in Figure 4a(III), we observe that condition A is not a zero vector. In Figures 4a(IV-314

V), the orangish square at the top left indicates coherent energy in the frequency range315

of 1-125 Hz, which is associated with the earthquake signal that consistently appear in316

many sub-windows in the evaluation. Additionally, the greenish square at the bottom317

right indicates coherent energy in the frequency range of 125-200 Hz. This coherent en-318

ergy is attributed to a wind gust event that occurred between 25 and 40 seconds, which319

coincided with the recording of the earthquake signals in Figures 4a(I-II). Consequently,320

both evaluation proxies for conditions B and C yield values of approximately 0.5, pro-321

viding evidence that the earthquake waveform exhibits non-diffuse characteristics.322

The same analysis is conducted on the ground motions induced by car traffic and323

wind gust, and the results are presented in Figures 4b(I-V) and 4c(I-V) respectively. In324

Figure 4b(III), although the evaluation proxy for condition A is relatively small, the large325

proxies for conditions B and C suggest that the car-induced vibration record is non-diffuse.326

Moving on to Figure 4c(I-V), both the visual observations and the calculated indexes327

for conditions A, B, and C indicate that the wind-induced vibration record does not ex-328

hibit the characteristics of a diffuse field.329

The non-diffuse characteristics of the above three ground motions can be attributed330

to the fact that the ballistic waves caused by the events dominate the signal window. If331

we move the window of interest back, for example by examining the late event signals332

of a car, we can find that its coda waves can also exhibit diffuse characteristics when the333

conditions are met, as shown in the Figure S8. Similar analysis can be applied to the coda334

of small earthquake events, which will be introduced later in subsection 4.3.335

3.4 Evaluation of anatomical results of continuous seismic waveforms336

Meng et al. (2019) developed a methodology to detect different types of wave pack-337

ages in continuous seismic records including Random Noise (RN). In this subsection we338

evaluate whether the detected RN exhibits the characteristics of a diffuse field. The wave-339

form analysis method includes analyses of the cross-correlation of waveform segments340

and amplitude spectra comparisons. The hourly RN is quasi-stationary, and the results341

cluster tightly in the parameter space of cross-correlation coefficients and L2 norm de-342

viations from the mean spectra of RN candidates (Meng et al., 2019). To estimate the343

extent to which wavefields in different time windows are diffuse, we build on the wave-344

form analysis method and analyze the data recorded by the dense deployment.345

Figure 5 presents the raw waveforms (a), spectrograms (b) and corresponding de-346

tected RN (c) of example hours recorded by node R3010 on May 26, 2014 from 14:00 to347

15:00 (local time). On the raw waveforms, we perform a classification analysis using the348

method developed by Meng et al. (2019). We then use a sliding window of length 30 s349

with an overlap of 29 s to analyze the diffuse field characteristics of the RN. The eval-350

uation proxies of conditions A, B and C corresponding to each sliding window are shown351

at the center of the window with red, orange and blue dots in the lower panel of Figure352

5c. The bottom right panels of Figure 5c show the mean and standard deviation of the353

evaluation metrics. These results demonstrate that the RN signals separated by Meng354

et al. (2019) exhibit the characteristics of a diffuse field. The small standard deviations355

of the evaluation proxies of the RN signals indicate their temporal stability and robust-356

ness. Applying the same analysis to non-random noise and mixed signals from the raw357

waveform separated by Meng et al. (2019), the results (shown in Figures S7c, d) indi-358

cate that these two signal types do not exhibit the characteristics of a diffuse field.359
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Figure 4. Examples of non-diffused waveforms recorded by node R3010. (a) The left column:
The example of a local M 2.29 earthquake waveform. (b) The middle column: The example of a
car event waveform. (c) The right column: The example of a series of wind gust event waveforms.
From top to bottom, i.e., (I) to (V), each row represents the waveform, spectrogram, and condi-
tions A, B and C, respectively.
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Figure 5. Examination of anatomical results of continuous seismic waveforms proposed by
Meng et al. (2019). (a) The raw continuous seismic waveforms recorded by node R3010 on Julian
day 146, 2014 from 14:00 to 15:00 (local time). (b) Corresponding spectrogram of the waveform
in (a). The upper panel of (c) shows the RN signals separated from waveform in (a). The degree
of diffuseness of these signals are evaluated in a sliding window of length 30 s with an overlap of
29 s, and the results are presented in the lower panels of (c). The red, orange and blue points are
the evaluation proxies corresponding to the conditions A, B and C, respectively. The bottom
right panel of (c) shows the mean of the evaluation proxies with standard deviations.
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4 Discussion360

We present the EDWav method for evaluating the diffuseness of wavefields by quan-361

tifying the stationarity and cross-frequency coherence of the waveform. The method can362

be easily implemented in the frequency domain by using equations (7), (9), and (11). We363

have demonstrated the validity and effectiveness of this method through tests on syn-364

thetic diffuse noise, three non-diffuse waveforms, and RN obtained from previous anal-365

ysis on waveform anatomy. Below we provide additional details on the EDWav method366

and discuss insights it provides in seismic imaging studies.367

4.1 Comparison of sRMS and RMS approaches368

In subsection 2.4, we introduce the scale-dependent Root-Mean-Square (sRMS) ap-369

proach to evaluate the magnitude of residuals between observed and target condition.370

The sRMS method builds upon the root-mean-square (RMS) function but adds an ad-371

justable scaling factor. According to equations (13) and (14), a smaller scale factor causes372

the sRMS to reflect the deviation of each element from the overall characteristics of all373

elements. Conversely, a larger-scale factor weights each element closer to its original value.374

This relationship is illustrated and confirmed by the curve variations in Figure S1a. Com-375

pared to the conventional RMS approach, the sRMS method is advanced in flexibility376

and sensitivity, and it is better suited to evaluate the magnitude of residuals.377

To demonstrate the utility of the sRMS approach, we conduct comparative exper-378

iments using two waveforms recorded by the same station at different times, as depicted379

in Figures 6a and d. The waveform shown in Figure 6d displays a higher occurrence of380

tremor-like wiggles, indicating a less diffuse nature compared to Figure 6a. This is con-381

firmed by their condition B shown in Figures 6b and e. Figure 6b reveals that discrete382

bright spots are evenly distributed across the image. These spots exhibit consistent bright-383

ness (value) and appear relatively dark (small), which indicates that the waveform in Fig-384

ure 6a aligns with characteristics of a diffuse wavefield. However, Figure 6e reveals a dis-385

tinct pattern where three continuous bright rays concentrate from the upper-left corner386

to the lower-right corner. This concentration of bright rays suggests that the waveform387

in Figure 6d is significantly influenced by non-stationary sources, potentially associated388

with air traffic disturbances (Meng & Ben-Zion, 2018). Subsequently, we apply the RMS389

approach (i.e., sRMS with sf = 1) to calculate the proxy of their condition B. Inter-390

estingly, we find that RMS yield similar results for both waveforms, with values of 0.042391

and 0.043, respectively. Such similarity in the results can be attributed to the inherent392

insensitivity of RMS, as it does not consider the distribution position of the data (i.e.,393

the bright spots and rays in Figure 6b and e). Consequently, relying on the RMS func-394

tion to distinguish between diffuse and non-diffuse waveforms poses a risk.395

Using the sRMS function can mitigate the insensitive shortcoming of the RMS func-396

tion. As shown in the bottom-left corner of Figures 6c and f, the proxies of condition B397

for the two waveforms display considerable difference, which are 0.043 and 0.093, respec-398

tively. The key reason behind the advantage of sRMS lies in its ability to assign weights399

to the residuals for analysis. This is accomplished by comparing the ratio of the mean400

value of the data within a specific range surrounding the residuals under investigation401

to the mean value of the overall residuals, as indicated by equation 14. By applying sRMS402

weighting to Figures 6b and e, the resulting images depicted in Figures 6c and f high-403

light a notable enhancement in the representation of continuous and trended bright spots,404

while displaying reduced sensitivity to discrete bright spots. Since non-diffuse waveforms405

often have correlated frequency components that appear in pairs or groups (as shown406

in Figures 4 and 6b), these characteristics of sRMS can well distinguish between diffuse407

and non-diffuse waveforms. Therefore, sRMS proves to be a suitable method for calcu-408

lating the proxy in the EDWav method.409
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Figure 6. Comparison of sRMS and RMS in calculating evaluation proxy. (a) and (d) are the
two waveforms recorded by node R3010 on Julian day 131, 2014. The difference visible to the
naked eye is that (a) is more characteristic of the diffuse wavefield than (d). (b) and (e) are the
conditions B of (a) and (d), respectively. (c) and (f) are the transformed image from (b) and (e)
by the sRMS method, respectively.
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4.2 Insights into preprocessing procedures of ambient noise imaging410

The retrieval of Green’s function in ambient noise studies requires a diffuse wave-411

field. However, the recorded ambient noise usually contains a lot of interference from non-412

diffuse signals, such as car traffic, trains, storms, wind turbines, and air traffic (Meng413

& Ben-Zion, 2018; Meng et al., 2019, 2021). To effectively suppress signals from tectonic,414

anthropogenic, and environmental sources, a crucial preprocessing step involves wave-415

form normalization in both the time and frequency domains. This can be achieved through416

techniques such as one-bit filtering and whitening, respectively. The application of nor-417

malization has been widely used and proved to be successful Bensen et al. (2007) and418

many subsequent papers (e.g., Prieto et al., 2011; J. Wang et al., 2019; Xie et al., 2020).419

In this section, we quantitatively evaluate the waveform diffuseness of a local earthquake420

before and after the various normalization approaches proposed in Bensen et al. (2007).421

This analysis aims to clarify the effectiveness of different normalization techniques and422

the underlying reasons for their varying performance.423

As shown in Figure 7, the leftmost panel in the first row (a) presents a non-diffused424

waveform with a duration of 100 s. This is a local M 2.0 earthquake that occurred on425

15 May 2014, recorded by node R2509. The epicenter is shown in the red circle in Fig-426

ure 1a. The seismic waveform is evaluated with the discussed techniques and the results427

are shown in the second to fourth columns of Figure 7a. From condition A, we can find428

that this section of the waveform is interfered by many strong single-frequency signals,429

as evidenced by spikes at 50 Hz, 75 Hz, 100 Hz, 125 Hz and 150 Hz. In addition, con-430

dition B and condition C exhibits clustered bright spots, which deviates from the ex-431

pected characteristics of a zero matrix and an identity matrix, respectively. The large432

evaluation proxies PA, PB , and PC further support the conclusion that the waveform lacks433

diffuseness.434

We then apply one-bit, clipping, and running absolute mean algorithms to normal-435

ize the seismic waveform in the time domain. The processed waveform and correspond-436

ing evaluation results are shown in Figures 7b-d. Upon examination of Figure 7c, the437

bright images and large proxies of conditions A, B, and C reaffirm the assertion made438

by Bensen et al. (2007) that the clipping algorithm is unsuccessful in improving the cross-439

correlation results. This can be attributed to the presence of many step-function-like wave-440

form segments that emerge when the peaks and valleys are flattened beyond the thresh-441

old during the clipping process. The sudden transitions, which can be approximated by442

step functions, generally follow a f−1 spectrum. They frequently occur in 16 to 36 sec-443

onds (Figure 7c) and therefore exacerbate cross-frequency coherence and non-diffuse char-444

acteristics in the frequency bands from 10 to 35 Hz. Similar to the one-bit filtering ap-445

proach (Figure 7b), the running absolute mean normalization method (Figure 7d) can446

also significantly reduce the proxies of condition B and condition C. This indicates its447

ability to effectively suppress non-stationary and non-diffuse seismic signals.448

However, none of the normalization algorithms in the time domain show signifi-449

cant improvements in condition A. The presence of spikes in this condition remains un-450

resolved using these techniques (Figures 7b-d). To tackle this issue, normalization in the451

frequency domain, specifically employing the spectral whitening algorithm, proves effec-452

tive in suppressing the spike amplitudes (Figure 7e). Nevertheless, solely performing the453

frequency domain normalization of the earthquake waveform still leads to strong non-454

diffuse characteristics in conditions B and C.455

The aforementioned quantitative analyses provide valuable insights into the effects456

of the normalization techniques. Specifically, the time-domain normalization primarily457

targets the suppression of weights associated with strong and non-diffuse signals. The458

frequency-domain normalization flattens the spectral amplitude over the frequency range459

of interests and combats degradation caused by persistent homogeneous sources. We fur-460

ther follow the preprocessing procedures of several representative ANI studies (Bensen461
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et al., 2007; Yang et al., 2007; J. Wang et al., 2019; Xie et al., 2020; X. Xia et al., 2021)462

by performing one-bit and then whitening algorithms to the earthquake waveform. Such463

procedures result in significantly improved conditions A, B and C (Figure 7f), as evi-464

denced by the smallest proxies in each column of Figure 7.465

In the field records, not all waveforms contain strong single-frequency interference466

signals. If the proxy of condition A is already small, then the spectral whitening oper-467

ation is unnecessary in the preprocessing of ANI. Similarly, if earthquakes, instrumen-468

tal irregularities, or other nonstationary wiggles are absent, the normalization operation469

in the time domain can also optionally be omitted when both proxy conditions B and470

C are adequately small. Waiving these processes by identifying the diffuse wave segments471

brings two advantages. On the one hand, it can simplify the processing steps, reduce the472

data redundancy, and improve the computational efficiency for ANI. More importantly,473

we are able to recover the reliable amplitude from waveform interferometry using the wave-474

forms without disturbance of amplitude by the normalization. This is essential to ex-475

tract attenuation parameters of the subsurface structures. We therefore propose inte-476

grating the EDWav as a perprocessing step of ANI to identify the diffuse wave segments477

with relative strong energy, such as the coda waves of earthquake or wavefield before and478

after traffic events (an example of a car event coda evaluation can be found in Figure479

S8, which supports the search for relative strong energy waveforms from signals in the480

late traffic events). This method offers the advantage of quantifying waveform diffuse-481

ness while also facilitating the retrieval of improved EGFs for imaging purposes. This482

type of idea of improving EGFs recovery by identifying and stacking favorable cross-correlations483

has also recently been applied to deciphering volcanic whispers (Makus et al., 2023) and484

extracting body wave phases from the depth Earth (Pedersen et al., 2023).485

4.3 Application of EDWav in retrieving dispersion and attenuation486

The coda of large earthquakes (M ≥ 7) can last for a long duration, providing487

rich seismic data and can be used to extract the EGFs between stations through seis-488

mic interferometry (Campillo & Paul, 2003; Paul et al., 2005). However, large earthquakes489

are infrequent and predominantly occur along plate boundaries. Moreover, some stud-490

ies have shown that their constituents are complex and lack diffuseness over long peri-491

ods (Maeda et al., 2006; Poli et al., 2017; Sens-Schönfelder et al., 2015). Consequently,492

relying solely on these rare events and retrieving their diffuse components for seismic imag-493

ing is risky for mobile and temporary seismic arrays. Alternatively, small earthquakes494

occur much more frequently and are widely distributed, as indicated by Gutenberg-Richter495

statistics (Gutenberg & Richter, 1944), and typically occur shallower, with waveform en-496

ergy more likely to be equipartitioned by scatterers. Therefore, in this section, we ap-497

ply the EDWav method to the coda waves of a M 2.2 earthquake recorded by the spa-498

tially dense array (Figure 1b), and use the identified diffuse waves for retrieving the dis-499

persion and attenuation of subsurface structures.500

The small earthquake occurred in the southern end of the SJFZ on 11 May 2014.501

An example waveform recorded by node R2010 is shown in Figure 8a. To distinguish be-502

tween the ballistic and coda waves, we employ the EDWav method on two adjacent slid-503

ing windows, each spanning 60 seconds, for the waveform recorded by node R2010. The504

separation is achieved by the differentiation of the diffuseness proxies of the two windows505

(details are shown in Figure S9), we selected the non-diffuse ballistic wave window and506

the diffuse coda wave window. In order to select suitable nodes for reconstructing EGFs,507

we apply the coda window to all nodes in the SGB dense array, and observe that the seis-508

mic coda waves inside the sedimentary basin exhibit greater energy intensity and higher509

overall diffuseness degree compared to those outside the basin (Figure S10). We there-510

fore select the 142 nodes within the basin as a sub-array, represented by the red circles511

in Figure 1b, for the purpose of reconstructing EGFs using the cross-correlation func-512

tions. As depicted in Figure 8d, the mean values of PA, PB , and PC of the ballistic and513
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Figure 7. Inspection of time and frequency domain normalization methods for the local M
2.0 earthquake shown in Figure 1b. (a) The earthquake waveform recorded by node R2509 and
its evaluation results of conditions A, B and C. (b-d) Waveforms and corresponding evaluation
results after one-bit normalization, clipping, running absolute mean normalization and spectral
whitening of the waveform in (a). (f) The waveform and corresponding evaluation results after
one-bit normalization and spectral whitening of the waveform in (a).
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coda waves of these 142 nodes exhibit clear separation with a value of 0.0625 and form514

two distinct clusters, indicating the correctness of our identification of diffuse coda waves515

and nodes selection.516

Subsequently, we retrieve the EGFs using the 60-second-long ballistic and diffuse517

coda waves. For the ballistic wave of the earthquake (the blue waveform in Figure 8a),518

we follow Bensen et al. (2007) and adopt one-bit filtering and spectral whitening to sup-519

press the non-diffuse components. The processing approach employed, as depicted in Fig-520

ure 8b, does not produce clear surface wave signals in either the positive or negative lag521

time of the cross-correlation functions. Instead, prominent pulse signals are observed around522

zero time. This is due to the short waveform length, insufficient ambient noise, and the523

high incidence of seismic body waves propagating vertically along the fault below the524

array. In contrast, for the identified coda waves (the red waveform in Figure 8a), we di-525

rectly compute the cross-correlation functions without employing any additional prepro-526

cessing procedures. The Rayleigh wave signals and the corresponding propagation effects527

have been well reconstructed (Figure 8e). The results show basically consistency with528

previous studies (Roux et al., 2016; Hillers et al., 2016) and the reference shown in Fig-529

ure 8h, where cross-correlation functions were computed using continuous waveforms for530

the entire day and subjected to one-bit filtering and spectral whitening. It should be noted531

that the coda wave segments used are considered sufficiently diffuse (they have small dif-532

fuseness proxies, as shown in Figure 8d. In this context, ’sufficiently diffuse’ indicates533

that the nonstationary component in the signals has a limited impact on the reconstruc-534

tion of Empirical Green’s Functions (EGFs) from cross-correlation functions, rather than535

being fully diffuse. Furthermore, the duration of the data compared to the reference for536

one day is considerably shorter, at only 60 seconds, enhancing the efficiency of extract-537

ing reliable EGFs from short seismic records.538

To extract the dispersion curves, we utilize the recently developed Frequency-Bessel539

transform method (J. Wang et al., 2019; Li et al., 2021) on the three groups of aforemen-540

tioned cross-correlation functions (Figures 8b, e, and h). As expected, the ballistic wave,541

characterized by its non-diffuse nature, does not yield a clear dispersion curve. However,542

for coda waves, we observe a clear and continuous dispersion curve for the Rayleigh wave543

within the frequency range of 7−15 Hz, as illustrated in Figure 8f. The results again544

demonstrate good consistency with the reference dispersion (Figure 8i) obtained using545

continuous waveforms throughout the day. We note that while the dispersion curve de-546

rived from diffuse coda is adequately good for ANI, it may not necessarily outperform547

the dispersion curve computed from longer records using normalization as both meth-548

ods effectively recover the phase information. We also conduct a test by randomly se-549

lecting a 60-second-long window of ambient noise. However, the attempt to obtain clear550

dispersion curve is unsuccessful (Figure S11). This is mainly due to the low energy of551

ambient noise, which requires much longer records to reconstruct EGFs. Nevertheless,552

our findings suggest that by identifying diffuse waves with strong energy, we can achieve553

comparable quality results using only minute-long records instead of data collected over554

an entire day. This indicates that these short records contain essential information for555

ANI, despite covering only a small portion of the continuous records. Consequentially,556

our results offer a possibility of advancing the workflow of ANI by integrating the ED-557

Wav method to identify the sparsely distributed high energy and diffuse waveform seg-558

ments. By leveraging this approach, we can improve computing efficiency by avoiding559

the need to calculate cross-correlations of day-long records. Furthermore, it is possible560

to monitor the temporal change in the subsurface structures with high temporal reso-561

lution if there are frequent detections of qualified waveform segments, such as the coda562

waves of the foreshocks and aftershocks in a large earthquake sequence.563

Since we do not introduce any normalization preprocessing for the coda waves prior
to computing the cross-correlation functions, the reconstructed EGFs preserve reliable
phase and amplitude at the same time. We therefore are able to extract not only the dis-
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Figure 8. Coda cross-correlation and dispersion spectrum of a M 2.2 earthquake displayed
in Figure 1b. (a) Example waveform of the earthquake recorded by node R2010. Blue and red
represent the identified earthquake ballistic wave and coda wave, respectively. (d) The statistical
histogram of diffuseness proxies of the ballistic and coda waves recorded by the 142 stations in
the basin. The diffuseness proxy here refers to the mean value of PA, PB and PC . The cross-
correlation functions of ballistic waves, coda waves, and continuous records for one day are shown
in (b), (e) and (h). For ease of display, we bin and average the cross-correlation functions for
a distance increment of 10 m. The corresponding dispersion spectra are presented in (c), (f),
and (i). (g) Amplitude spectra of the coda cross-correlation functions after geometric correction
(black lines). The Thick white line shows the mean spectrum and the red line denotes the opti-
mal model prediction with a Q-value of 5.91.
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persion but also the attenuation of the subsurface structure from the EGFs in Figure 8e.
Considering the geometrical spreading and attenuation effects, the recorded amplitude
A of Rayleigh waves at distance r and frequency f is given by (Meng et al., 2021; In-
bal et al., 2018)

A(r, f) =
A0√
r
e−

πfr
cQ , (15)

taking the natural logarithm of equation (15) gives

lnA∗(f) = lnA0 −
πr

cQ
f, (16)

where A∗(f) = A(r, f)
√
r, A0 is the initial amplitude spectrum, c is the phase veloc-564

ity, Q is the quality factor of Rayleigh wave. Under the assumption of frequency-independent565

Q-value, equation (16) illustrates the linear relationship between the logarithm of the566

corrected amplitude and the frequency. With the known r and derived c, the average567

Q-value of the study area and frequency band of interests can be obtained by perform568

a linear fitting analysis on the corrected cross-correlation amplitude spectra. To obtain569

reliable results, we select cross-correlation functions with a distance greater than 200 m570

to minimize the interference caused by body waves. Additionally, we only resolve Q-values571

higher than 10 Hz to avoid the amplitude distortion by the nodes with a lower sensitiv-572

ity below 10 Hz. As shown in Figure 8g, the average Q-value of the basin is 5.91±0.73,573

which is consistent with the results measured using vehicle signals in this area (Meng574

et al., 2021), indicating strong attenuation of the shallow subsurface sediments.575

To further validate the dispersion and attenuation parameters extracted using the
detected diffuse coda wave as described above, we compare our results with those ob-
tained using a classical method (Prieto et al., 2009; Magrini & Boschi, 2021). This method
derives subsurface dispersion and attenuation by minimizing the residual of the zero-order
Bessel function with attenuation and the real part of coherency of the observed data, i.e.,

ε(f) = ||Re[γ(f, r)]− J0(
2πf

c
r)e−αr||2, (17)

where γ(f, r) is the average coherency for station separation r, J0 is the zero-order Bessel576

function for frequency f at distance r, α = πf
cQ is the frequency-dependent attenuation577

coefficient. To ensure consistency in comparison, we focus on the frequency band of 7−578

15 Hz. Figures 9a and b persent the real part of the observed and predicted coherency,579

respectively, obtained through a grid search. We find that the observed and predicted580

coherency spectrogram match well. Specifically at 10 Hz (Figure 9c), the predicted and581

observed coherency demonstrate high consistency in both phase and amplitude for dis-582

tance greater than 30 m. The corresponding phase velocity is 384.6 m/s and the atten-583

uation coefficient is 0.0143/m. The extracted dispersion curve in the frequency range of584

7−15 Hz exhibits good consistency with that determined using the Frequency-Bessel585

method (Figure S12a). Additionally, the mean apparent Q-value estimated by the clas-586

sical method, 5.33 (Figure S12b), falls within the uncertainty range of our results, 5.91±587

0.73, validating the results of our method.588

The developed method can be useful for monitoring temporal changes of velocity589

and Q-values at high resolution during processes of fault zone damage and healing us-590

ing diffuse coda waves from aftershocks in large earthquake sequences. Other potential591

applications include monitoring sinkhole and landslide formation using diffuse waves gen-592

erated by rail and road traffic with distributed acoustic sensing or dense nodal arrays.593

5 Conclusions594

We developed a frequency domain methodology for quantitative Evaluation of Dif-595

fuse Wavefield (EDWav). The method is applicable to single station’s waveform and can596
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Figure 9. (a) The observed real part of coherency spectrogram of the sub-array (the red cir-
cles in Figure 1b) for one day data. The area enclosed by the black dashed box is the coherency
for comparison. (b) The best fit prediction of the classical method through a grid search. (c)
The observed and predicted coherency at 10 Hz. The coherencies at close distance (less than 30
m) covered by the the gray strip are not involved in residual calculation due to their irregular
amplitudes.
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effectively identify the diffuse segments in the continuous seismic waveform, thereby re-597

ducing data redundancy and improving computational efficiency while retaining reliable598

phase and amplitude. Our method allows to identify short-length (minute scale) diffuse599

waves and subsequently extract reliable dispersion curves and Q-values. Notably, the dis-600

persion curve obtained through our approach using 60-second-long waveforms are con-601

sist with results derived from 1-day-long continuous recordings using conventional meth-602

ods, which typically involve time and frequency domain normalization in data process-603

ing. As an example application, we use EDWav to separate ballistic and diffuse coda waves604

from a local M 2.2 earthquake recorded by a spatially dense array. Without perform-605

ing amplitude-distorting normalization, the cross-correlation functions of the 60-second-606

long coda can robustly reconstruct the Rayleigh wave signals similar to continuous data607

used in conventional method. This demonstrates that short-duration diffuse waves with608

strong energy contain essential information for ANI, despite covering only a small por-609

tion of the continuous data. The methodology facilitates monitoring temporal changes610

of subsurface properties at high resolution based on the ambient seismic noise.611

6 Open Research612

The seismic data used in this paper can be obtained from the Data Management613

Center of the Incorporated Research Institutions for Seismology and Broadband Seis-614

mic Data Collection Center (Vernon et al., 2014) via https://doi.org/10.7914/SN/615

ZG_2014, and the IRIS Data Management Center via https://ds.iris.edu/mda/9A/616

156/. The Matlab and Python packages of EDWav are available through https://github617

.com/yuanxzo/EDWav.618
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Text S1. 

According to Aki & Richards (2002), the vector wavefield 𝝍(𝒓, 𝑡) can be expressed 

as the superposition of normal modes, 

𝝍(𝒓, 𝑡) = Re ∑ 𝑎𝑛𝒖(𝑛)(𝒓)𝑒𝑖𝜔𝑛𝑡

𝑛

, (S1) 

where 𝑎𝑛 denotes complex modal amplitudes, 𝒖(𝑛)(𝒓) refers to vector normal mode 

eigenfunctions, 𝒓 signifies the location vector, 𝜔𝑛 is angular frequency corresponding to 

the 𝑛-th mode, 𝑡 denotes time, 𝑖2 = −1, and Re[⋅] signifies the real part of a complex 

function. When considering a single component, we project 𝝍(𝒓, 𝑡) in the direction of the 

unit vector 𝒆̂,  
𝜓(𝒓, 𝑡) = 𝝍(𝒓, 𝑡) ∙ 𝒆̂

= Re ∑ 𝑎𝑛[𝒖(𝑛)(𝒓) ∙ 𝒆̂]𝑒𝑖𝜔𝑛𝑡

𝑛

= Re ∑ 𝑎𝑛𝑢(𝑛)(𝒓)𝑒𝑖𝜔𝑛𝑡

𝑛

, (S2)

 

where 𝒆̂ could be either vertical or horizontal. Notably, as the modal amplitudes 𝑎𝑛 are 

consistent across all three components, the derived conditions 𝑨, 𝑩, and 𝑪, which are 

independent to the eigenfunctions, are universally applicable to all components. By 

adopting equation (5) of the revised manuscript, E[𝑎𝑝] = 0, E[𝑎𝑝𝑎𝑞] = 0, and E[𝑎𝑝𝑎𝑞
∗ ] =

𝐹(𝜔𝑝)𝛿𝑝𝑞 for a fully diffuse wavefield, the proof details are as follows.  

𝑨(𝒓, 𝜔𝑝) =
|E[𝜙(𝒓, 𝜔𝑝)]|

2

E [|𝜙(𝒓, 𝜔𝑝)|
2

]
=

|E[𝑎𝑝]|
2

|𝑢(𝑝)(𝒓)𝑇|
2

E [|𝑎𝑝|
2

] |𝑢(𝑝)(𝒓)𝑇|
2

=
|E[𝑎𝑝]|

2

E [|𝑎𝑝|
2

]
= 0; (S3)

 

𝑩(𝒓, 𝜔𝑝, 𝜔𝑞) =
|E[𝜙(𝒓, 𝜔𝑝)𝜙(𝒓, 𝜔𝑞)]|

2

E [|𝜙(𝒓, 𝜔𝑝)|
2

] E [|𝜙(𝒓, 𝜔𝑞)|
2

]

=
|E[𝑎𝑝𝑎𝑞]𝑢(𝑝)(𝒓)𝑢(𝑞)(𝒓)𝑇2|

2

E [|𝑎𝑝|
2

] E [|𝑎𝑞|
2

] |𝑢(𝑝)(𝒓)𝑇|
2

|𝑢(𝑞)(𝒓)𝑇|
2

=
|E[𝑎𝑝𝑎𝑞]|

2

E [|𝑎𝑝|
2

] E [|𝑎𝑞|
2

]
= 0; (S4)

 

𝑪(𝒓, 𝜔𝑝, 𝜔𝑞) =
|E[𝜙(𝒓, 𝜔𝑝)𝜙∗(𝒓, 𝜔𝑞)]|

2

E [|𝜙(𝒓, 𝜔𝑝)|
2

] E [|𝜙∗(𝒓, 𝜔𝑞)|
2

]

=
|E[𝑎𝑝𝑎𝑞

∗ ]𝑢(𝑝)(𝒓)𝑢(𝑞)∗(𝒓)𝑇2|
2

E [|𝑎𝑝|
2

] E [|𝑎𝑞
∗ |

2
] |𝑢(𝑝)(𝒓)𝑇|

2
|𝑢(𝑞)∗(𝒓)𝑇|

2

=
|E[𝑎𝑝𝑎𝑞

∗ ]|
2

E [|𝑎𝑝|
2

] E [|𝑎𝑞
∗ |

2
]

= 𝛿𝑝𝑞 . (S5)
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Text S2. 

To prove inequalities (equations 11a-11c) in subsection 2.2, we can start by defining 

two random variables, 𝑋 and 𝑌, that are not completely zero. According to the non-

negativity of the |E[𝑋𝑌]|2, E[|𝑋|2] and E[|𝑌|2], we have 

|E[𝑋𝑌]|2

E[|𝑋|2]E[|𝑌|2]
≥ 0. (S6) 

where E[∙] is the expectation operator and |∙| is the absolute value operator. According 

to Jensen's inequality, that is, 𝑓(E[𝑋])  ≤  E[𝑓(𝑋)], where 𝑓(∙) is a convex function. When 

𝑓(∙) is |∙|, we have, 

|E[𝑋𝑌]|2 ≤ E[|𝑋𝑌|]2. (S7) 

Since |𝑋𝑌| ≤ |𝑋||𝑌|,  
|E[𝑋𝑌]|2 ≤ E[|𝑋𝑌|]2 ≤ E[|𝑋||𝑌|]2. (S8) 

Combining inequality (S1) and (S3), there is 

0 ≤
|E[𝑋𝑌]|2

E[|𝑋|2]E[|𝑌|2]
≤

E[|𝑋||𝑌|]2

E[|𝑋|2]E[|𝑌|2]
. (S9) 

Defining a new random variable 𝑍 = |𝑋|  −  𝑠|𝑌|, where 𝑠 is a scalar. We can choose 

𝑠 to be equal to 
E[|𝑋||𝑌|]

E[|𝑌|2]
, which ensures that the expected value of 𝑍2 is non-negative: 

E[𝑍2] =  E[(|𝑋|  −  𝑠|𝑌|)2] =  E[|𝑋|2] −  2𝑠E[|𝑋||𝑌|] +  𝑠2E[|𝑌|2]

=  E[|𝑋|2] −  2
E[|𝑋||𝑌|]2

E[|𝑌|2]
+  

E[|𝑋||𝑌|]2

E[|𝑌|2]

= E[|𝑋|2] −  
E[|𝑋||𝑌|]2

E[|𝑌|2]
≥ 0. (S10)

 

Actually, that is the Cauchy-Schwarz Inequality. Multiplying both sides of this inequality 

by 1/E[|𝑋|2] and rearranging terms, we obtain: 

E[|𝑋||𝑌|]2

E[|𝑋|2]E[|𝑌|2]
≤ 1. (S11) 

Combining inequality (S4) and (S6), there is 

0 ≤
|E[𝑋𝑌]|2

E[|𝑋|2]E[|𝑌|2]
≤ 1. (S12) 

Therefore, let 𝑋 be equal to 𝜙(𝐫, 𝜔𝑝) of the equation (6), 𝑌 = 1, and we can obtain 

0 ≤ 𝐴(𝐫, 𝜔𝑝) =
|E[𝜙(𝐫, 𝜔𝑝)]|2

E [|𝜙(𝐫, 𝜔𝑝)|
2

]
≤ 1; (S13) 

Next, let 𝑋 and 𝑌 be equal to 𝜙(𝐫, 𝜔𝑝) and 𝜙(𝐫, 𝜔𝑞) of the equation (8), respectively, and 

we can obtain 

0 ≤ 𝐵(𝐫, 𝜔𝑝, 𝜔𝑞) =
|E[𝜙(𝐫, 𝜔𝑝)𝜙(𝐫, 𝜔𝑞)]|2

E [|𝜙(𝐫, 𝜔𝑝)|
2

] E [|𝜙(𝐫, 𝜔𝑞)|
2

]
≤ 1; (S14) 

Finally, let 𝑋 and 𝑌 be equal to 𝜙(𝐫, 𝜔𝑝) and 𝜙∗(𝐫, 𝜔𝑞) of the equation (10), respectively, 

and we can obtain 

0 ≤ 𝐶(𝐫, 𝜔𝑝, 𝜔𝑞) =
|E[𝜙(𝐫, 𝜔𝑝)𝜙∗(𝐫, 𝜔𝑞)]|2

E [|𝜙(𝐫, 𝜔𝑝)|
2

] E [|𝜙∗(𝐫, 𝜔𝑞)|
2

]
≤ 1. (S15) 
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Text S3. 

The scale-dependent Root Mean Square (sRMS) function applied to vector 

cases is  

𝑃 = √
∑ (𝑤𝑗𝑥𝑗)

2𝑁
𝑗=1

𝑁
, (S16) 

where 𝑥𝑗 = |𝐴𝑗
obs − 𝐴𝑗

tar| is 𝑗th element of the absolute value of the residual of the 

observed and target of the condition 𝐀 with size of 1 × 𝑁, 𝑤𝑗 is the weight of 𝑥𝑗 , 

and defined as 

𝑤𝑗 = (
1

2𝑠 + 1
∑ 𝑥𝑘

𝑗+𝑠

𝑘=𝑗−𝑠

) /mean[𝐱], (S17) 

where 𝑠 is the scale of the window (2𝑠 + 1) of the weight, 𝐱 is the set of all 𝑥𝑗 (1 ≤

𝑗 ≤ 𝑁). 

When sRMS function is applied to square matrix cases, such as condition 𝐁 

and 𝐂, simple extensions to equations S11 and S12 are required. That is,  

𝑃 = √
∑ ∑ (𝑤𝑖𝑗𝑥𝑖𝑗)

2𝑁
𝑖=1

𝑁
𝑗=1

𝑁2
, (S18) 

where 𝑥𝑖𝑗 = |𝐷𝑖𝑗
obs − 𝐷𝑖𝑗

tar| is 𝑖th row and 𝑗th column element of the absolute value 

of the residual of the observed and target of the square matrix 𝐃 with 𝑁 rows and 

𝑁 columns, 𝑤𝑖𝑗 is the weight of 𝑥𝑖𝑗 , and defined as 

𝑤𝑖𝑗 = (
1

(2𝑠 + 1)2
∑ ∑ 𝑥𝑘𝑙

𝑖+𝑠

𝑘=𝑖−𝑠

𝑗+𝑠

𝑙=𝑗−𝑠

) /mean[𝐱], (S19) 

where 𝐱 is the set of all 𝑥𝑖𝑗 (1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁). When calculating the proxy of 

condition 𝐁, let 𝐃 = 𝐁, while for the case of condition 𝐂, let 𝐃 = 𝐂.  
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Figure S1. The determination of appropriate scale factor. From left to right, each column 

corresponds to the case of conditions A, B and C, respectively. (a) First row: plot of 

normalized sRMS with scale factor variation obtained by evaluating 2880 segment 60-

second-long waveform data recorded by geophone R3010 (See Figure 1) from Julian day 

131, 2014 to Julian day 132, 2014. (b) Second row: the first derivative of the 2880 curves 

in (a). (c) Third row: a result chosen at random from (b) and normalized (blue curve). The 

intersection (red star) of the blue curve and the auxiliary curve (black dashed line with a 

slope of -1 and passing through the origin) is considered by us as the corner point of the 

blue curve, and the appropriate scale factor (𝒔𝐟
∗) is determined by the abscissa of this 

corner point. (d) Fourth row: the statistical histogram of the abscissa of this corner points 

of the 2880 segment waveform data calculated by the approach in (c). The result shows 

that the 𝒔𝐟
∗ of the 2880 segment different sample data for conditions A, B and C are most 

distributed in the intervals [0.04, 0.05], [0.04, 0.05], and [0.03, 0.04], respectively. These 

three intervals are very close to each other, all within the interval [0.03, 0.05], which 

means that choosing a 𝒔𝐟
∗ from [0.03, 0.05] can be applied to the proxy calculation of 
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conditions A, B and C at the same time. The consistency interval given by the 2880 

samples also shows that it can be applied to the calculation of proxies in a broader range 

of data. Hence, in our paper, we adopt 𝒔𝐟
∗ = 𝟎. 𝟎𝟓. Of course, the method for finding the 

corner point introduced above can also be performed independently for the data to be 

studied to obtain the specific 𝒔𝐟
∗. 
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Figure S2. (a) Amplitude spectrum after adding 50 Hz and 120 Hz single frequency 

interferences to the data in Fig. 2b. (b) Synthetic waveform using the amplitude spectrum 

in (a). (c) The spectrogram of the synthetic waveform. (d-f) The conditions A, B and C of 

the synthetic waveform in (b).   

 

 

Figure S3. Similar to Figure S2, but the evaluation of waveforms synthesized with 

amplitudes containing double the interferences intensity in Figure S2.  
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Figure S4. (a) The location satellite map of node 156 of 9A network. (b) The three-

component waveforms recorded by node 156 on December 14, 2017, 00:02:20-00:05:00 

UTC time.  The 60-second-long ambient noise segments enclosed by the blue box 

corresponds to Figure 3 of the paper manuscript. 
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Figure S5. The evaluation results for earthquake late coda segments (red box in Figure 

S4) of the three-component waveforms recorded by station 156. The first and second 

rows correspond to the results of the horizontal components GP1 and GP2, respectively, 

while the third row correspond to the vertical component GPZ. 
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Figure S6. The evaluation results for earthquake ballistic wave segments (black box in 

Figure S4) of the three-component waveforms recorded by station 156. The first and 

second rows correspond to the results of the horizontal components GP1 and GP2, 

respectively, while the third row correspond to the vertical component GPZ. 
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Figure S7. The evaluation results for a car event coda. Due to the fact that within the 60 

Hz range, condition A is close to a zero vector, condition B is close to a zero matrix, and 

condition C is close to an identity matrix, it can be considered that the car coda wave is 

sufficiently diffused in that frequency band. 
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Figure S8. Examination of anatomical results of continuous seismic waveforms proposed 

by Meng et al. (2019). (a) The raw continuous seismic waveforms recorded by geophone 

R3010 on Julian day 146, 2014 from 14:00 to 15:00 (local time). (e) Corresponding 

spectrogram of the waveform in (a). The upper panel of (b), (c) and (d) show the RN, MIX 

and NRN signals separated from waveform in (a), respectively. The degree of diffuseness 

of these signals are evaluated in a sliding window of length 30 s with an overlap of 29 s, 

and the results are presented in the lower panels of (b), (c) and (d), respectively. The red, 

orange and blue points are the evaluation proxies corresponding to the conditions A, B 

and C, respectively. The bottom right panels of (b), (c), and (d) show the mean of the 

evaluation proxies with standard deviations.   
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Figure S9. The variation of the diffuseness proxy (The diffuseness proxy here refers to 

the mean value of 𝑷𝑨, 𝑷𝑩 and 𝑷𝑪) of the two windows as they slide with the moment of 

investigation. The first sliding window is referred to as the “ballistic window”, and the last 

window is referred to as the “coda window”. The intersection point between the two 

windows is referred to as the moment of investigation. We can observe that during the 

period of 40 seconds to 80 seconds when both windows coexist, the diffuseness proxy of 

the “ballistic window” tends to stabilize, while the diffuseness proxy of the “coda 

window” continues to decrease. As it decreases, the difference between the two 

gradually increases. Until the 60 seconds moment, the diffuseness proxy of the “coda 

window” is below 0.05 for the first time, which can be considered as sufficient diffusive. 

Therefore, the last 60 seconds waveform at this moment is defined as the selected 

diffuse coda wave, while the 60 seconds waveform before this moment is defined as the 

non-diffuse ballistic wave we use for comparison. 
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Figure S10. (a) The energy distribution map of the coda wave of the local M 2.2 

Earthquake recorded by the SGB site stations in the 4-21 Hz frequency band range. This 

energy here refers to the average count of the selected 60-second-long coda wave. (b) 

The distribution map of the diffuseness of these coda waves selected by our method. 
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Figure S11. Ambient noise cross-correlation and dispersion spectrum. The 60-second-

long ambient noises are randomly cut from the Julian day 131, 2014. (a) The 4-21Hz 

bandpass filtered waveforms recorded by some stations of the analyzed array. (b) The 

statistical histogram of diffuseness proxies of the ambient noises and coda waves 

recorded by the stations in the basin. Cross-correlation functions (c) and dispersion 

spectrum (d) of 60-second-long ambient noises. The black line in the spectrum graph is 

fitted dispersion curve of the continuous recording waveforms for one day. 
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Figure S12. (a) The phase velocity of the classic method introduced by Prieto et al., 

(2009) and our method. (b) The attenuation coefficient of the classic method. The mean 

apparent Q-value estimated by the classical method is 5.33. 
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