Elise W. Knutsen

and 10 more

With the utilization of a novel synergistic approach, we constrain the vertical distribution of water vapor on Mars with measurements from nadir-pointing instruments. Water vapor column abundances were retrieved simultaneously with PFS (sensing the thermal infrared range) and SPICAM (sensing the near-infrared range) on Mars Express, yielding distinct yet complementary sensitivity to different parts of the atmospheric column. We show that by exploiting a spectral synergy retrieval approach, we obtain more accurate water vapor column abundances compared to when only one instrument is used, providing a new and highly robust reference climatology from Mars Express. We present a composite global dataset covering all seasons and latitudes, assembled from co-located observations sampled from seven Martian years. The synergy also offers a way to study the vertical partitioning of water, which has remained out of the scope of nadir observations made by single instruments covering a single spectral interval. Special attention is given to the north polar region, with extra focus on the sublimation of the seasonal polar cap during the late spring and summer seasons. Column abundances from the Mars Climate Database were found to be significantly higher than synergistically retrieved values, especially in the summer Northern Hemisphere. Deviances between synergy and model in both magnitude and meridional variation of the vertical confinement were also discovered, suggesting that certain aspects of the transport and dynamics of water vapor are not fully captured by current models.

Anna A. Fedorova

and 11 more

On Mars, saturation is the major factor constraining the vertical distribution of water vapor. Recent measurements of water and temperature profiles showed that water can be strongly supersaturated at and above the level where clouds form during aphelion and perihelion seasons. Since 2018, the near-infrared spectrometer (NIR) of the Atmospheric Chemistry Suite onboard the Trace Gas Orbiter has measured H2O and temperature profiles using solar occultation in the infrared from below 10 km to 100 km of altitude. Here we provide the first long-term monitoring of the water saturation state. The survey spans 2 Martian years from Ls=163° of MY34 to the Ls=180° of MY36. We found that water is often supersaturated above aerosol layers. In the aphelion season, water mixing ratio above 40 km in the mid-to-high latitudes was below 3 ppmv and yet is found to be supersaturated. Around perihelion, water is also supersaturated above 60 km with a mixing ratio of 30-50 ppmv. Stronger saturation is observed during the dusty season in MY35 compared to what was observed in MY34 during the Global Dust Storm and around perihelion. Saturation varied between evening and morning terminators in response to temperature modulation imparted by thermal tides. Although water vapor is more abundant in the evening, colder morning temperatures induce a daily peak of saturation. This dataset establishes a new paradigm for water vapor on Mars, revealing that supersaturation is nearly ubiquitous, particularly during the dust season, thereby promoting water escape on an annual average.

Kevin Olsen

and 15 more

The mid-infrared channel of the Atmospheric Chemistry Suite (ACS MIR) onboard the ExoMars Trace Gas Orbiter is capable of observing the infrared absorption of ozone (O3) in the atmosphere of Mars. During solar occulations, the 003-000 band (3000-3060 cm-1) is observed with spectral sampling of ˜0.045 cm-1. Around the equinoxes in both hemispheres and over the southern winters, we regularly observe around 200-500 ppbv of O3 below 30 km. The warm southern summers, near perihelion, produce enough atmospheric moisture that O3 is not detectable at all, and observations are rare even at high northern latitudes. During the northern summers, water vapour is restricted to below 10 km, and an O3 layer (100-300 ppbv) is visible between 20-30 km. At this same time, the aphelion cloud belt forms, condensing water vapour and allowing O3 to build up between 30-40 km. A comparison to vertical profiles of water vapour and temperature in each season reveals that water vapour abundance is controlled by atmospheric temperature, and H2O and O3 are anti-correlated as expected. When the atmosphere cools, over time or over altitude, water vapour condenses (observed as a reduction in its mixing ratio) and the production of odd hydrogen species is reduced, which allows O3 to build up. Conversely, warmer temperatures lead to water vapour enhancements and ozone loss. The LMD Mars Global Climate Model is able to reproduce vertical structure and seasonal changes of temperature, H2O, and O3 that we observe. However, the observed O3 abundance is larger by a factor of 2-6, indicating important differences in the rate of odd-hydrogen photochemistry.

Franck Montmessin

and 9 more

Anna A. Fedorova

and 14 more

Carbon monoxide is a non-condensable species of the Martian atmosphere produced by the photolysis of CO2. Its mixing ratio responds to the condensation and sublimation of CO2; from the polar caps, resulting in seasonal variations of the CO abundance. Since 2018, all three spectrometers of the Atmospheric Chemistry Suite (ACS) onboard the Trace Gas Orbiter have measured CO in infrared bands by solar occultation. Here we provide the first long-term monitoring of the CO vertical distribution at the altitude range from 0 to 80 km for 1.5 Martian years from Ls=163; of MY34 to the end of MY35. We obtained a mean CO volume mixing ratio of ~960 ppm at latitudes from 45S to 45N, mostly consistent with previous observations. We found a strong enrichment of CO near the surface at Ls=100-200; in high southern latitudes with a layer of 3000-4000 ppmv, corresponding to local depletion of CO2. At equinoxes we found an increase of mixing ratio above 50 km to 3000–4000 ppmv explained by the downwelling flux of the Hadley circulation on Mars, which drags the CO enriched air. The general circulation chemical model tends to overestimate the intensity of this process, bringing too much CO. The observed minimum of CO in the high and mid-latitudes southern summer atmosphere amounts to 700-750 ppmv, agreeing with nadir measurements. During the global dust storm of MY34, when the H2O abundance peaks, we see less CO than during the calm MY35, suggesting an impact of HOx chemistry on the CO abundance.