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Abstract 20 

Drought is associated with adverse environmental and societal impacts across various regions. 21 
Therefore, drought monitoring based on a single variable may lead to unreliable information, 22 
especially about the onset and persistence of drought. Previous studies show vapor pressure deficit 23 
(VPD) data can detect drought onset earlier than other drought indicators such as precipitation. On 24 
the other hand, Soil Moisture is a robust indicator for assessing drought persistence. This study 25 
introduces a nonparametric multivariate drought index Vapor Pressure Deficit Soil moisture 26 
standardized Drought Index (VPDSDI) which is developed by combining vapor pressure deficit 27 
(VPD) with soil moisture information. The performance of the multivariate index in terms of 28 
drought onset detection is compared with the Standardized Precipitation Index (SPI) for six major 29 
drought events across the United States including three flash drought events and three conventional 30 
drought events. Additionally, the performance of the proposed index in detecting drought 31 
persistence is compared with the Standardized Soil moisture Index (SSI), which is an agricultural 32 
drought index. Results indicate the multivariate index detects drought onset always earlier than 33 
SPI for conventional events, but VPDSDI detects drought onset earlier than or about the same time 34 
as SPI for flash droughts. In terms of persistence, VPDSDI detects persistence almost identical to 35 
SSI for both flash and conventional drought events. The results also show that combining VPD 36 
with soil moisture reduces the high variability of VPD and produces a smoother index which 37 
improves the onset and persistence detection of drought events leveraging VPD and soil moisture 38 
information. 39 

Plain Language Summary 40 

Drought has significant negative effects on the environment and society in different areas. Relying 41 
on a single variable for drought monitoring can provide unreliable information, particularly when 42 
it comes to determining when droughts begin and end. Previous research has found that vapor 43 
pressure deficit (VPD) data can identify the beginning of drought conditions earlier than measures 44 
like precipitation. In contrast, Soil Moisture has proven to be a reliable indicator for evaluating 45 
how long drought conditions last over time. In this study, we introduced a multivariate drought 46 
index that combines vapor pressure deficit (VPD) with soil moisture data, named Vapor Pressure 47 
Deficit Soil moisture standardized Drought Index (VPDSDI). We compared the performance of 48 
this index in detecting drought onset and persistence with SPI and SSI, respectively. The results 49 
demonstrate that VPDSDI detects drought onset around the same time or earlier than SPI. 50 
Moreover, VPDSDI shows similar detection capabilities to SSI for drought persistence. By 51 
combining VPD and soil moisture, VPDSDI reduces variability and provides more reliable 52 
information for assessing and understanding drought events. 53 

1 Introduction 54 

Drought is a complex natural hazard that happens at various spatial and temporal scales. 55 
Large scale droughts affect several countries simultaneously and result in extensive and severe 56 
impacts on food security and may lead to wide-spread famine and fatality within societies (Haile, 57 
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2005). The annual economic losses of drought in the United States are estimated by the Federal 58 
Emergency Management Agency (FEMA) to be six to eight billion dollars per year (Witt, 1997). 59 
Drought early warning and drought onset detection schemes can help decision-makers and water 60 
resources managers mitigate the negative impacts of drought on human life and the environment. 61 
These planning tools are based on regional drought analysis to quantify the characteristics of 62 
drought such as drought onset, duration, intensity, severity, and spatial extent for better 63 
improvement of drought monitoring and drought early warning systems (Farahmand et al., 2015; 64 
Behrangi et al., 2016; Behrangi et al., 2015).  65 

The mechanism of drought occurrence is complicated, due to the interaction of atmospheric 66 
and hydrologic processes. One similarity among most of the drought affected regions is an increase 67 
in dry conditions. Drought accompanied by extremely high air temperature and low relative 68 
humidity can intensify crop loss and increase wildfire risk (Held et al., 2005). In addition, an 69 
increase in air temperature leads to greater evaporation of moisture from soil and vegetation, which 70 
eventually increases drought intensity and duration (Held et al., 2005). Besides, changes in ocean 71 
temperature and the effects of large-scale annual climatic factors and climate warming on drought 72 
formation have become recognized as important factors (Bavar and Kavvas, 1991). Since several 73 
factors affect the occurrence of drought, it is difficult to create a comprehensive definition of 74 
drought. Conventional drought is generally described as slowly developing, and is categorized into 75 
four types: meteorological, agricultural, hydrological, and socioeconomic (wilhite and Glantz, 76 
1985). Meteorological drought is usually characterized as an extended deficit in precipitation; 77 
agricultural drought is defined as a deficiency in soil moisture; hydrological drought often occurs 78 
when precipitation deficiency over an extended time period affects surface and subsurface water 79 
supply; and socioeconomic drought associates the supply and demand of some economic goods 80 
with specific elements of meteorological, hydrological, and agricultural drought. A recent study 81 
used satellite information to assess drought propagation in the hydrological cycle from 82 
meteorological drought to agriculture drought, and finally to hydrological drought (Farahmand et 83 
al., 2021).   84 

A new type of drought with rapid onset and intensification, termed “flash drought” has also 85 
been recently identified. Flash drought generally begins as a meteorological drought, which 86 
eventually leads to an agricultural drought if the conditions continue to exacerbate (Christian et 87 
al., 2019). This type of drought is mainly characterized by extremely high air temperature and soil 88 
moisture deficit (Mo et al., 2016). Notwithstanding the main cause of drought is a lack of 89 
precipitation, but other atmospheric and hydrologic anomalies can also accelerate flash drought 90 
development and its severity (Otkin et al., 2018). For instance, low precipitation condition coupled 91 
with high evaporative demand as a consequence of high air temperature, low relative humidity, 92 
and sunny skies leads to rapidly emerging of agricultural drought condition, mainly known with 93 
increasing soil moisture deficits (Otkin et al., 2018). Therefore, several factors can cause a flash 94 
drought.  95 
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Instead of direct analysis of atmospheric or hydrologic variables, drought indices are often 96 
utilized for assessing the drought impacts and analyzing drought characteristics such as onset and 97 
termination. Many drought indices, based on different climatic variables (e.g. precipitation, soil 98 
moisture, and runoff) have been developed for detecting drought onset, persistence, and 99 
termination (Mishra and singh, 2010). These indices have significant differences in terms of 100 
strengths and weaknesses in detecting drought onset and termination (Keyantash and Dracup, 101 
2002). One of the most commonly used drought indices for characterizing meteorological drought 102 
is the standardized precipitation index (SPI) (Mckee et al., 1993). Several studies found that SPI 103 
can detect drought onset earlier than other indices (Shukla et al., 2011; Hayes et al.,1999). On the 104 
other hand, (Farahmand et al., 2015) introduced a new drought index based on near surface relative 105 
humidity, named standardized relative humidity index (SRHI) that can detect drought onset earlier 106 
than SPI. Another novel variable for assessing drought onset is Vapor Pressure Deficit (VPD) 107 
which is an atmospheric variable widely used to investigate the impact of surface air temperature 108 
on moisture demand of land surface. Recent studies have shown that Standardized Vapor Pressure 109 
Deficit Index (SVPDI) can potentially show drought onset earlier than SPI (Behrangi et al., 2015; 110 
Behrangi et al., 2016; Farahmand et al., 2023). VPD is calculated by combining air temperature 111 
and relative humidity (Gamelin et al., 2022) and measures the difference between the saturated 112 
water vapor pressure of the air and the actual amount of water vapor pressure existing in the air. 113 
An increase in VPD results in higher water demand in the atmosphere. During wet conditions when 114 
precipitation and air moisture are high, VPD is low. On the contrary, during dry conditions when 115 
VPD is high, solar radiation heats the surface air temperature as well as soil temperature rather 116 
than evaporating water through evapotranspiration, leading to more severe drought (Mankin et al., 117 
2021). Therefore, enhanced VPD is an atmospheric variable that can be a driver of drought and 118 
also a consequence of drought (Mankin et al., 2021).  119 

Monitoring drought based on one variable or indicator may not be sufficient because 120 
drought has various phases and is hence dependent on multiple hydrologic variables (Hao and 121 
Aghakouchak, 2014). For example, meteorological drought, which is generally defined as a 122 
precipitation deficit, may develop faster than other types of drought but agricultural drought 123 
(deficit in soil moisture) shows the persistence of drought more accurately than meteorological 124 
drought (Entekhabi et al., 1996). Recent studies have focused on the development of multivariate 125 
drought indices for sufficient and reliable quantification of joint behaviors of hydrologic and 126 
climatic variables (Rajsekhar et al., 2014; Kao and Govindaraju, 2010). Multivariate drought 127 
indices have shown superior results relative to univariate indices in terms of capturing the early 128 
onset and persistence of drought over time (Rad et al., 2017). Therefore, integration of drought 129 
information based on indices from various atmospheric and hydrologic sources is necessary for 130 
reliable drought characterization in terms of drought onset, persistence, and termination and 131 
generally investigating drought structure (Huang et al., 2015).  132 

Several multivariate drought indices based on different combinations of drought-related 133 
variables have been developed. For example, the multivariate standardized drought index (MSDI) 134 
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(Hao and Aghakouchak, 2013; Hao and Aghakouchak, 2014) probabilistically combines 135 
precipitation and soil moisture to investigate drought characteristics including drought onset, 136 
persistence, and spatial extent. MSDI has been shown to detect drought onset like SPI and drought 137 
persistence similar to Standardized Soil Moisture Index (SSI). The MSDI is an agrometeorological 138 
drought index and uses parametric or nonparametric joint probability distribution of precipitation 139 
and soil moisture variables. A parametric MSDI requires accurate parameter estimation and 140 
goodness-of-fit tests, but a nonparametric MSDI avoids making assumptions regarding the 141 
distribution family and significantly reduces the computational burden. In another study, (Zhang 142 
et al., 2018) introduced a nonparametric integrated agrometeorological index (MMSDI) similar to 143 
MSDI (Hao and Aghakouchak, 2013), but with the addition of evapotranspiration. The inclusion 144 
of evapotranspiration develops more realistic drought indices in terms of drought intensity and 145 
drought size compared to MSDI.  146 

In general, we hypothesize that multivariate indices (e.g. MSDI and MMSDI) that have 147 
precipitation as their meteorological drought factor may not detect drought onset as early as other 148 
atmospheric/hydrologic variables such as relative humidity, vapor pressure deficit, and air 149 
temperature. Since previous studies concluded that SVPDI (Standardized Vapor Pressure Deficit 150 
Index) as a meteorological index can detect drought onset earlier than precipitation (Behrangi et 151 
al., 2015; Behrangi et al., 2016; Farahmand et al., 2021; Farahmand et al., 2023) and SSI as an 152 
agricultural index can show the persistence of drought more reliable than meteorological indices 153 
(Cook et al., 2007; Hao and Aghakouchak, 2014), we introduce a novel indicator which combines 154 
information from VPD and soil moisture in this study. Furthermore, soil moisture, air temperature, 155 
and relative humidity are all important factors in detecting flash drought. There is also a strong 156 
connection between soil moisture and VPD which makes these two variables important for drought 157 
monitoring. For instance, low soil moisture can further cause an increase in atmospheric demand 158 
which eventually increases VPD (Gentine et al., 2016). In this study, a nonparametric multivariate 159 
drought index Vapor Pressure Deficit Soil moisture standardized Drought Index (VPDSDI) is 160 
introduced to investigate both conventional and flash drought detection in the continental United 161 
States (CONUS). The VPDSDI combines vapor pressure deficit and soil moisture. This index is 162 
derived using the National Aeronautics and Space Administration’s (NASA) Modern-Era 163 
Retrospective Analysis for Research and Applications (MERRA 2). The performance of this index 164 
in terms of drought onset and persistence detection is investigated for three major conventional 165 
drought events and also for three flash drought events of CONUS. The results are validated against 166 
SPI for drought onset and SSI in terms of drought persistence.   167 

2 Study area 168 

In this study, we selected six case studies in the CONUS, as shown in Fig. 1. Selected case studies 169 
are divided into two parts of conventional drought events, and flash drought events. The spatial 170 
domains of these events are presented in Fig. 1a, and Fig. 1b, respectively. These events are among 171 
the major historical droughts in the United States. Fig. 1a shows Conventional droughts of (i) The 172 
2006 Southeastern Drought: Southeastern U.S. experienced severe drought conditions that affected 173 
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crops mainly during the 2006 spring-summer period resulting in multi-billion dollar losses 174 
(Manuel, 2008; FEMA, 2008); (ii) The 2011 Texas Drought was unique in terms of intensity. 175 
Throughout this drought which lasted almost more than a year with below-normal rainfall, major 176 
parts of Texas faced a dry fall and winter which eventually led to $7.62 billion in agricultural 177 
losses (Nielsen-Gammon, 2012); (iii) The 2020 western US Drought was accompanied by high 178 
temperature and low precipitation level. (Williams et al., 2022) found that this drought was the 179 
most extreme drought event in the last 1,200 years. This drought especially affected the American 180 
Southwest region. Fig. 1b shows Flash droughts of (i) 2019 Southeast flash drought: This drought 181 
developed rapidly. During this event, the affected region experienced abnormally dry to 182 
exceptional drought conditions (D0-D3, according to U.S. drought monitor) rising from 25% of 183 
the area in early September to 80% by the end of the month (Schubert et al., 2020); (ii) 2017 184 
Northern Plain drought: According to United States Drought Monitor (USDM), almost 83% of the 185 
Northern plain area experienced abnormally dry conditions during 2017 Northern plain flash 186 
drought. This led to severe impacts on agricultural products by decreasing 25% cropland 187 
evapotranspiration and 6% reduction in crop products (He et al., 2019); (iii) The 2012 High Plains 188 
drought: This drought event was one of the major agricultural disasters in CONUS since 1988. 189 
The majority of the Plains and Midwest had below-normal top soil moisture during the 2012 190 
growing season (Rippey, 2015). Low precipitation in addition to extremely high air temperature, 191 
low relative humidity, and high evapotranspiration led this event to develop quickly and cause 192 
multi-billion dollar economic losses (Farahmand et al., 2015). 193 

 194 

 195 

 196 

Fig. 1: The location of six major historical drought case studies in the CONUS; (a) conventional drought events, 
and (b) flash drought events 
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3 Method and Data 197 

3.1 Datasets 198 

The monthly precipitation (P), soil moisture (SM), and air temperature (T) data were obtained from 199 
NASA’s second Modern-Era Retrospective analysis for Research and Applications (MERRA2), 200 
available at a horizontal resolution of 0.625 ̊ longitude by 0.5 ̊ latitude from 1980 onward 201 
(Bosilovich, 2015). MERRA2 replaces the MERRA reanalysis (Rienecker et al., 2011) using an 202 
upgraded version of the Goddard Earth Observing System Model, Version 5 (GEOS-5) data 203 
assimilation. In this study, we used 42 years of data from 1980 to 2022. 204 

Since MERRA2 data does not have surface Relative Humidity (RH) and Vapor pressure deficit 205 
(VPD), we have first calculated RH by using T, specific humidity (q), and surface pressure (p). 206 
We used Equations S1 to S6 to obtain RH and then calculated VPD using Equations S7 and S8.   207 

3.2 Method 208 

3.2.1 Univariate indices (SPI, SSI, and SVPDI) 209 

Most of the drought indices are derived using a parametric approach. Parametric indices are 210 
derived by fitting a parametric function (e.g., normal, gamma, etc.) to data sets. For example, in 211 
calculating the original SPI, a two-parameter gamma distribution function is fitted to precipitation 212 
records. However, a specific type of distribution function (e.g., gamma) may not fit the entire data. 213 
In other words, the gamma distribution function in some cases may not be adequate for describing 214 
an observed record of precipitation (Guttman, 1999).  Therefore, some studies suggest using 215 
location-specific distribution functions or models. However, this leads to statistical inconsistency 216 
and incomparability of SPI values (Quiring, 2009; Farahmand and Aghakouchak, 2015). In 217 
addition, cross-comparing of drought indices derived by multiple hydrologic variables (e.g., soil 218 
moisture or runoff) using the parametric approach also leads to statistical inconsistencies. 219 
Farahmand et al. (2015) concluded that non-parametric (empirical) probability functions (e.g., 220 
Gringorten) can be used for describing drought information of various hydrologic or atmospheric 221 
variables (e.g., precipitation, soil moisture, or relative humidity) in a consistent and comparable 222 
scale. The empirical probability function also reduces the computational burden in fitting 223 
parametric distribution functions or models. Therefore, in this study, we used a nonparametric 224 
approach to compute univariate and multivariate indices. To compute the marginal probability (𝑃𝑃) 225 
of precipitation, soil moisture, and VPD we used the univariate form of empirical Gringorten 226 
plotting position Gringorten (1963): 227 

𝑃𝑃(𝑥𝑥𝑖𝑖) =
𝑖𝑖 − 0.44
𝑛𝑛 + 0.12

                 (1) 228 

Where 𝑃𝑃(𝑥𝑥𝑖𝑖) is the empirical probability of variable (𝑥𝑥), 𝑛𝑛 is the number of the records, and 𝑖𝑖 is 229 
the rank of observations from largest to smallest (when used for VPD) or from smallest to largest 230 



Earth and Space Science 

 

(when used for precipitation, or soil moisture). After computing the empirical probability for each 231 
variable, the standard index can be expressed as: 232 

𝑆𝑆𝑆𝑆 = ∅−1(𝑃𝑃)            (2) 233 

Here, 𝑃𝑃 is the empirical probability computed from equation (1), and ∅ is standard normal 234 
distribution function.  235 

3.2.2 Multivariate Index (VPDSDI) 236 

The proposed VPDSDI is an agrometeorological drought index that combines drought information 237 
from vapor pressure deficit and soil moisture. In this study, we used a nonparametric joint 238 
distribution function. Empirical joint probability can be calculated using the bivariate form of 239 
Gringorten plotting position: 240 

𝑃𝑃�𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗� =
𝑚𝑚𝑗𝑗 − 0.44
𝑛𝑛 + 0.12

                 (3) 241 

Where 𝑃𝑃(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗) is the empirical joint probability of variable (𝑥𝑥) and (𝑦𝑦), and 𝑛𝑛 is the total number 242 

of observations. For the empirical joint probability of pairs of (VPD,SM), 𝑚𝑚𝑗𝑗 is the number of 243 

occurrences of  (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) satisfying the condition of 𝑥𝑥𝑖𝑖 ≥ 𝑥𝑥𝑗𝑗  and 𝑦𝑦𝑖𝑖 ≤ 𝑦𝑦𝑗𝑗 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛), which in here 244 

𝑥𝑥 denotes VPD observations and 𝑦𝑦 denotes SM observations. After computing the empirical joint 245 
probability of (VPD,SM), the standardized drought index VPDSDI can be computed using 246 
equation (2).  247 

3.2.3 Drought threshold and characteristics 248 

The drought threshold was defined according to the classifications of Table 1 (D0 to D4) suggested 249 
by Svoboda et al. (2002). We applied the moderate drought threshold (D1) for calculating drought 250 
onset (univariate or multivariate index <-0.8). For conventional drought analysis, we used 3-month 251 
indices to better understand the slow-evolving changes in variables through time, but for flash 252 
drought analysis we used 1-month indices since flash drought develops rapidly and it is important 253 
to investigate the occurrence of flash droughts in shorter time scales (Otkin et al., 2018). While 254 
previous studies (Christian et al., 2019; Otkin et al., 2018; Mo and Lettenmaier, 2016) have 255 
typically utilized shorter time scales (e.g., 5-day) for defining flash droughts, our objective is to 256 
assess the potential of this index in capturing flash drought dynamics over an extended temporal 257 
period (1-month) similar to approaches taken by (Gamelin et al., 2021; Mcevoy et al., 2016; 258 
Noguera et al., 2021). By evaluating the performance of VPDSDI against confirmed flash drought 259 
events from previous studies, we aim to demonstrate that if the proposed index effectively detects 260 
the flash drought onset and persistence on a 1-month time scale, it could serve as a valuable tool 261 
for future studies and enhancing early warning systems. Besides, opting for a 1-month analysis 262 
rather than analyzing drought events over a few days allows us to prioritize more severe and 263 
prolonged droughts while potentially overlooking shorter-term drought occurrences. 264 
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 265 

Table1. Drought index classification 266 

Drought type Range of index 

Category Description Univariate or multivariate index 

D0 Abnormally dry -0.5 to -0.7 

D1 Moderate drought -0.8 to -1.2 

D2 Severe drought -1.3 to -1.5 

D3 Extreme drought -1.6 to -1.9 

D4 Exceptional drought -2 or less 

 267 

In order to investigate the characteristics of each drought event, we evaluated five characteristics 268 
for each index similar to (Farahmand et al., 2021): the onset month of drought event, the 269 
termination month of drought event, drought duration (total number of months between the onset 270 
and termination month), maximum drought intensity (minimum value of SI during a drought 271 
event), and drought intensity which is expressed as: 272 

𝑆𝑆 = �𝑆𝑆𝑆𝑆
𝐷𝐷

𝑖𝑖=1

                      (4) 273 

Where, S is drought intensity, SI is the value of standardized index calculated from equation 2, 274 
and D is drought duration. 275 

4 Results and discussion 276 

4.1 Flash Droughts 277 

To illustrate the performance of VPDSDI in detecting flash drought events in terms of onset and 278 
persistence, time series of VPDSDI have been compared to SPI, SVPDI, and SSI in three US flash 279 
drought events: The 2012 High Plains drought event (Fig. 2a), The 2017 Northern Plains drought 280 
event (Fig. 2b) and the 2019 southeast drought event (Fig. 2c). One can see the time series of 281 
SVPDI in Fig. 2 for all events to further investigate the effect of VPD as an input in VPDSDI for 282 
detecting drought onset. It should be mentioned that for flash drought assessment, we used a 1-283 
month time scale since flash drought events develop rapidly and are sensitive to short term changes 284 
in precipitation, soil moisture, relative humidity, and air temperature.  285 

As shown in Fig. 2a, meteorological indices including SVPDI and SPI, show high variability 286 
because of the transient nature of these variables and their computation in short periods (1-month). 287 
One can see that SPI detects an event that starts in June 2012 and lasts in September 2012. SVPDI 288 
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shows a drought event from March 2012 to September 2012. Due to the high variability of SVPDI, 289 
we only consider a drought event when an index falls below the threshold continuously. SSI detects 290 
a drought event between July 2012 and May 2013. Finally, VPDSDI shows a drought starting from 291 
October 2011 to May 2013. VPDSDI detects the onset of this event 8 months earlier than SPI, 5 292 
months earlier than SVPDI, and shows the persistence of this event similar to SSI. As shown in 293 
the time series of VPDSDI in Fig. 2a, and by comparing VPDSDI with the time series of SVPDI 294 
and SSI, it can be concluded that the agricultural (soil moisture) component of VPDSDI reduces 295 
the high variability of meteorological component (VPD) and produces a smoother index which is 296 
more reliable for drought persistence detection. Given the comparatively long lead time of 297 
VPDSDI compared to other indices studied here, we argue that it is crucial to exercise caution in 298 
setting expectations and avoid positioning VPDSDI as a complete substitute for existing indices. 299 
Once the early warning signals are detected, we can also consider examining other drought indices 300 
in order to mitigate the risk of false drought alarms. However, it is worth noting that VPDSDI 301 
possesses unique features that make it a valuable drought index as it combines information from 302 
both VPD and soil moisture, recognized as key factors in identifying flash droughts.  303 

Fig. 2b exhibits the time series of the 2017 Northern Plains drought. SPI and SVPDI illustrate a 304 
drought event starting in May 2017 to July 2017. As shown, SSI only fell one month below the 305 
threshold in July 2017. On the other hand, VPDSDI detects a drought event that starts in May 2017 306 
(similar to SVPDI) and lasts in August 2017, one month later than other indices. The longer 307 
drought duration of VPDSDI is due to the slower recovery rate of soil moisture and joint effect of 308 
VPD and soil moisture and we argue that this could add more information into the development 309 
of this event through the lens of joint occurrence of VPD and soil moisture. 310 

Finally, Fig. 2c shows the time series of the 2019 Southeast drought. It can be seen that SVPDI 311 
and SPI indicate a drought event for only one month in September 2019. This event was 312 
accompanied by extremely high air temperature, low precipitation, low relative humidity, and high 313 
evaporative demand which caused soil moisture to dry quickly. As shown, SSI shows a drought 314 
event from September to October 2019, indicating that meteorological and agricultural drought 315 
started concurrently. In other words, extreme conditions of the atmosphere depleted soil moisture 316 
quickly which led to an agricultural drought. One can see that VPDSDI detects the onset of this 317 
event similar to SVPDI, SPI, and SSI in September 2019, but shows the termination of the 2019 318 
Southeast drought like SSI in November 2019. Previous studies also found that during September 319 
2019, dry conditions rose from 25% to 80% at the end of the month in the U.S. Southeast (Schubert 320 
et al., 2020). Dry conditions were first initiated by extremely high air temperature and low 321 
precipitation which eventually led to low soil moisture conditions. During this event, SVPDI and 322 
SPI showed a more intense drought in September 2019 than SSI. The drought intensity of VPDSDI 323 
is like its meteorological component (VPD). 324 

 325 

 326 
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Fig. 2. Time series of 1-month VPDSDI, SVPDI, SPI, and SSI for (a) the 2012 High Plains flash, (b) the 
2017 Northern Plains flash drought, and (c) the 2019 Southeast flash drought. 
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(a)  USA High Plains 2011-2014 drought index
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 328 

Fig. 3 | (left to right) MERRA2–based 1-month: SPI, SVPDI, SSI, and VPDSDI. (top to bottom) April-September 329 
2017. 330 

To further investigate the spatial development and performance of VPDSDI, SVPDI, SSI, and SPI 331 
in detecting flash drought events, maps of 1-month indices for the 2017 Northern Plains drought 332 
are presented in Fig. 3. In Fig. 3, the first column shows the 1-month SPI while the second, third, 333 
and fourth columns display SVPDI, SSI, and VPDSDI respectively for 2017 Northern Plains 334 
drought. These maps provide a visual representation of how each index captures and represents 335 
the intensity of drought conditions during that period based on drought intensity categories 336 
presented in Table 1 (Svoboda et al., 2002). For further analysis on the spatial development of 337 
other flash drought events including the 2012 High Plains drought and the 2019 Southeast drought, 338 
readers are directed to Fig. S1 and Fig. S2 respectively. These figures present MERRA2–based 1-339 
month VPDSDI, SVPDI, SSI, and SPI for the 2012 High Plains drought and 2019 Southeast 340 
drought, and all maps follow similar patterns discussed in Fig. 3.  341 
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As shown in Fig. 3, a few pixels in selected area showed drought condition detected by VPDSDI, 342 
SSI, and SPI during April 2017 (first row in Fig. 3). Similar to what discussed in the time series 343 
of 2017 Northern Plains event, this drought event started at May 2017 (second row in Fig. 3). In 344 
Fig. 3, VPDSDI pattern is consistent with SVPDI during the early stages of the 2017 drought event. 345 
While certain areas experienced drought conditions during April 2017, the severity and extent of 346 
these conditions were not significant enough to classify the entire region as experiencing moderate 347 
drought. One can see that, SSI shows drought conditions in most of the region only in July 2017. 348 
Starting in May 2017, extreme and severe drought conditions were observed by SPI, SVPDI, and 349 
VPDSDI that were extended until July 2017 while VPDSDI shows drought conditions for one 350 
more month in August 2017. 351 

As discussed in the time series of the 2017 Northern Plains flash drought event, the late response 352 
of SSI in detecting drought can be attributed to the inherent characteristics of soil moisture, which 353 
exhibits a temporal lag in reflecting drought indications when compared to VPD or precipitation 354 
patterns. Besides, as we have mentioned in Fig. 2, one of the reasons for the longer drought 355 
duration showed by VPDSDI in this event is the joint effect of VPD and soil moisture, which can 356 
be seen in maps of September. As shown, VPDSDI accumulates drought signals from VPD (in the 357 
northwest of the region) and soil moisture (scattered all over the region), which results in a more 358 
severe drought during September all over the region. It should be noted that a previous study 359 
(Gerken et al., 2018) showed that some parts of the Northern Plains experienced drought 360 
conditions during September 2017 according to Global Historical Climatology Network and 361 
USDM. We argue that the inclusion of this aspect can contribute additional insights into the 362 
progression of this phenomenon by examining the concurrent existence of VPD and soil moisture. 363 
Thus, VPDSDI can present more reliable information about the onset and persistence of this event 364 
by combining information from VPD and soil moisture, consistent with previous studies (Gerken 365 
et al., 2018; Hoel et al., 2020). 366 

To further illustrate the spatial development of the 2017 Northern Plain drought, Fig. 4 shows the 367 
percentage of the region that was under drought conditions from April to September 2017 for SPI, 368 
SSI, SVPDI, and VPDSDI. Similarly, Fig S3 and S4 show the proportion of regions that are under 369 
drought conditions in the 2012 High Plains and the 2019 Southeast drought event, respectively. 370 

The primary cause of the onset of the 2017 Northern Plain drought was the limited amount of 371 
rainfall in May and June, which are typically the wettest months. Additionally, higher-than-normal 372 
daytime temperatures also played a role in accelerating the drying process of the land surface (Hoel 373 
et al., 2020). As shown in Fig. 4, this event started with a significant decrease in precipitation 374 
across a major part of the region as well as an extreme increase in VPD in the vast majority of the 375 
region leading to wide-spreading meteorological drought detected by SPI and SVPDI during the 376 
early stages of 2017 event in May and June. In the early months of this event, VPDSDI showed 377 
drought development similar to SVPDI, and as the drought continued, SPI and SSI showed more 378 
than 50 percent of the region under drought conditions in July 2017. Similar to SVPDI and SSI, 379 
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the peak of drought affected areas that were detected by VPDSDI occurred in July 2017, with more 380 
than 90 percent of the area experiencing drought conditions during this month.  381 

Increased precipitation during the end of July and early August, caused an increase in soil moisture 382 
during August, but there was no occurrence of precipitation surpassing the daily average. 383 
Furthermore, an exceptional absence of cloudy conditions resulted in a higher influx of solar 384 
radiation and unusually elevated daytime maximum temperatures, these climatic factors further 385 
contributed to the exacerbation of drought conditions within that period (Hoel et al., 2019). We 386 
argue that showing more severe drought by VPDSDI relative to SSI during August and September 387 
2017 could be due to the joint effect of VPD and soil moisture. Soil moisture indicates between 388 
25 and 30 of the region is under drought during August and September according to SSI. Although 389 
VPD did not show drought conditions from August to September, a combination of near-normal 390 
VPD with below-normal soil moisture has led to a more severe joint effect of VPDSDI. These 391 
factors simultaneously affected VPDSDI and led to more severe and wide spread drought than 392 
both SVPDI and SSI during August and September. 393 

 394 

 395 

Fig. 4 | Proportion of the Northern Plains that showed drought between April and September 2017 396 

 397 

Table 2 presents five important characteristics of each flash drought event including the onset and 398 
termination of each index relative to SPI, the minimum value of each index (or maximum intensity 399 
of drought), as well as the duration of droughts and drought severity. 400 

As shown in Table 2, for the 2012 High Plains drought, there is a significant difference between 401 
drought duration of meteorological indices, SSI, and especially VPDSDI due to the high variability 402 
of univariate meteorological indices (SPI and SVPDI). Previous studies also found that the onset 403 
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Farahmand et al., 2021). According to Table 2, the 2012 High Plains drought lasted for 20, 11, 7, 405 
and 4 months based on VPDSDI, SSI, SVPDI, and SPI, respectively. VPDSDI shows the 406 
maximum drought intensity (-2.06), followed by SVPDI (-2.04), SSI (-1.63), and SPI (-1.27). 407 
Because of the large duration of VPDSDI and SSI, the drought severity is largest in VPDSDI (-408 
29.5), followed by SSI (-14.94), SVPDI (-9.82), and SPI (-4.2). 409 

As shown in Table 2, the 2017 Northern Plains drought persisted for 4 months according to 410 
VPDSDI, lasted 3 months according to SVPDI and SPI, and lasted 1 month according to SSI. 411 
Maximum intensity is identified by VPDSDI (-1.44), followed by SVPDI (-1.29), SPI (-1.17), and 412 
SSI (-0.91). Finally, the drought severity is largest in VPDSDI (-4.48), followed by SPI (-3.16), 413 
SVPDI (-3.08), and SSI (-0.91). It is worth mentioning that considering the largest drought 414 
duration detected by VPDSDI, the drought severity of VPDSDI is larger than other indicators.  415 

Finally, as presented in Table 2, the 2019 US Southeast drought lasted for 2 months according to 416 
VPDSDI and SSI, and 1 month according to SVPDI and SPI. The drought intensity is largest in 417 
VPDSDI (-1.76), followed by SVPDI (-1.66), SPI (-1.62), and SSI (-1.12). Since drought intensity 418 
and duration of meteorological indicators (SVPDI and SPI) are almost identical, their drought 419 
severity is also similar. The drought severity is largest in VPDSDI (-3.08) followed by SSI (-2.17). 420 
Finally, since VPDSDI combines information from two variables, it detects a more severe drought 421 
than univariate indices like SVPDI, SSI, and SPI. 422 

As indicated in the summary statistics of Table 2, SVPDI detects drought onset earlier than SPI (1 423 
month on average). Precipitation drought signals come with delay, less intensity, and longer 424 
persistence than soil moisture, consistent with previous studies (Farahmand et al., 2021). Since 425 
VPDSDI combines information from VPD and Soil Moisture, this index indicates the largest 426 
duration and severity compared to all other indices (8.7 months and -12.35 severity). Furthermore, 427 
VPDSDI onset detection is on average even earlier than SVPDI (1.7 months earlier on average). 428 
This is because VPDSDI detects the onset of the 2012 event with a long 5-month lead time relative 429 
to SVPDI. Furthermore, VPDSDI termination is almost identical to SSI termination (6 months vs 430 
5.7 months). Finally, VPDSDI intensity is slightly stronger than SVPDI (-1.75 vs -1.66). Since the 431 
mechanisms for the development of flash droughts are different than conventional droughts, the 432 
performance of VPDSDI in detecting conventional drought events will be discussed in the next 433 
section. 434 

 435 

 436 

 437 

 438 

 439 
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Table 2. Characteristics of drought events according to Onset, Termination, Duration, Maximum Intensity, and 440 
Severity for each case study and summary statistics of flash drought events 441 

 442 

 443 

Variables Onset  
(month) 

Termination 

(month) 

 
Duration 
(month) 

Maximum 
Intensity 

Severity 

      High Plains       

SPI 0 4  4 -1.27 -4.2 

VPDSDI -8 12  20 -2.06 -29.50 

SVPDI -3 4  7 -2.04 -9.82 

SSI 1 12  11 -1.63 -14.94 

  
  

Northern Plains 
   

SPI 0 3  3 -1.17 -3.16 

VPDSDI 0 4  4 -1.44 -4.48 

SVPDI 0 3  3 -1.29 -3.08 

SSI 3 3  1 -0.91 -0.91 

  
  

South East 
   

SPI 0 1  1 -1.62 -1.62 

VPDSDI 0 2  2 -1.76 -3.08 

SVPDI 0 1  1 -1.66 -1.66 

SSI 0 2  2 -1.12 -2.17 

  
  

Summary 
   

SPI 0±0 2.7 ± 1.52  2.7 ± 1.52 -1.35 ± 0.23 -3 ± 1.29 

VPDSDI -2.7 ± 4.61 6 ± 5.29  8.7 ± 9.86 -1.75 ± 0.31 -12.35 ± 14.86 

SVPDI -1 ± 1.73 2.7 ± 1.52  3.7 ± 3.05 -1.66 ± 0.37 -4.85 ± 4.35 

SSI 1.33 ± 1.52 5.7 ± 5.5  4.7 ± 5.5 -1.22 ± 0.37 -6 ± 7.76 
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4.2 Conventional Droughts 444 

Similar to flash droughts, for evaluating the performance of VPDSDI in detecting conventional 445 
drought events in terms of onset and persistence, time series of VPDSDI have been compared to 446 
SPI, SVPDI, and SSI in three US conventional drought events: The 2006 Southeastern drought 447 
event (Fig. 5a), The 2011 Texas drought event (Fig. 5b) and the 2020-2022 western US drought 448 
event (Fig. 5c).   449 

As shown in Fig. 5a, SPI shows a drought event occurring between March 2006 and May 2006 450 
(Fig. 5a, SPI falls below the threshold, indicated by the green line from March 2006 to May 2006).  451 
It can be seen in Fig. 5a that SSI shows an agricultural drought event from April 2006 to September 452 
2006. In this event, VPDSDI and SVPDI show meteorological drought onset two months earlier 453 
than SPI in January 2006. SVPDI, as a meteorological drought index, indicates drought 454 
termination in September 2006. VPDSDI, however, shows agricultural drought termination similar 455 
to SSI in October 2006.  456 

Fig. 5b shows the time-series of VPDSDI, SVPDI, SPI, and SSI for the 2011 Texas drought. In 457 
this event, SPI indicates meteorological drought onset in December 2010 and meteorological 458 
drought termination in November 2011 while agricultural drought (based on SSI) starts in January 459 
2011 and terminates in January 2012. VPDSDI detects the drought onset similar to SVPDI 460 
(October 2010), which is 2 months earlier than SPI, and shows the termination month of 461 
agricultural drought similar to SSI in January 2012. 462 

Finally, Fig. 5c shows the time-series of drought indices for the 2020-2022 drought in the Western 463 
US. As shown, SPI detects two drought events, one from September 2020 through November 2020 464 
and one spanning from April 2021 through July 2021. Similar to SPI, SVPDI also detects two 465 
events, one from September 2020 to January 2021 and one from April 2021 to September 2021. 466 
According to SSI, agricultural drought starts in October 2020 and lasts until September 2021. 467 
VPDSDI shows the onset of drought 1 month earlier than SPI and SVPDI in August 2020. Since 468 
soil moisture is a component of VPDSDI, this index detects the persistence of drought more 469 
reliably than SPI and SVPDI and is similar to SSI. While SPI and SVPDI show two separate 470 
drought events, SSI detects one continuous event starting with a one-month delay relative to SPI 471 
and SVPDI respectively. This is due to the nature of the soil moisture which shows drought signals 472 
with delay and smoother compared to the meteorological variables like precipitation or VPD. 473 
VPDSDI, which combines information from both VPD and soil moisture, shows one event 474 
continuously from August 2020 to September 2021. The results are consistent with previous 475 
studies indicating that soil moisture shows drought persistence more reliable than meteorological 476 
indices. Furthermore, combining VPD with soil moisture reduces the high variability of VPD and 477 
generates a smoother index. Also, one can see that VPDSDI shows drought onset in August 2020 478 
which none of its corresponding components could show a drought signal and this is due to the 479 
joint effect of VPD and soil moisture.  480 

 481 
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 509 
Fig. 5. Time series of 3-month VPDSDI, SVPDI, SPI, and SSI for (a) the 2006 Southeastern drought, (b) the 2011 
Texas drought, and (c) the 2020 western US drought.  
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The spatial maps of VPDSDI, SVPDI, SSI, and SPI are shown for the 2006 Southeastern drought 510 
during December 2005-May 2006 period in Fig. 6. The first column shows the 3-month SPI maps, 511 
while the second, third, and fourth columns display the 3-month SVPDI, SSI, and VPDSDI maps 512 
respectively. To further investigate the spatial development and performance of VPDSDI, SVPDI, 513 
SSI, and SPI in detecting other conventional drought events in this study, readers are referred to 514 
maps of 3-month indices presented in Figures S5, and S6. Fig. S5 and S6, show MERRA2–based 515 
3-month VPDSDI, SVPDI, SSI, and SPI for the 2011 Texas drought and 2020-2022 Western US 516 
drought events respectively.  517 

 518 

 519 

Fig. 6 | (left to right) MERRA2–based 3-month: SPI, SVPDI, SSI, and VPDSDI. (top to bottom) December 2005-520 
May 2006. 521 

 522 
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From December 2005 to February 2006, SPI and SSI showed moderate and extreme drought 523 
conditions across very few parts of the region that were not sufficient to classify the whole region 524 
under drought. On the contrary, during January and February 2006, SVPDI and VPDSDI detected 525 
extreme and severe drought conditions throughout a vast majority of the southeast, two months 526 
earlier than SPI. As drought progresses, SSI shows agricultural drought onset over major parts of 527 
the region in April 2006, while one can see that during April, meteorological drought exacerbates 528 
and SPI, SVPDI, and VPDSDI show extreme and exceptional drought conditions in some areas 529 
during this month. As shown, VPDSDI shows drought onset similar to SVPDI two months earlier 530 
than SPI.  531 

Figure 7 presents the 2006 Southeast drought as described by 3-month VPDSDI, SVPDI, SSI, and 532 
SPI for the period of June-October 2006. In June 2006, SVPDI, SSI, and VPDSDI showed extreme 533 
and severe drought in a large portion of the region. SSI and VPDSDI show the persistence of 534 
extreme and severe drought conditions through June to September 2006, while SPI and SVPDI 535 
show drought recovery starting from June and August 2006, respectively. Furthermore, VPDSDI 536 
is consistent with SSI on the drought persistence, as it shows more severe and expanded drought 537 
in the late months of this event which is very similar to SSI indicating an agricultural drought 538 
condition. These results illustrate that VPDSDI describes drought onset as early as SVPDI (the 539 
meteorological factor) and earlier than SPI while it detects drought persistence similar to SSI (the 540 
agricultural component). 541 

To examine the spatial development of the 2006 Southeast drought, Fig. 8 presents the proportion 542 
of areas that were under drought condition between December 2005 and October 2006 across the 543 
region. To delve deeper into the spatial analysis of VPDSDI, SVPDI, SSI, and SPI in detecting 544 
additional conventional drought events examined in this study, we encourage readers to refer to 545 
Figures S7 and S8. Fig S7 and S8 illustrate the proportion of the area that was under drought 546 
conditions in the 2011 Texas drought and 2020-2022 Western US drought, respectively. 547 

During the early stages of this event, VPDSDI acts similarly to SVPDI in detecting drought 548 
affected areas. As shown, there was a major change in drought affected area detected by VPDSDI 549 
and SVPDI between December 2005 and January 2006. On the contrary, there were no significant 550 
changes in drought detected areas by SPI until February 2006, but SPI suddenly showed a major 551 
change in detecting drought areas in March 2006 (two months later than SVPDI and VPDSDI). 552 
As drought progresses, agricultural drought detected by SSI starts across the region and more than 553 
50 percent of the US Southeast experienced agricultural drought in April 2006. From April 2006 554 
onward, one can see that although drought detected areas by SVPDI gradually fall, VPDSDI shows 555 
under drought areas similar to SSI. These results are consistent with our discussions in the time 556 
series of this event and Fig. 7, indicating that VPDSDI shows drought onset similar to SVPDI and 557 
also detects agricultural drought termination similar to SSI. 558 

 559 
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 560 

Fig. 7 | (left to right) MERRA2–based 3-month: SPI, SVPDI, SSI, and VPDSDI. (top to bottom) June-October 2006. 561 

 562 

 563 

 564 

Fig. 8 | Proportion of the USA Southeast that showed drought between December 2005 and October 2006 565 
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Table 3 presents five characteristics of each conventional drought event. Similar to Table 2, the 567 
characteristics consist of: the onset and termination of each index relative to SPI, minimum value 568 
of index for each drought event, duration of droughts, and drought severity.   569 

As shown in Table 3, the 2006 southeast event lasted for 9, 8, 6, and 3 months according to 570 
VPDSDI, SVPDI, SSI, and SPI, respectively. VPDSDI and SVPDI detect the onset of this event 571 
2 months earlier than SPI while VPDSDI shows the termination of this event 4 months later than 572 
SPI, and concurrently with SSI, indicating the termination of agricultural drought. VPDSDI shows 573 
maximum drought intensity of (-1.44), followed by SPI (-1.4), SVPDI (-1.37), and SSI (-1.20). 574 
The drought severity is largest in VPDSDI (-10.2), followed by SVPDI (-7.87), SSI (-5.94), and 575 
SPI (-3.93).  576 

According to Table 3, in the 2011 Texas event, drought persisted longest in VPDSDI (15 months), 577 
followed by SVPDI (14 months), SSI (12 months), and SPI (11 months). The maximum drought 578 
intensity is identified by VPDSDI (−2.15), followed by SVPDI (−2.12), SSI (-2.06), and SPI (-579 
1.96). Finally, drought severity is (−24.68), (−21.07), (−17.78), and (−15.93) according to 580 
VPDSDI, SVPDI, SSI, and SPI.  581 

Finally, in the 2020-2022 Western U.S. event, drought persisted for 14 months according to 582 
VPDSDI, 12 months according to SSI, 11 months according to SVPDI, and 7 months according 583 
to SPI. The maximum drought intensity is shown in VPDSDI (−1.96), followed by SVPDI (−1.81), 584 
SPI (−1.51), and SSI (-1.46). VPDSDI showed the maximum drought severity (-21.44), SVPDI (-585 
14.69), SSI (-12.92), and SPI (-8.22).  586 

As shown and discussed in Fig. 5 and Table 3, in all conventional drought events, drought onset, 587 
and termination signals are transferred with some delay from precipitation to soil moisture, which 588 
is consistent with previous studies (Farahmand et al., 2021). Furthermore, results indicated that 589 
VPD (SVPDI) detects drought onset earlier than precipitation (SPI). On average, SVPDI detects 590 
the onset of droughts 1.33 months earlier than precipitation. Finally, results show that VPDSDI 591 
detects conventional drought onset on average 1.66 months earlier than SPI, almost similar to its 592 
meteorological component (VPD), and identifies conventional drought persistence similar to its 593 
agricultural component soil moisture (11 months). Therefore, VPDSDI duration and severity are 594 
the largest compared to all other indices with 12.6 and -18.7 respectively.  595 

 596 

 597 

 598 

 599 

 600 

 601 
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Table 3. Characteristics of drought events according to Onset, Termination, Duration, Maximum Intensity, and 602 
Severity for each case study and summary statistics of conventional drought events 603 

 604 

 605 

Variables Onset  
(month) 

Termination 

(month) 

 
Duration 
(month) 

Maximum 
Intensity 

Severity 

      2006 South East       

SPI 0 3  3 -1.40 -3.93 

VPDSDI -2 7  9 -1.44 -10.20 

SVPDI -2 6  8 -1.37 -7.87 

SSI 1 7  6 -1.20 -5.94 

      2011 Texas       

SPI 0 11  11 -1.96 -15.93 

VPDSDI -2 13  15 -2.15 -24.68 

SVPDI -2 12  14 -2.12 -21.07 

SSI 1 13  12 -2.06 -17.78 

      2020 Western US       

SPI 0 11  7 -1.51 -8.22 

VPDSDI -1 13  14 -1.96 -21.44 

SVPDI 0 13  11 -1.81 -14.69 

SSI 1 13  12 -1.46 -12.92 

      Summary       

SPI 0±0 8.3±4.6  7±4 -1.6±0.3 -9.3±6.0 

VPDSDI -1.66±0.6 11±3.5  12.6±3.2 -1.85±0.37 -18.7±7.6 

SVPDI -1.33±1.1 10.3±3.8  11±3 -1.76±0.38 -14.5±6.6 

SSI 1±0 11±3.5  10±3.5 -1.57±0.44 -12.2±6 
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5 Conclusions 606 

In this study, a new integrated agro-meteorological drought index (VPDSDI) was developed by 607 
combining vapor pressure deficit with soil moisture information. 42 years (1980-2022) of data 608 
from NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA 2) 609 
product were used for this study. The proposed index was computed by using a multivariate 610 
nonparametric approach, which reduces the computational burden. This index was compared to 611 
SPI and SSI in terms of timing of drought onset and termination, respectively.  612 

Six major historical droughts in the CONUS were selected for analysis. Three flash droughts: the 613 
2019 southeast drought, the 2017 Northern Plain drought, and the 2012 High Plains drought; Three 614 
conventional drought events: The 2006 Southeastern Drought, the 2011 Texas Drought, and the 615 
2020 Western US Drought. Each of the selected drought events has unique characteristics and 616 
results show that the newly developed index is capable of detecting drought onset earlier than or 617 
at the same time as SPI. Also, this index generally detects agricultural drought termination at the 618 
same time as SSI.  619 

The comparison of VPDSDI with SPI and SSI for the flash drought events suggests that this index 620 
can detect drought onset earlier than or about the same time as SPI with an average of around 2.7 621 
months. Besides, VPDSDI shows agricultural drought termination almost the same as SSI. We 622 
should note that since flash droughts develop rapidly and are mainly accompanied by high air 623 
temperature, low relative humidity, and low soil moisture, univariate indices used in this study 624 
including SPI, SVPDI, and SSI may not be able to detect the duration of flash droughts reliably. 625 
Since VPDSDI combines information from both VPD and soil moisture, it can potentially detect 626 
the rapid onset, intensification, and persistence of flash droughts more reliably than other 627 
univariate indices. 628 

The comparison of VPDSDI with SPI and SSI for the conventional drought events indicates that 629 
VPDSDI captures the onset of this type of drought on average 1.66 months earlier than SPI in all 630 
three events. This is due to the skill of the VPD component of VPDSDI as well as the combination 631 
of VPD with soil moisture which improves the ability of VPDSDI in detecting drought onset.  632 
Furthermore, the results show that VPDSDI captures drought persistence similar to SSI. This 633 
behavior is due to the soil moisture information used for deriving VPDSDI. 634 

Finally, we showed that combining VPD with soil moisture reduces the high variability of VPD 635 
which produces a smoother and more reliable drought index. The new index could add further 636 
insight into the development of drought events by looking at the joint distribution of 637 
meteorological variables (VPD) and soil moisture. We emphasize that VPDSDI should not replace 638 
other drought indicators and can be used as an additional source of information along with other 639 
drought indices. 640 

 641 
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Open Research 642 

The data used for this study are freely available for Surface Pressure, Surface Air Temperature, 643 
and Specific Humidity :https://disc.gsfc.nasa.gov/datasets/M2IMNXLFO_5.12.4/summary; For 644 
precipitation and soil moisture: 645 
https://disc.gsfc.nasa.gov/datasets/M2TMNXLND_5.12.4/summary. 646 
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