References
Abbott, B.W. and Jones, J.B., 2015. Permafrost collapse alters soil
carbon stocks, respiration, CH4, and N2O in upland tundra. Global Change
Biology, 21(12), pp.4570-4587.
Biskaborn, B.K., Smith, S.L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D.A., Schoeneich, P., Romanovsky, V.E., Lewkowicz, A.G.,
Abramov, A. and Allard, M., 2019. Permafrost is warming at a global
scale. Nature communications, 10(1), pp.1-11.
Bouskill, N.J., Mekonnen, Z., Zhu, Q., Grant, R. and Riley, W.J., 2022.
Microbial contribution to post-fire tundra ecosystem recovery over the
21st century. Communications Earth & Environment , 3 (1),
p.26.
Burke, E. J., Ekici, A., Huang, Y., Chadburn, S. E., Huntingford, C.,
Ciais, P., Friedlingstein, P., Peng, S., and Krinner, G.: Quantifying
uncertainties of permafrost carbon–climate feedbacks, Biogeosciences,
14, 3051–3066, https://doi.org/10.5194/bg-14-3051-2017, 2017.
Burke, E., Chadburn, S. and Huntingford, C., 2022. Thawing permafrost as
a nitrogen fertiliser: Implications for climate feedbacks. Nitrogen,
3(2), pp.353-375.
Butterbach-Bahl, K. and Dannenmann, M., 2011. Denitrification and
associated soil N2O emissions due to agricultural activities in a
changing climate. Current Opinion in Environmental
Sustainability , 3 (5), pp.389-395.
Chen, Y., Liu, F., Kang, L., Zhang, D., Kou, D., Mao, C., Qin, S.,
Zhang, Q. and Yang, Y., 2021. Large‐scale evidence for microbial
response and associated carbon release after permafrost thaw. Global
Change Biology, 27(14), pp.3218-3229.
Christensen, T.R., Lund, M., Skov, K. et al. Multiple Ecosystem Effects
of Extreme Weather Events in the Arctic. Ecosystems 24, 122–136
(2021). https://doi.org/10.1007/s10021-020-00507-6
Ciais, P., Bastos, A., Chevallier, F., Lauerwald, R., Poulter, B.,
Canadell, P., Hugelius, G., Jackson, R.B., Jain, A., Jones, M. and
Kondo, M., 2022. Definitions and methods to estimate regional land
carbon fluxes for the second phase of the REgional Carbon Cycle
Assessment and Processes Project (RECCAP-2). Geoscientific Model
Development, 15(3), pp.1289-1316.
Chadburn, S., Burke, E., Cox, P. et al. An observation-based constraint
on permafrost loss as a function of global warming. Nature Clim Change
7, 340–344 (2017). https://doi.org/10.1038/nclimate3262
Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J.,
Striegl, R.G., Duarte, C.M., Kortelainen, P., Downing, J.A., Middelburg,
J.J. and Melack, J., 2007. Plumbing the global carbon cycle: integrating
inland waters into the terrestrial carbon budget. Ecosystems ,10 , pp.172-185.
Edwards M, Langdon C. Holocene thermokarst lake dynamics in northern
interior Alaska: the interplay of climate, fire, and subsurface
hydrology. Front Earth Sci. 2019;7(53):1-22.
Friedlingstein, P., Jones, M.W., O’Sullivan, M., Andrew, R.M., Bakker,
D.C., Hauck, J., Le Quéré, C., Peters, G.P., Peters, W., Pongratz, J.
and Sitch, S., 2022. Global carbon budget 2021. Earth System
Science Data , 14 (4), pp.1917-2005.
Genet, H., McGuire, A. D., Barrett, K., Breen, A., Euskirchen, E. S.,
Johnstone, J. F., et al. (2013). Modeling the effects of fire severity
and climate warming on active layer thickness and soil carbon storage of
black spruce forests across the landscape in interior Alaska.
Environmental Research Letters, 8(4), 045016.
https://doi.org/10.1088/1748-9326/8/4/045016
Gibson, C.M., Chasmer, L.E., Thompson, D.K., Quinton, W.L., Flannigan,
M.D. and Olefeldt, D., 2018. Wildfire as a major driver of recent
permafrost thaw in boreal peatlands. Nature communications ,9 (1), p.3041.
Grosse, G., Harden, J., Turetsky, M., McGuire, A.D., Camill, P.,
Tarnocai, C., Frolking, S., Schuur, E.A., Jorgenson, T., Marchenko, S.
and Romanovsky, V., 2011. Vulnerability of high‐latitude soil organic
carbon in North America to disturbance. Journal of Geophysical Research:
Biogeosciences, 116(G4).
Hermesdorf, L., Elberling, B., D’Imperio, L., Xu, W., Lambæk, A. and
Ambus, P.L., 2022. Effects of fire on CO2, CH4 and N2O exchange in a
well‐drained Arctic heath ecosystem. Global Change Biology .
Holgerson, M.A. and Raymond, P.A., 2016. Large contribution to inland
water CO2 and CH4 emissions from very small ponds. Nature Geoscience,
9(3), pp.222-226.
Holloway, J.E., Lewkowicz, A.G., Douglas, T.A., Li, X., Turetsky, M.R.,
Baltzer, J.L. and Jin, H., 2020. Impact of wildfire on permafrost
landscapes: A review of recent advances and future prospects. Permafrost
and Periglacial Processes, 31(3), pp.371-382.
Humborg, C., Mörth, C.M., Sundbom, M., Borg, H., Blenckner, T., Giesler,
R. and Ittekkot, V., 2010. CO2 supersaturation along the aquatic conduit
in Swedish watersheds as constrained by terrestrial respiration, aquatic
respiration and weathering. Global Change Biology, 16(7), pp.1966-1978.
IPCC, 2022: Climate Change 2022: Mitigation of Climate Change.
Contribution of Working Group III to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R.
Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some,
P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J.
Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New
York, NY, USA. doi: 10.1017/9781009157926
Jafarov, E. E., Romanovsky, V. E., Genet, H., McGuire, A. D., &
Marchenko, S. S. (2013). The effects of fire on the thermal stability of
permafrost in lowland and upland black spruce forests of interior Alaska
in a changing climate. Environmental Research Letters, 8(3), 035030.
https://doi.org/10.1088/1748-9326/8/3/035030
Kim, Y., and Tanaka, N., Effect of forest fire on the fluxes of CO2,
CH4, and N2O in boreal forest soils, interior Alaska, J. Geophys.
Res. , 108( D1), 8154,
doi:10.1029/2001JD000663,
2003.
Kortelainen, P, Larmola, T, Rantakari, M, Juutinen, S, Alm, J,
Martikainen, PJ. Lakes as nitrous oxide sources in the boreal landscape.Glob Change Biol . 2020; 26: 1432– 1445.
https://doi.org/10.1111/gcb.14928
Köster, K., Köster, E., Berninger, F., Heinonsalo, J. and Pumpanen, J.,
2018a. Contrasting effects of reindeer grazing on CO2, CH4, and N2O
fluxes originating from the northern boreal forest floor. Land
Degradation & Development , 29 (2), pp.374-381.
Köster, E., Köster, K., Berninger, F., Prokushkin, A., Aaltonen, H.,
Zhou, X. and Pumpanen, J., 2018b. Changes in fluxes of carbon dioxide
and methane caused by fire in Siberian boreal forest with continuous
permafrost. Journal of environmental management, 228, pp.405-415.
Kuhn, M.A., Varner, R.K., Bastviken, D., Crill, P., MacIntyre, S.,
Turetsky, M., Walter Anthony, K., McGuire, A.D. and Olefeldt, D., 2021a.
BAWLD-CH4: A Comprehensive Dataset of Methane Fluxes from Boreal and
Arctic Ecosystems. Earth System Science Data Discussions, pp.1-56.
Kuhn, M. A., Thompson, L. M., Winder, J. C., Braga, L. P. P., Tanentzap,
A. J., Bastviken, D., & Olefeldt, D. 202)b. Opposing effects of climate
and permafrost thaw on CH4 and CO2 emissions from northern lakes.AGU Advances , 2, e2021AV000515.
https://doi.org/10.1029/2021AV000515
Kuhn, M.A., Thompson, L.M., Winder, J.C., Braga, L.P., Tanentzap, A.J.,
Bastviken, D. and Olefeldt, D., 2021c. Opposing effects of climate and
permafrost thaw on CH4 and CO2 emissions from northern lakes. AGU
Advances, 2(4), p.e2021AV000515.
Lacroix, F., Zaehle, S., Caldararu, S., Schaller, J., Stimmler, P.,
Holl, D., Kutzbach, L. and Göckede, M., 2022. Mismatch of N release from
the permafrost and vegetative uptake opens pathways of increasing
nitrous oxide emissions in the high Arctic. Global Change
Biology .
Lantuit, H. et al. (2012). The Arctic Coastal Dynamics database: a new
classification scheme and statistics on Arctic permafrost coastlines.
Estuaries Coasts 35, 383–400.
Lauerwald, R., Regnier, P., Figueiredo, V., Enrich‐Prast, A., Bastviken,
D., Lehner, B., et al. (2019). Natural lakes are a minor global source
of N2O to the atmosphere. Global Biogeochemical Cycles, 33,1564-1581,
https://doi.org/10.1029/2019GB006261
Li, G., Zhang, M., Pei, W., Melnikov, A., Khristoforov, I., Li, R. and
Yu, F., 2022. Changes in permafrost extent and active layer thickness in
the Northern Hemisphere from 1969 to 2018. Science of The Total
Environment, 804, p.150182.
Liu, Z., Kimball, J.S., Ballantyne, A.P., Parazoo, N.C., Wang, W.J.,
Bastos, A., Madani, N., Natali, S.M., Watts, J.D., Rogers, B.M. and
Ciais, P., 2022. Respiratory loss during late-growing season determines
the net carbon dioxide sink in northern permafrost regions. Nature
communications, 13(1), pp.1-13.,
https://www.nature.com/articles/s41467-022-33293-x
Liu, S., Kuhn, C., Amatulli, G., Aho, K., Butman, D.E., Allen, G.H.,
Lin, P., Pan, M., Yamazaki, D., Brinkerhoff, C. and Gleason, C., 2022.
The importance of hydrology in routing terrestrial carbon to the
atmosphere via global streams and rivers. Proceedings of the
National Academy of Sciences , 119 (11), p.e2106322119.
López-Blanco, E., Langen, P. L., Williams, M., Christensen, J. H.,
Boberg, F., Langley, K., and Christensen, T. R. (2022). The future of
tundra carbon storage in Greenland – Sensitivity to climate and plant
trait changes. Science of The Total Environment , 157385.
https://doi.org/10.1016/j.scitotenv.2022
Maavara, T., Lauerwald, R., Laruelle, G., Akbarzadeh, Z., Bouskill, N.,
Van Cappellen, P., & Regnier, P. (2019). Nitrous oxide emissions from
inland waters: Are IPCC estimates too high? Global Change Biology,
25(2), 473–488. https://doi.org/10.1111/gcb.14504
Mack, M.C., Walker, X.J., Johnstone, J.F., Alexander, H.D., Melvin,
A.M., Jean, M. and Miller, S.N., 2021. Carbon loss from boreal forest
wildfires offset by increased dominance of deciduous trees. Science,
372(6539), pp.280-283.
Marushchak, M.E., Pitkämäki, A., Koponen, H., Biasi, C., Seppälä, M. and
Martikainen, P.J., 2011. Hot spots for nitrous oxide emissions found in
different types of permafrost peatlands. Global Change Biology, 17(8),
pp.2601-2614.
Marushchak, M.E., Kerttula, J., Diáková, K. et al., 2021. Thawing Yedoma
permafrost is a neglected nitrous oxide source. Nat Commun 12,
7107. https://doi.org/10.1038/s41467-021-27386-2
Matson, A., Pennock, D. and Bedard-Haughn, A., 2009. Methane and nitrous
oxide emissions from mature forest stands in the boreal forest,
Saskatchewan, Canada. Forest Ecology and Management ,258 (7), pp.1073-1083.
Matthews, E., Johnson, M.S., Genovese, V., Du, J. and Bastviken, D.,
2020. Methane emission from high latitude lakes: methane-centric lake
classification and satellite-driven annual cycle of emissions.
Scientific Reports, 10(1), pp.1-9.
McGuire, A.D., Christensen, T.R., Hayes, D., Heroult, A., Euskirchen,
E., Kimball, J.S., Koven, C., Lafleur, P., Miller, P.A., Oechel, W. and
Peylin, P., 2012. An assessment of the carbon balance of Arctic tundra:
comparisons among observations, process models, and atmospheric
inversions. Biogeosciences , 9 (8), pp.3185-3204.
Miner, K.R., Turetsky, M.R., Malina, E. et al. Permafrost carbon
emissions in a changing Arctic. Nat Rev Earth Environ 3, 55–67 (2022).
https://doi.org/10.1038/s43017-021-00230-3
Morishita, T., Hatano, R., and Desyatkin, R.V., 2007. N2O Flux in Alas
Ecosystems Formed by Forest Disturbance Near Yakutsk, Eastern Siberia,
Russia. Eurasian Journal of Forest Research , 10 (1),
pp.79-84.
Mörner, N.-A. and Etiope, G. (2002) Carbon degassing from the
lithosphere, Global Planet. Change, 33, 185–203.
Muster, S., Riley, W.J., Roth, K., Langer, M., Cresto Aleina, F., Koven,
C.D., Lange, S., Bartsch, A., Grosse, G., Wilson, C.J. and Jones, B.M.,
2019. Size distributions of Arctic waterbodies reveal consistent
relations in their statistical moments in space and time. Frontiers in
Earth Science, p.5.
Natali, S.M., Watts, J.D., Rogers, B.M. et al. Large loss of CO2
in winter observed across the northern permafrost region. Nat.
Clim. Chang. 9, 852–857 (2019).
https://doi.org/10.1038/s41558-019-0592-8
Natali, S.M., Holdren, J.P., Rogers, B.M., Treharne, R., Duffy, P.B.,
Pomerance, R. and MacDonald, E., 2021. Permafrost carbon feedbacks
threaten global climate goals. Proceedings of the National Academy of
Sciences, 118(21).
Obu, J.; Westermann, S.; Barboux, C.; Bartsch, A.; Delaloye, R.; Grosse,
G.; Heim, B.; Hugelius, G.; Irrgang, A.; Kääb, A.M.; Kroisleitner, C.;
Matthes, H.; Nitze, I.; Pellet, C.; Seifert, F.M.; Strozzi, T.;
Wegmüller, U.; Wieczorek, M.; Wiesmann, A. (2021): ESA Permafrost
Climate Change Initiative (Permafrost_cci): Permafrost extent for the
Northern Hemisphere, v3.0. NERC EDS Centre for Environmental Data
Analysis, 28 June 2021.
http://dx.doi.org/10.5285/6e2091cb0c8b4106921b63cd5357c97c
Olefeldt, D., Hovemyr, M., Kuhn, M.A., Bastviken, D., Bohn, T.J.,
Connolly, J., Crill, P., Euskirchen, E.S., Finkelstein, S.A., Genet, H.
and Grosse, G., 2021. The Boreal–Arctic Wetland and Lake Dataset
(BAWLD). Earth system science data, 13(11), pp.5127-5149.
Pallandt, M.M., Kumar, J., Mauritz, M., Schuur, E.A., Virkkala, A.M.,
Celis, G., Hoffman, F.M. and Göckede, M., 2022. Representativeness
assessment of the pan-Arctic eddy covariance site network and optimized
future enhancements. Biogeosciences , 19 (3), pp.559-583.
Palmtag, J., Obu, J., Kuhry, P., Richter, A., Siewert, M.B., Weiss, N.,
Westermann, S. and Hugelius, G., 2022. A high-spatial resolution soil
carbon and nitrogen dataset for the northern permafrost region, based on
circumpolar land cover upscaling. Earth System Science Data
Discussions , pp.1-28.
Peltola, O., Vesala, T., Gao, Y., Räty, O., Alekseychik, P., Aurela, M.,
Chojnicki, B., Desai, A.R., Dolman, A.J., Euskirchen, E.S. and Friborg,
T., 2019. Monthly gridded data product of northern wetland methane
emissions based on upscaling<?
xmltex\break?> eddy covariance observations.Earth System Science Data , 11 (3), pp.1263-1289.
Potter, S., Cooperdock, S., Veraverbeke, S., Walker, X., Mack, M. C.,
Goetz, S. J., Baltzer, J., Bourgeau-Chavez, L., Burrell, A., Dieleman,
C., French, N., Hantson, S., Hoy, E. E., Jenkins, L., Johnstone, J. F.,
Kane, E. S., Natali, S. M., Randerson, J. T., Turetsky, M. R., Whitman,
E., Wiggins, E., and Rogers, B. M.: Burned Area and Carbon Emissions
Across Northwestern Boreal North America from 2001–2019, EGUsphere,
https://doi.org/10.5194/egusphere-2022-364, 2022.
Randerson, J.T., Liu, H., Flanner, M.G., Chambers, S.D., Jin, Y., Hess,
P.G., Pfister, G., Mack, M.C., Treseder, K.K., Welp, L.R. and Chapin,
F.S., 2006. The impact of boreal forest fire on climate warming.
science, 314(5802), pp.1130-1132.
Rantanen, M., Karpechko, A.Y., Lipponen, A. et al. The Arctic has warmed
nearly four times faster than the globe since 1979. Commun Earth Environ
3, 168 (2022). https://doi.org/10.1038/s43247-022-00498-3
Rocher‐Ros, G., Giesler, R., Lundin, E., Salimi, S., Jonsson, A. and
Karlsson, J., 2017. Large lakes dominate CO2 evasion from lakes in an
Arctic catchment. Geophysical Research Letters , 44 (24),
pp.12-254.
Rodenhizer, H, Schuur, EAG et al. 2022. Abrupt Permafrost Thaw
Accelerates Carbon Dioxide and Methane Release at a Tussock Tundra Site.
Arctic and Alpine Research, in press.
Runge, A., Nitze, I. and Grosse, G., 2022. Remote sensing annual
dynamics of rapid permafrost thaw disturbances with LandTrendr.Remote Sensing of Environment , 268 , p.112752.
Schulze, C., Sonnentag, O., Voigt, C., Thompson, L., van Delden, L.,
Heffernan, L., et al. (2023). Nitrous oxide fluxes in permafrost
peatlands remain negligible after wildfire and thermokarst disturbance.Journal of Geophysical Research: Biogeosciences , 128,
e2022JG007322. https://doi.org/10.1029/2022JG007322
Schuur, E.A.G., J. Bockheim, J. Canadell, E. Euskirchen, C.B. Field, S.V
Goryachkin, S. Hagemann, P. Kuhry, P. Lafleur, H. Lee, G. Mazhitova, F.
E. Nelson, A. Rinke, V. Romanovsky, N. Shiklomanov, C. Tarnocai, S.
Venevsky, J. G. Vogel, S.A. Zimov. 2008. Vulnerability of permafrost
carbon to climate change: Implications for the global carbon cycle.
BioScience 58: 701-714.
Schuur, E.A.G., J.G. Vogel, K.G. Crummer, H. Lee, J.O. Sickman, and T.E.
Osterkamp. 2009. The effect of permafrost thaw on old carbon release and
net carbon exchange from tundra. Nature 459: 556-559. DOI:
10.1038/nature08031.
Schuur, E.A.G., B.W. Abbott, W.B. Bowden, V. Brovkin, P. Camill, J.P.
Canadell, F.S. Chapin III, T.R. Christensen, J.P. Chanton, P. Ciais,
P.M. Crill, B.T. Crosby, C.I. Czimczik, G. Grosse, D.J. Hayes, G.
Hugelius, J.D. Jastrow, T. Kleinen, C.D, Koven, G. Krinner, P. Kuhry,
D.M. Lawrence, S.M. Natali, C.L. Ping, A. Rinke, W.J. Riley, V.E.
Romanovsky, A.B.K. Sannel, C. Schädel, K. Schaefer, Z.M. Subin, C.
Tarnocai, M. Turetsky, K. M. Walter-Anthony, C.J. Wilson, and S.A.
Zimov. 2011. High risk of permafrost thaw. Nature 480:32-33.
Schuur E.A.G., A.D. McGuire, G. Grosse, J.W. Harden, D.J. Hayes, G.
Hugelius, C.D, Koven, P. Kuhry, D.M. Lawrence, S.M. Natali, D. Olefeldt,
V.E. Romanovsky, C. Schädel, K. Schaefer, M. Turetsky, C. Treat, and
J.E. Vonk. 2015. Climate change and the permafrost carbon feedback.
Nature 520, 171–179.
Schuur, E. A. G., A. D. McGuire, V. Romanovsky, C. Schädel, and M. Mack,
2018: Chapter 11: Arctic and boreal carbon. In Second State of the
Carbon Cycle Report (SOCCR2): A Sustained Assessment Report
[Cavallaro, N., G. Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S.
C. Reed, P. Romero-Lankao, and Z. Zhu (eds.)]. U.S. Global Change
Research Program, Washington, DC, USA, pp. 428-468,
https://doi.org/10.7930/ SOCCR2.2018.Ch11.
Schuur, EAG, Bracho, R, Celis, G, Belshe, EF, Ebert, C, Ledman, J, M
Mauritz, EF Pegoraro, C Plaza, H Rodenhizer, V Romanovsky, Christina S,
D Schirokauer, M Taylor, JG Vogel, EE Webb 2021. Tundra underlain by
thawing permafrost persistently emits carbon to the atmosphere over 15
years of measurements. Journal of Geophysical Research: Biogeosciences,
126, e2020JG006044. https://doi.org/10.1029/2020JG006044
Schuur, E.A.G. 2020. Permafrost carbon [in “State of the Climate in
2019”]. Bull. Amer. Meteor. Soc. , 101 (8), S263–S265,
https://doi.org/10.1175/BAMS-D-20-0086.1.
Schuur, EAG, B Abbott, R Commane, J Ernakovich, E Euskirchen, G
Hugelius, G Grosse, M Jones, C Koven, V Leyshk, D Lawrence, M Loranty, M
Mauritz, D Olefeldt, S Natali, H Rodenhizer, V Salmon, C Schaedel, J
Strauss, C Treat, and M Turetsky. 2022. Permafrost and climate change:
Carbon cycle feedbacks from a warming Arctic. Annual Reviews of
Environment and Resources 47:28.1-28.29
https://doi.org/10.1146/annurev-environ-012220-011847
Schuur, E.A.G., and M.C. Mack. 2018. Ecological response to permafrost
thaw and consequences for local and global ecosystem services. Annual
Reviews of Ecology, Evolution, and Systematics. 49: 279-301.
Serikova, S., Pokrovsky, O.S., Ala-Aho, P. et al. High riverine CO2
emissions at the permafrost boundary of Western Siberia. Nature Geosci
11, 825–829 (2018). https://doi.org/10.1038/s41561-018-0218-1
Simpson, I. J., Edwards, G. C., Thurtell, G. W., den Hartog, G.,
Neumann, H. H., and Staebler, R. M. (1997), Micrometeorological
measurements of methane and nitrous oxide exchange above a boreal aspen
forest, J. Geophys. Res. , 102( D24), 29331– 29341,
doi:10.1029/97JD03181.
Schiller, C. L., and Hastie, D. R. (1996), Nitrous oxide and methane
fluxes from perturbed and unperturbed boreal forest sites in northern
Ontario, J. Geophys. Res ., 101( D17), 22767– 22774,
doi:10.1029/96JD01620.
Speetjens, N.J., Hugelius, G., Gumbricht, T., Lantuit, H., Berghuijs,
W.R., Pika, P.A., Poste, A. and Vonk, J.E., 2023. The pan-Arctic
catchment database (ARCADE). Earth System Science Data ,15 (2), pp.541-554.
Stanley, E.H., Casson, N.J., Christel, S.T., Crawford, J.T., Loken, L.C.
and Oliver, S.K., 2016. The ecology of methane in streams and rivers:
patterns, controls, and global significance. Ecological Monographs,
86(2), pp.146-171.
Terhaar, J., Lauerwald, R., Regnier, P. et al. Around one third of
current Arctic Ocean primary production sustained by rivers and coastal
erosion. Nat Commun 12, 169 (2021).
https://doi.org/10.1038/s41467-020-20470-z
Thornton, B. F., M. Wik, and P. M. Crill (2016), Double-counting
challenges the accuracy of high-latitude methane inventories, Geophys.
Res. Lett., 43, 12,569–12,577, doi:10.1002/ 2016GL071772.
Treat, CC, Bloom, AA, Marushchak, ME. Nongrowing season methane
emissions –a significant component of annual emissions across northern
ecosystems. Glob Change Biol. 2018; 24: 3331– 3343.
https://doi.org/10.1111/gcb.14137
Treharne, R., Rogers, B. M., Gasser, T., MacDonald, E., & Natali, S.
(2022). Identifying Barriers to Estimating Carbon Release From
Interacting Feedbacks in a Warming Arctic. Frontiers in Climate, 3.
https://doi.org/10.3389/fclim.2021.716464
Turetsky, M.R., Abbott, B.W., Jones, M.C. et al. Carbon release through
abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
https://doi.org/10.1038/s41561-019-0526-0
Ueyama, M., Iwata, H., Nagano, H., Tahara, N., Iwama, C. and Harazono,
Y., 2019. Carbon dioxide balance in early-successional forests after
forest fires in interior Alaska. Agricultural and Forest Meteorology,
275, pp.196-207.
Ullah, S., Frasier, R., Pelletier, L. and Moore, T.R., 2009. Greenhouse
gas fluxes from boreal forest soils during the snow-free period in
Quebec, Canada. Canadian Journal of Forest Research ,39 (3), pp.666-680.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T.,
Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C.,
Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire
emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9,
697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
Veraverbeke, S., Delcourt, C.J., Kukavskaya, E., Mack, M., Walker, X.,
Hessilt, T., Rogers, B. and Scholten, R.C., 2021. Direct and longer-term
carbon emissions from arctic-boreal fires: A short review of recent
advances. Current Opinion in Environmental Science & Health, 23,
p.100277.
Virkkala, A.-M., Virtanen, T., Lehtonen, A., Rinne, J., & Luoto, M.
(2018). The current state of CO2 flux chamber studies in the Arctic
tundra: A review. Progress in Physical Geography: Earth and
Environment , 42 (2), 162–184.
https://doi.org/10.1177/0309133317745784
Virkkala, A.-M., Natali, S. M., Rogers, B. M., Watts, J. D., Savage, K.,
Connon, S. J., Mauritz, M., Schuur, E. A. G., Peter, D., Minions, C.,
Nojeim, J., Commane, R., Emmerton, C. A., Goeckede, M., Helbig, M.,
Holl, D., Iwata, H., Kobayashi, H., Kolari, P., López-Blanco, E.,
Marushchak, M. E., Mastepanov, M., Merbold, L., Parmentier, F.-J. W.,
Peichl, M., Sachs, T., Sonnentag, O., Ueyama, M., Voigt, C., Aurela, M.,
Boike, J., Celis, G., Chae, N., Christensen, T. R., Bret-Harte, M. S.,
Dengel, S., Dolman, H., Edgar, C. W., Elberling, B., Euskirchen, E.,
Grelle, A., Hatakka, J., Humphreys, E., Järveoja, J., Kotani, A.,
Kutzbach, L., Laurila, T., Lohila, A., Mammarella, I., Matsuura, Y.,
Meyer, G., Nilsson, M. B., Oberbauer, S. F., Park, S.-J., Petrov, R.,
Prokushkin, A. S., Schulze, C., St. Louis, V. L., Tuittila, E.-S.,
Tuovinen, J.-P., Quinton, W., Varlagin, A., Zona, D., and Zyryanov, V.
I.: The ABCflux database: Arctic–boreal CO2 flux observations and
ancillary information aggregated to monthly time steps across
terrestrial ecosystems, Earth Syst. Sci. Data, 14, 179–208,
https://doi.org/10.5194/essd-14-179-2022, 2022.
Virkkala, A.-M., Aalto, J., Rogers, B. M., Tagesson, T., Treat, C. C.,
Natali, S. M., Watts, J. D., Potter, S., Lehtonen, A., Mauritz, M.,
Schuur, E. A. G., Kochendorfer, J., Zona, D., Oechel, W., Kobayashi, H.,
Humphreys, E., Goeckede, M., Iwata, H., Lafleur, P. M., Euskirchen, E.
S., Bokhorst, S., Marushchak, M., Martikainen, P. J., Elberling, B.,
Voigt, C., Biasi, C., Sonnentag, O., Parmentier, F.-J. W., Ueyama, M.,
Celis, G., St.Louis, V. L., Emmerton, C. A., Peichl, M., Chi, J.,
Järveoja, J., Nilsson, M. B., Oberbauer, S. F., Torn, M. S., Park,
S.-J., Dolman, H., Mammarella, I., Chae, N., Poyatos, R., López-Blanco,
E., Christensen, T. R., Kwon, M. J., Sachs, T., Holl, D., and Luoto, M.:
Statistical upscaling of ecosystem CO2 fluxes across the terrestrial
tundra and boreal domain: Regional patterns and uncertainties, Global
Change Biology, 27, 4040–4059, https://doi.org/10.1111/gcb.15659,
2021.
Voigt, C., Marushchak, M.E., Lamprecht, R.E., Jackowicz-Korczyński, M.,
Lindgren, A., Mastepanov, M., Granlund, L., Christensen, T.R.,
Tahvanainen, T., Martikainen, P.J. and Biasi, C., 2017. Increased
nitrous oxide emissions from Arctic peatlands after permafrost thaw.Proceedings of the National Academy of Sciences , 114 (24),
pp.6238-6243.
Voigt, C., Marushchak, M.E., Abbott, B.W., Biasi, C., Elberling, B.,
Siciliano, S.D., Sonnentag, O., Stewart, K.J., Yang, Y. and Martikainen,
P.J., 2020. Nitrous oxide emissions from permafrost-affected soils.
Nature Reviews Earth & Environment, 1(8), pp.420-434.
Walker XJ, Mack MC, Johnstone JF. Stable carbon isotope analysis reveals
widespread drought stress in boreal black spruce forests. Glob Chang
Biol. 2015;21(8):3102-3113.
Walker, X.J., Baltzer, J.L., Cumming, S.G., Day, N.J., Ebert, C., Goetz,
S., Johnstone, J.F., Potter, S., Rogers, B.M., Schuur, E.A. and
Turetsky, M.R., 2019. Increasing wildfires threaten historic carbon sink
of boreal forest soils. Nature, 572(7770), pp.520-523.
Walter Anthony, K.M., Anthony, P., Grosse, G. and Chanton, J., 2012.
Geologic methane seeps along boundaries of Arctic permafrost thaw and
melting glaciers. Nature Geoscience, 5(6), pp.419-426., DOI:
10.1038/ngeo1480
Walter Anthony, K., Schneider von Deimling, T., Nitze, I., Frolking, S.,
Emond, A., Daanen, R., Anthony, P., Lindgren, P., Jones, B. and Grosse,
G., 2018. 21st-century modeled permafrost carbon emissions accelerated
by abrupt thaw beneath lakes. Nature communications, 9(1), pp.1-11.
Watts, J. D., Farina, M., Kimball, J. S., Schiferl, L. D., Liu, Z.,
Arndt, K. A., Zona, D., Ballantyne, A., Euskirchen, E. S., Parmentier,
F.-J., Helbig, M., Sonnentag, O., Tagesson, T., Rinne, J., Ikawa, H.,
Ueyama, M., Kobayashi, H., Sachs, T., Nadeau, D. F. … Oechel, W.
C. (2023). Carbon uptake in Eurasian boreal forests dominates the
high-latitude net ecosystem carbon budget. Global Change Biology ,
29, 1870– 1889. https://doi.org/10.1111/gcb.16553
Wik, M., Varner, R.K., Anthony, K.W., MacIntyre, S. and Bastviken, D.,
2016. Climate-sensitive northern lakes and ponds are critical components
of methane release. Nature Geoscience, 9(2), pp.99-105.
Wilkerson, J., Dobosy, R., Sayres, D.S., Healy, C., Dumas, E., Baker, B.
and Anderson, J.G., 2019. Permafrost nitrous oxide emissions observed on
a landscape scale using the airborne eddy-covariance method.Atmospheric Chemistry and Physics , 19 (7), pp.4257-4268.
Yang, G., Peng, Y., Marushchak, M.E., Chen, Y., Wang, G., Li, F., Zhang,
D., Wang, J., Yu, J., Liu, L. and Qin, S., 2018. Magnitude and pathways
of increased nitrous oxide emissions from uplands following permafrost
thaw. Environmental science & technology , 52 (16),
pp.9162-9169.
Yuan, Y., Zhuang, Q., Zhao, B., and Shurpali, N.: Nitrous oxide
emissions from pan-Arctic terrestrial ecosystems: A process-based
biogeochemistry model analysis from 1969 to 2019, EGUsphere
[preprint],
https://doi.org/10.5194/egusphere-2023-1047, 2023.
Supplementary material