References

Abbott, B.W. and Jones, J.B., 2015. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Global Change Biology, 21(12), pp.4570-4587.
Biskaborn, B.K., Smith, S.L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D.A., Schoeneich, P., Romanovsky, V.E., Lewkowicz, A.G., Abramov, A. and Allard, M., 2019. Permafrost is warming at a global scale. Nature communications, 10(1), pp.1-11.
Bouskill, N.J., Mekonnen, Z., Zhu, Q., Grant, R. and Riley, W.J., 2022. Microbial contribution to post-fire tundra ecosystem recovery over the 21st century. Communications Earth & Environment , 3 (1), p.26.
Burke, E. J., Ekici, A., Huang, Y., Chadburn, S. E., Huntingford, C., Ciais, P., Friedlingstein, P., Peng, S., and Krinner, G.: Quantifying uncertainties of permafrost carbon–climate feedbacks, Biogeosciences, 14, 3051–3066, https://doi.org/10.5194/bg-14-3051-2017, 2017.
Burke, E., Chadburn, S. and Huntingford, C., 2022. Thawing permafrost as a nitrogen fertiliser: Implications for climate feedbacks. Nitrogen, 3(2), pp.353-375.
Butterbach-Bahl, K. and Dannenmann, M., 2011. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Current Opinion in Environmental Sustainability , 3 (5), pp.389-395.
Chen, Y., Liu, F., Kang, L., Zhang, D., Kou, D., Mao, C., Qin, S., Zhang, Q. and Yang, Y., 2021. Large‐scale evidence for microbial response and associated carbon release after permafrost thaw. Global Change Biology, 27(14), pp.3218-3229.
Christensen, T.R., Lund, M., Skov, K. et al. Multiple Ecosystem Effects of Extreme Weather Events in the Arctic. Ecosystems 24, 122–136 (2021). https://doi.org/10.1007/s10021-020-00507-6
Ciais, P., Bastos, A., Chevallier, F., Lauerwald, R., Poulter, B., Canadell, P., Hugelius, G., Jackson, R.B., Jain, A., Jones, M. and Kondo, M., 2022. Definitions and methods to estimate regional land carbon fluxes for the second phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2). Geoscientific Model Development, 15(3), pp.1289-1316.
Chadburn, S., Burke, E., Cox, P. et al. An observation-based constraint on permafrost loss as a function of global warming. Nature Clim Change 7, 340–344 (2017). https://doi.org/10.1038/nclimate3262
Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G., Duarte, C.M., Kortelainen, P., Downing, J.A., Middelburg, J.J. and Melack, J., 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems ,10 , pp.172-185.
Edwards M, Langdon C. Holocene thermokarst lake dynamics in northern interior Alaska: the interplay of climate, fire, and subsurface hydrology. Front Earth Sci. 2019;7(53):1-22.
Friedlingstein, P., Jones, M.W., O’Sullivan, M., Andrew, R.M., Bakker, D.C., Hauck, J., Le Quéré, C., Peters, G.P., Peters, W., Pongratz, J. and Sitch, S., 2022. Global carbon budget 2021. Earth System Science Data , 14 (4), pp.1917-2005.
Genet, H., McGuire, A. D., Barrett, K., Breen, A., Euskirchen, E. S., Johnstone, J. F., et al. (2013). Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska. Environmental Research Letters, 8(4), 045016. https://doi.org/10.1088/1748-9326/8/4/045016
Gibson, C.M., Chasmer, L.E., Thompson, D.K., Quinton, W.L., Flannigan, M.D. and Olefeldt, D., 2018. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nature communications ,9 (1), p.3041.
Grosse, G., Harden, J., Turetsky, M., McGuire, A.D., Camill, P., Tarnocai, C., Frolking, S., Schuur, E.A., Jorgenson, T., Marchenko, S. and Romanovsky, V., 2011. Vulnerability of high‐latitude soil organic carbon in North America to disturbance. Journal of Geophysical Research: Biogeosciences, 116(G4).
Hermesdorf, L., Elberling, B., D’Imperio, L., Xu, W., Lambæk, A. and Ambus, P.L., 2022. Effects of fire on CO2, CH4 and N2O exchange in a well‐drained Arctic heath ecosystem. Global Change Biology .
Holgerson, M.A. and Raymond, P.A., 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience, 9(3), pp.222-226.
Holloway, J.E., Lewkowicz, A.G., Douglas, T.A., Li, X., Turetsky, M.R., Baltzer, J.L. and Jin, H., 2020. Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects. Permafrost and Periglacial Processes, 31(3), pp.371-382.
Humborg, C., Mörth, C.M., Sundbom, M., Borg, H., Blenckner, T., Giesler, R. and Ittekkot, V., 2010. CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering. Global Change Biology, 16(7), pp.1966-1978.
IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926
Jafarov, E. E., Romanovsky, V. E., Genet, H., McGuire, A. D., & Marchenko, S. S. (2013). The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate. Environmental Research Letters, 8(3), 035030. https://doi.org/10.1088/1748-9326/8/3/035030
Kim, Y., and Tanaka, N., Effect of forest fire on the fluxes of CO2, CH4, and N2O in boreal forest soils, interior Alaska, J. Geophys. Res. , 108( D1), 8154, doi:10.1029/2001JD000663, 2003.
Kortelainen, P, Larmola, T, Rantakari, M, Juutinen, S, Alm, J, Martikainen, PJ. Lakes as nitrous oxide sources in the boreal landscape.Glob Change Biol . 2020; 26: 1432– 1445. https://doi.org/10.1111/gcb.14928
Köster, K., Köster, E., Berninger, F., Heinonsalo, J. and Pumpanen, J., 2018a. Contrasting effects of reindeer grazing on CO2, CH4, and N2O fluxes originating from the northern boreal forest floor. Land Degradation & Development , 29 (2), pp.374-381.
Köster, E., Köster, K., Berninger, F., Prokushkin, A., Aaltonen, H., Zhou, X. and Pumpanen, J., 2018b. Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. Journal of environmental management, 228, pp.405-415.
Kuhn, M.A., Varner, R.K., Bastviken, D., Crill, P., MacIntyre, S., Turetsky, M., Walter Anthony, K., McGuire, A.D. and Olefeldt, D., 2021a. BAWLD-CH4: A Comprehensive Dataset of Methane Fluxes from Boreal and Arctic Ecosystems. Earth System Science Data Discussions, pp.1-56.
Kuhn, M. A., Thompson, L. M., Winder, J. C., Braga, L. P. P., Tanentzap, A. J., Bastviken, D., & Olefeldt, D. 202)b. Opposing effects of climate and permafrost thaw on CH4 and CO2 emissions from northern lakes.AGU Advances , 2, e2021AV000515. https://doi.org/10.1029/2021AV000515
Kuhn, M.A., Thompson, L.M., Winder, J.C., Braga, L.P., Tanentzap, A.J., Bastviken, D. and Olefeldt, D., 2021c. Opposing effects of climate and permafrost thaw on CH4 and CO2 emissions from northern lakes. AGU Advances, 2(4), p.e2021AV000515.
Lacroix, F., Zaehle, S., Caldararu, S., Schaller, J., Stimmler, P., Holl, D., Kutzbach, L. and Göckede, M., 2022. Mismatch of N release from the permafrost and vegetative uptake opens pathways of increasing nitrous oxide emissions in the high Arctic. Global Change Biology .
Lantuit, H. et al. (2012). The Arctic Coastal Dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 35, 383–400.
Lauerwald, R., Regnier, P., Figueiredo, V., Enrich‐Prast, A., Bastviken, D., Lehner, B., et al. (2019). Natural lakes are a minor global source of N2O to the atmosphere. Global Biogeochemical Cycles, 33,1564-1581, https://doi.org/10.1029/2019GB006261
Li, G., Zhang, M., Pei, W., Melnikov, A., Khristoforov, I., Li, R. and Yu, F., 2022. Changes in permafrost extent and active layer thickness in the Northern Hemisphere from 1969 to 2018. Science of The Total Environment, 804, p.150182.
Liu, Z., Kimball, J.S., Ballantyne, A.P., Parazoo, N.C., Wang, W.J., Bastos, A., Madani, N., Natali, S.M., Watts, J.D., Rogers, B.M. and Ciais, P., 2022. Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions. Nature communications, 13(1), pp.1-13., https://www.nature.com/articles/s41467-022-33293-x
Liu, S., Kuhn, C., Amatulli, G., Aho, K., Butman, D.E., Allen, G.H., Lin, P., Pan, M., Yamazaki, D., Brinkerhoff, C. and Gleason, C., 2022. The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers. Proceedings of the National Academy of Sciences , 119 (11), p.e2106322119.
López-Blanco, E., Langen, P. L., Williams, M., Christensen, J. H., Boberg, F., Langley, K., and Christensen, T. R. (2022). The future of tundra carbon storage in Greenland – Sensitivity to climate and plant trait changes. Science of The Total Environment , 157385. https://doi.org/10.1016/j.scitotenv.2022
Maavara, T., Lauerwald, R., Laruelle, G., Akbarzadeh, Z., Bouskill, N., Van Cappellen, P., & Regnier, P. (2019). Nitrous oxide emissions from inland waters: Are IPCC estimates too high? Global Change Biology, 25(2), 473–488. https://doi.org/10.1111/gcb.14504
Mack, M.C., Walker, X.J., Johnstone, J.F., Alexander, H.D., Melvin, A.M., Jean, M. and Miller, S.N., 2021. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science, 372(6539), pp.280-283.
Marushchak, M.E., Pitkämäki, A., Koponen, H., Biasi, C., Seppälä, M. and Martikainen, P.J., 2011. Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Global Change Biology, 17(8), pp.2601-2614.
Marushchak, M.E., Kerttula, J., Diáková, K. et al., 2021. Thawing Yedoma permafrost is a neglected nitrous oxide source. Nat Commun 12, 7107. https://doi.org/10.1038/s41467-021-27386-2
Matson, A., Pennock, D. and Bedard-Haughn, A., 2009. Methane and nitrous oxide emissions from mature forest stands in the boreal forest, Saskatchewan, Canada. Forest Ecology and Management ,258 (7), pp.1073-1083.
Matthews, E., Johnson, M.S., Genovese, V., Du, J. and Bastviken, D., 2020. Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions. Scientific Reports, 10(1), pp.1-9.
McGuire, A.D., Christensen, T.R., Hayes, D., Heroult, A., Euskirchen, E., Kimball, J.S., Koven, C., Lafleur, P., Miller, P.A., Oechel, W. and Peylin, P., 2012. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences , 9 (8), pp.3185-3204.
Miner, K.R., Turetsky, M.R., Malina, E. et al. Permafrost carbon emissions in a changing Arctic. Nat Rev Earth Environ 3, 55–67 (2022). https://doi.org/10.1038/s43017-021-00230-3
Morishita, T., Hatano, R., and Desyatkin, R.V., 2007. N2O Flux in Alas Ecosystems Formed by Forest Disturbance Near Yakutsk, Eastern Siberia, Russia. Eurasian Journal of Forest Research , 10 (1), pp.79-84.
Mörner, N.-A. and Etiope, G. (2002) Carbon degassing from the lithosphere, Global Planet. Change, 33, 185–203.
Muster, S., Riley, W.J., Roth, K., Langer, M., Cresto Aleina, F., Koven, C.D., Lange, S., Bartsch, A., Grosse, G., Wilson, C.J. and Jones, B.M., 2019. Size distributions of Arctic waterbodies reveal consistent relations in their statistical moments in space and time. Frontiers in Earth Science, p.5.
Natali, S.M., Watts, J.D., Rogers, B.M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9, 852–857 (2019). https://doi.org/10.1038/s41558-019-0592-8
Natali, S.M., Holdren, J.P., Rogers, B.M., Treharne, R., Duffy, P.B., Pomerance, R. and MacDonald, E., 2021. Permafrost carbon feedbacks threaten global climate goals. Proceedings of the National Academy of Sciences, 118(21).
Obu, J.; Westermann, S.; Barboux, C.; Bartsch, A.; Delaloye, R.; Grosse, G.; Heim, B.; Hugelius, G.; Irrgang, A.; Kääb, A.M.; Kroisleitner, C.; Matthes, H.; Nitze, I.; Pellet, C.; Seifert, F.M.; Strozzi, T.; Wegmüller, U.; Wieczorek, M.; Wiesmann, A. (2021): ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost extent for the Northern Hemisphere, v3.0. NERC EDS Centre for Environmental Data Analysis, 28 June 2021. http://dx.doi.org/10.5285/6e2091cb0c8b4106921b63cd5357c97c
Olefeldt, D., Hovemyr, M., Kuhn, M.A., Bastviken, D., Bohn, T.J., Connolly, J., Crill, P., Euskirchen, E.S., Finkelstein, S.A., Genet, H. and Grosse, G., 2021. The Boreal–Arctic Wetland and Lake Dataset (BAWLD). Earth system science data, 13(11), pp.5127-5149.
Pallandt, M.M., Kumar, J., Mauritz, M., Schuur, E.A., Virkkala, A.M., Celis, G., Hoffman, F.M. and Göckede, M., 2022. Representativeness assessment of the pan-Arctic eddy covariance site network and optimized future enhancements. Biogeosciences , 19 (3), pp.559-583.
Palmtag, J., Obu, J., Kuhry, P., Richter, A., Siewert, M.B., Weiss, N., Westermann, S. and Hugelius, G., 2022. A high-spatial resolution soil carbon and nitrogen dataset for the northern permafrost region, based on circumpolar land cover upscaling. Earth System Science Data Discussions , pp.1-28.
Peltola, O., Vesala, T., Gao, Y., Räty, O., Alekseychik, P., Aurela, M., Chojnicki, B., Desai, A.R., Dolman, A.J., Euskirchen, E.S. and Friborg, T., 2019. Monthly gridded data product of northern wetland methane emissions based on upscaling<? xmltex\break?> eddy covariance observations.Earth System Science Data , 11 (3), pp.1263-1289.
Potter, S., Cooperdock, S., Veraverbeke, S., Walker, X., Mack, M. C., Goetz, S. J., Baltzer, J., Bourgeau-Chavez, L., Burrell, A., Dieleman, C., French, N., Hantson, S., Hoy, E. E., Jenkins, L., Johnstone, J. F., Kane, E. S., Natali, S. M., Randerson, J. T., Turetsky, M. R., Whitman, E., Wiggins, E., and Rogers, B. M.: Burned Area and Carbon Emissions Across Northwestern Boreal North America from 2001–2019, EGUsphere, https://doi.org/10.5194/egusphere-2022-364, 2022.
Randerson, J.T., Liu, H., Flanner, M.G., Chambers, S.D., Jin, Y., Hess, P.G., Pfister, G., Mack, M.C., Treseder, K.K., Welp, L.R. and Chapin, F.S., 2006. The impact of boreal forest fire on climate warming. science, 314(5802), pp.1130-1132.
Rantanen, M., Karpechko, A.Y., Lipponen, A. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun Earth Environ 3, 168 (2022). https://doi.org/10.1038/s43247-022-00498-3
Rocher‐Ros, G., Giesler, R., Lundin, E., Salimi, S., Jonsson, A. and Karlsson, J., 2017. Large lakes dominate CO2 evasion from lakes in an Arctic catchment. Geophysical Research Letters , 44 (24), pp.12-254.
Rodenhizer, H, Schuur, EAG et al. 2022. Abrupt Permafrost Thaw Accelerates Carbon Dioxide and Methane Release at a Tussock Tundra Site. Arctic and Alpine Research, in press.
Runge, A., Nitze, I. and Grosse, G., 2022. Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr.Remote Sensing of Environment , 268 , p.112752.
Schulze, C., Sonnentag, O., Voigt, C., Thompson, L., van Delden, L., Heffernan, L., et al. (2023). Nitrous oxide fluxes in permafrost peatlands remain negligible after wildfire and thermokarst disturbance.Journal of Geophysical Research: Biogeosciences , 128, e2022JG007322. https://doi.org/10.1029/2022JG007322
Schuur, E.A.G., J. Bockheim, J. Canadell, E. Euskirchen, C.B. Field, S.V Goryachkin, S. Hagemann, P. Kuhry, P. Lafleur, H. Lee, G. Mazhitova, F. E. Nelson, A. Rinke, V. Romanovsky, N. Shiklomanov, C. Tarnocai, S. Venevsky, J. G. Vogel, S.A. Zimov. 2008. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. BioScience 58: 701-714.
Schuur, E.A.G., J.G. Vogel, K.G. Crummer, H. Lee, J.O. Sickman, and T.E. Osterkamp. 2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459: 556-559. DOI: 10.1038/nature08031.
Schuur, E.A.G., B.W. Abbott, W.B. Bowden, V. Brovkin, P. Camill, J.P. Canadell, F.S. Chapin III, T.R. Christensen, J.P. Chanton, P. Ciais, P.M. Crill, B.T. Crosby, C.I. Czimczik, G. Grosse, D.J. Hayes, G. Hugelius, J.D. Jastrow, T. Kleinen, C.D, Koven, G. Krinner, P. Kuhry, D.M. Lawrence, S.M. Natali, C.L. Ping, A. Rinke, W.J. Riley, V.E. Romanovsky, A.B.K. Sannel, C. Schädel, K. Schaefer, Z.M. Subin, C. Tarnocai, M. Turetsky, K. M. Walter-Anthony, C.J. Wilson, and S.A. Zimov. 2011. High risk of permafrost thaw. Nature 480:32-33.
Schuur E.A.G., A.D. McGuire, G. Grosse, J.W. Harden, D.J. Hayes, G. Hugelius, C.D, Koven, P. Kuhry, D.M. Lawrence, S.M. Natali, D. Olefeldt, V.E. Romanovsky, C. Schädel, K. Schaefer, M. Turetsky, C. Treat, and J.E. Vonk. 2015. Climate change and the permafrost carbon feedback. Nature 520, 171–179.
Schuur, E. A. G., A. D. McGuire, V. Romanovsky, C. Schädel, and M. Mack, 2018: Chapter 11: Arctic and boreal carbon. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report [Cavallaro, N., G. Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S. C. Reed, P. Romero-Lankao, and Z. Zhu (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, pp. 428-468, https://doi.org/10.7930/ SOCCR2.2018.Ch11.
Schuur, EAG, Bracho, R, Celis, G, Belshe, EF, Ebert, C, Ledman, J, M Mauritz, EF Pegoraro, C Plaza, H Rodenhizer, V Romanovsky, Christina S, D Schirokauer, M Taylor, JG Vogel, EE Webb 2021. Tundra underlain by thawing permafrost persistently emits carbon to the atmosphere over 15 years of measurements. Journal of Geophysical Research: Biogeosciences, 126, e2020JG006044. https://doi.org/10.1029/2020JG006044
Schuur, E.A.G. 2020. Permafrost carbon [in “State of the Climate in 2019”]. Bull. Amer. Meteor. Soc. , 101 (8), S263–S265, https://doi.org/10.1175/BAMS-D-20-0086.1.
Schuur, EAG, B Abbott, R Commane, J Ernakovich, E Euskirchen, G Hugelius, G Grosse, M Jones, C Koven, V Leyshk, D Lawrence, M Loranty, M Mauritz, D Olefeldt, S Natali, H Rodenhizer, V Salmon, C Schaedel, J Strauss, C Treat, and M Turetsky. 2022. Permafrost and climate change: Carbon cycle feedbacks from a warming Arctic. Annual Reviews of Environment and Resources 47:28.1-28.29 https://doi.org/10.1146/annurev-environ-012220-011847
Schuur, E.A.G., and M.C. Mack. 2018. Ecological response to permafrost thaw and consequences for local and global ecosystem services. Annual Reviews of Ecology, Evolution, and Systematics. 49: 279-301.
Serikova, S., Pokrovsky, O.S., Ala-Aho, P. et al. High riverine CO2 emissions at the permafrost boundary of Western Siberia. Nature Geosci 11, 825–829 (2018). https://doi.org/10.1038/s41561-018-0218-1
Simpson, I. J., Edwards, G. C., Thurtell, G. W., den Hartog, G., Neumann, H. H., and Staebler, R. M. (1997), Micrometeorological measurements of methane and nitrous oxide exchange above a boreal aspen forest, J. Geophys. Res. , 102( D24), 29331– 29341, doi:10.1029/97JD03181.
Schiller, C. L., and Hastie, D. R. (1996), Nitrous oxide and methane fluxes from perturbed and unperturbed boreal forest sites in northern Ontario, J. Geophys. Res ., 101( D17), 22767– 22774, doi:10.1029/96JD01620.
Speetjens, N.J., Hugelius, G., Gumbricht, T., Lantuit, H., Berghuijs, W.R., Pika, P.A., Poste, A. and Vonk, J.E., 2023. The pan-Arctic catchment database (ARCADE). Earth System Science Data ,15 (2), pp.541-554.
Stanley, E.H., Casson, N.J., Christel, S.T., Crawford, J.T., Loken, L.C. and Oliver, S.K., 2016. The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecological Monographs, 86(2), pp.146-171.
Terhaar, J., Lauerwald, R., Regnier, P. et al. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat Commun 12, 169 (2021). https://doi.org/10.1038/s41467-020-20470-z
Thornton, B. F., M. Wik, and P. M. Crill (2016), Double-counting challenges the accuracy of high-latitude methane inventories, Geophys. Res. Lett., 43, 12,569–12,577, doi:10.1002/ 2016GL071772.
Treat, CC, Bloom, AA, Marushchak, ME. Nongrowing season methane emissions –a significant component of annual emissions across northern ecosystems. Glob Change Biol. 2018; 24: 3331– 3343. https://doi.org/10.1111/gcb.14137
Treharne, R., Rogers, B. M., Gasser, T., MacDonald, E., & Natali, S. (2022). Identifying Barriers to Estimating Carbon Release From Interacting Feedbacks in a Warming Arctic. Frontiers in Climate, 3. https://doi.org/10.3389/fclim.2021.716464
Turetsky, M.R., Abbott, B.W., Jones, M.C. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020). https://doi.org/10.1038/s41561-019-0526-0
Ueyama, M., Iwata, H., Nagano, H., Tahara, N., Iwama, C. and Harazono, Y., 2019. Carbon dioxide balance in early-successional forests after forest fires in interior Alaska. Agricultural and Forest Meteorology, 275, pp.196-207.
Ullah, S., Frasier, R., Pelletier, L. and Moore, T.R., 2009. Greenhouse gas fluxes from boreal forest soils during the snow-free period in Quebec, Canada. Canadian Journal of Forest Research ,39 (3), pp.666-680.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
Veraverbeke, S., Delcourt, C.J., Kukavskaya, E., Mack, M., Walker, X., Hessilt, T., Rogers, B. and Scholten, R.C., 2021. Direct and longer-term carbon emissions from arctic-boreal fires: A short review of recent advances. Current Opinion in Environmental Science & Health, 23, p.100277.
Virkkala, A.-M., Virtanen, T., Lehtonen, A., Rinne, J., & Luoto, M. (2018). The current state of CO2 flux chamber studies in the Arctic tundra: A review. Progress in Physical Geography: Earth and Environment , 42 (2), 162–184. https://doi.org/10.1177/0309133317745784
Virkkala, A.-M., Natali, S. M., Rogers, B. M., Watts, J. D., Savage, K., Connon, S. J., Mauritz, M., Schuur, E. A. G., Peter, D., Minions, C., Nojeim, J., Commane, R., Emmerton, C. A., Goeckede, M., Helbig, M., Holl, D., Iwata, H., Kobayashi, H., Kolari, P., López-Blanco, E., Marushchak, M. E., Mastepanov, M., Merbold, L., Parmentier, F.-J. W., Peichl, M., Sachs, T., Sonnentag, O., Ueyama, M., Voigt, C., Aurela, M., Boike, J., Celis, G., Chae, N., Christensen, T. R., Bret-Harte, M. S., Dengel, S., Dolman, H., Edgar, C. W., Elberling, B., Euskirchen, E., Grelle, A., Hatakka, J., Humphreys, E., Järveoja, J., Kotani, A., Kutzbach, L., Laurila, T., Lohila, A., Mammarella, I., Matsuura, Y., Meyer, G., Nilsson, M. B., Oberbauer, S. F., Park, S.-J., Petrov, R., Prokushkin, A. S., Schulze, C., St. Louis, V. L., Tuittila, E.-S., Tuovinen, J.-P., Quinton, W., Varlagin, A., Zona, D., and Zyryanov, V. I.: The ABCflux database: Arctic–boreal CO2 flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems, Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, 2022.
Virkkala, A.-M., Aalto, J., Rogers, B. M., Tagesson, T., Treat, C. C., Natali, S. M., Watts, J. D., Potter, S., Lehtonen, A., Mauritz, M., Schuur, E. A. G., Kochendorfer, J., Zona, D., Oechel, W., Kobayashi, H., Humphreys, E., Goeckede, M., Iwata, H., Lafleur, P. M., Euskirchen, E. S., Bokhorst, S., Marushchak, M., Martikainen, P. J., Elberling, B., Voigt, C., Biasi, C., Sonnentag, O., Parmentier, F.-J. W., Ueyama, M., Celis, G., St.Louis, V. L., Emmerton, C. A., Peichl, M., Chi, J., Järveoja, J., Nilsson, M. B., Oberbauer, S. F., Torn, M. S., Park, S.-J., Dolman, H., Mammarella, I., Chae, N., Poyatos, R., López-Blanco, E., Christensen, T. R., Kwon, M. J., Sachs, T., Holl, D., and Luoto, M.: Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties, Global Change Biology, 27, 4040–4059, https://doi.org/10.1111/gcb.15659, 2021.
Voigt, C., Marushchak, M.E., Lamprecht, R.E., Jackowicz-Korczyński, M., Lindgren, A., Mastepanov, M., Granlund, L., Christensen, T.R., Tahvanainen, T., Martikainen, P.J. and Biasi, C., 2017. Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw.Proceedings of the National Academy of Sciences , 114 (24), pp.6238-6243.
Voigt, C., Marushchak, M.E., Abbott, B.W., Biasi, C., Elberling, B., Siciliano, S.D., Sonnentag, O., Stewart, K.J., Yang, Y. and Martikainen, P.J., 2020. Nitrous oxide emissions from permafrost-affected soils. Nature Reviews Earth & Environment, 1(8), pp.420-434.
Walker XJ, Mack MC, Johnstone JF. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests. Glob Chang Biol. 2015;21(8):3102-3113.
Walker, X.J., Baltzer, J.L., Cumming, S.G., Day, N.J., Ebert, C., Goetz, S., Johnstone, J.F., Potter, S., Rogers, B.M., Schuur, E.A. and Turetsky, M.R., 2019. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature, 572(7770), pp.520-523.
Walter Anthony, K.M., Anthony, P., Grosse, G. and Chanton, J., 2012. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nature Geoscience, 5(6), pp.419-426., DOI: 10.1038/ngeo1480
Walter Anthony, K., Schneider von Deimling, T., Nitze, I., Frolking, S., Emond, A., Daanen, R., Anthony, P., Lindgren, P., Jones, B. and Grosse, G., 2018. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nature communications, 9(1), pp.1-11.
Watts, J. D., Farina, M., Kimball, J. S., Schiferl, L. D., Liu, Z., Arndt, K. A., Zona, D., Ballantyne, A., Euskirchen, E. S., Parmentier, F.-J., Helbig, M., Sonnentag, O., Tagesson, T., Rinne, J., Ikawa, H., Ueyama, M., Kobayashi, H., Sachs, T., Nadeau, D. F. … Oechel, W. C. (2023). Carbon uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget. Global Change Biology , 29, 1870– 1889. https://doi.org/10.1111/gcb.16553
Wik, M., Varner, R.K., Anthony, K.W., MacIntyre, S. and Bastviken, D., 2016. Climate-sensitive northern lakes and ponds are critical components of methane release. Nature Geoscience, 9(2), pp.99-105.
Wilkerson, J., Dobosy, R., Sayres, D.S., Healy, C., Dumas, E., Baker, B. and Anderson, J.G., 2019. Permafrost nitrous oxide emissions observed on a landscape scale using the airborne eddy-covariance method.Atmospheric Chemistry and Physics , 19 (7), pp.4257-4268.
Yang, G., Peng, Y., Marushchak, M.E., Chen, Y., Wang, G., Li, F., Zhang, D., Wang, J., Yu, J., Liu, L. and Qin, S., 2018. Magnitude and pathways of increased nitrous oxide emissions from uplands following permafrost thaw. Environmental science & technology , 52 (16), pp.9162-9169.
Yuan, Y., Zhuang, Q., Zhao, B., and Shurpali, N.: Nitrous oxide emissions from pan-Arctic terrestrial ecosystems: A process-based biogeochemistry model analysis from 1969 to 2019, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1047, 2023.

Supplementary material