References
Aggleton, J. P., Neave, N., Nagle, S., & Sahgal, A. (1995). A
comparison of the effects of medial prefrontal, cingulate cortex, and
cingulum bundle lesions on tests of spatial memory: Evidence of a double
dissociation between frontal and cingulum bundle contributions.Journal of Neuroscience , 15 (11), 7270–7281.
https://doi.org/10.1523/jneurosci.15-11-07270.1995
Aggleton, John P., & Christiansen, K. (2015). The subiculum: The heart
of the extended hippocampal system. In Progress in Brain Research(1st ed., Vol. 219). Elsevier B.V.
https://doi.org/10.1016/bs.pbr.2015.03.003
Aggleton, John P., & O’Mara, S. M. (2022). The anterior thalamic
nuclei: core components of a tripartite episodic memory system.Nature Reviews Neuroscience .
https://doi.org/10.1038/s41583-022-00591-8
Anagnostaras, S. G., Gale, G. D., & Fanselow, M. S. (2001). Hippocampus
and contextual fear conditioning: Recent controversies and advances.Hippocampus , 11 (1), 8–17.
https://doi.org/10.1002/1098-1063(2001)11:1<8::AID-HIPO1015>3.0.CO;2-7
Bannerman, D. M., Rawlins, J. N. P., McHugh, S. B., Deacon, R. M. J.,
Yee, B. K., Bast, T., Zhang, W. N., Pothuizen, H. H. J., & Feldon, J.
(2004). Regional dissociations within the hippocampus - Memory and
anxiety. Neuroscience and Biobehavioral Reviews , 28 (3),
273–283. https://doi.org/10.1016/j.neubiorev.2004.03.004
Brown, M. B., & Forsythe, A. B. (1974). Robust tests for the equality
of variances. Journal of the American Statistical Association ,69 (346), 364–367. https://doi.org/10.1080/01621459.1974.10482955
Bubb, E. J., Aggleton, J. P., O’Mara, S. M., & Nelson, A. J. D. (2021).
Chemogenetics Reveal an Anterior Cingulate-Thalamic Pathway for
Attending to Task-Relevant Information. Cerebral Cortex ,31 (4), 2169–2186. https://doi.org/10.1093/cercor/bhaa353
Bubb, E. J., Kinnavane, L., & Aggleton, J. P. (2017).
Hippocampal–diencephalic–cingulate networks for memory and emotion: An
anatomical guide. Brain and Neuroscience Advances , 1 ,
239821281772344. https://doi.org/10.1177/2398212817723443
Burzynska, A. Z., Ganster, D. C., Fanning, J., Salerno, E. A., Gothe, N.
P., Voss, M. W., McAuley, E., & Kramer, A. F. (2020). Occupational
Physical Stress Is Negatively Associated With Hippocampal Volume and
Memory in Older Adults. Frontiers in Human Neuroscience ,14 (July), 1–9. https://doi.org/10.3389/fnhum.2020.00266
Byrne, P., Becker, S., & Burgess, N. (2007). Remembering the past and
imagining the future: A neural model of spatial memory and imagery.Psychological Review , 114 (2), 340–375.
https://doi.org/10.1037/0033-295X.114.2.340
Cooper, B. G., & Mizumori, S. J. Y. (2001). Temporary inactivation of
the retrosplenial cortex causes a transient reorganization of spatial
coding in the hippocampus. Journal of Neuroscience ,21 (11), 3986–4001.
https://doi.org/10.1523/jneurosci.21-11-03986.2001
Czajkowski, R., Jayaprakash, B., Wiltgen, B., Rogerson, T.,
Guzman-Karlsson, M. C., Barth, A. L., Trachtenberg, J. T., & Silva, A.
J. (2014). Encoding and storage of spatial information in the
retrosplenial cortex. Proceedings of the National Academy of
Sciences of the United States of America , 111 (23), 8661–8666.
https://doi.org/10.1073/pnas.1313222111
Czajkowski, R., Zglinicki, B., Rejmak, E., & Konopka, W. (2020).
Strategy-specific patterns of arc expression in the retrosplenial cortex
and hippocampus during t-maze learning in rats. Brain Sciences ,10 (11), 1–9. https://doi.org/10.3390/brainsci10110854
De Sousa, A. F., Cowansage, K. K., Zutshi, I., Cardozo, L. M., Yoo, E.
J., Leutgeb, S., & Mayford, M. (2019). Optogenetic reactivation of
memory ensembles in the retrosplenial cortex induces systems
consolidation. Proceedings of the National Academy of Sciences of
the United States of America , 116 (17), 8576–8581.
https://doi.org/10.1073/pnas.1818432116
Dudchenko, P. A., & Davidson, M. (2002). Rats use a sense of direction
to alternate on T-mazes located in adjacent rooms. Animal
Cognition , 5 (2), 115–118.
https://doi.org/10.1007/s10071-002-0134-y
Dudchenko, P. a. (2001). How do rats actually solve the T-maze(pp. 115; 4: 850-860).
Douglas, R. J. (1966). Cues for spontaneous alternation. Journal
of Comparative and Physiological Psychology, 62 (2),
171–183. https://doi.org/10.1037/h0023668
Eichenbaum, H. (2017). The role of the hippocampus in navigation is
memory. Journal of Neurophysiology , 117 (4), 1785–1796.
https://doi.org/10.1152/jn.00005.2017
Elduayen, C., & Save, E. (2014). The retrosplenial cortex is necessary
for path integration in the dark. Behavioural Brain Research ,272 , 303–307. https://doi.org/10.1016/j.bbr.2014.07.009
Frankland, P. W., & Bontempi, B. (2005). The organization of recent and
remote memories. Nature Reviews Neuroscience , 6 (2),
119–130. https://doi.org/10.1038/nrn1607
Gao, M., Noguchi, A., & Ikegaya, Y. (2021). The subiculum sensitizes
retrosplenial cortex layer 2/3 pyramidal neurons. Journal of
Physiology , 94 (12), 3151–3167. https://doi.org/10.1113/JP281152
Gomez, J. L., Bonaventura, J., Lesniak, W., Mathews, W. B., Sysa-Shah,
P., Rodriguez, L. A., Ellis, R. J., Richie, C. T., Harvey, B. K.,
Dannals, R. F., Pomper, M. G., Bonci, A., & Michaelides, M. (2017).
Chemogenetics revealed: DREADD occupancy and activation via converted
clozapine. Science , 357 (6350), 503–507.
https://doi.org/10.1126/science.aan2475
Hayashi, T., Oguro, M., & Sato, N. (2020). Involvement of the
retrosplenial cortex in the processing of the temporal aspect of
episodic-like memory in rats. Neuroscience Research , 154 ,
52–55. https://doi.org/10.1016/j.neures.2019.05.005
Horikawa, K., Kinjo, N., Stanley, L. C., & Powell, E. W. (1988).
Topographic organization and collateralization of the projections of the
anterior and laterodorsal thalamic nuclei to cingulate areas 24 and 29
in the rat. Neuroscience Research , 6 (1), 31–44.
https://doi.org/10.1016/0168-0102(88)90004-1
Hunt, P. R., Neave, N., Shaw, C., & Aggleton, J. P. (1994). The effects
of lesions to the fornix and dorsomedial thalamus on concurrent
discrimination learning by rats. Behavioural Brain Research ,62 (2), 195–205. https://doi.org/10.1016/0166-4328(94)90028-0
JASP Team (2022). JASP (Version 0.16.3)[Computer software]
Johnsen, S. H. W., & Rytter, H. M. (2021). Dissociating spatial
strategies in animal research: Critical methodological review with focus
on egocentric navigation and the hippocampus. Neuroscience and
Biobehavioral Reviews , 126 (March), 57–78.
https://doi.org/10.1016/j.neubiorev.2021.03.022
Keene, C. S., & Bucci, D. J. (2008). Neurotoxic Lesions of
Retrosplenial Cortex Disrupt Signaled and Unsignaled Contextual Fear
Conditioning. Behavioral Neuroscience , 122 (5), 1070–1077.
https://doi.org/10.1037/a0012895
Kinnavane, L., Amin, E., Aggleton, J. P., & Nelson, A. J. D. (2019). Do
the rat anterior thalamic nuclei contribute to behavioural flexibility?Behavioural Brain Research , 359 (October 2018), 536–549.
https://doi.org/10.1016/j.bbr.2018.10.012
Kinnavane, L., Vann, S. D., Nelson, A. J. D., O’Mara, S. M., &
Aggleton, J. P. (2018). Collateral projections innervate the mammillary
bodies and retrosplenial cortex: A new category of hippocampal cells.ENeuro , 5 (1), 1–14.
https://doi.org/10.1523/ENEURO.0383-17.2018
Kitanishi, T., Umaba, R., & Mizuseki, K. (2021). Robust information
routing by dorsal subiculum neurons. Science Advances ,7 (11), 1–22. https://doi.org/10.1126/sciadv.abf1913
Lever, C., Burton, S., Jeewajee, A., O’Keefe, J., & Burgess, N. (2009).
Boundary vector cells in the subiculum of the hippocampal formation.Journal of Neuroscience , 29 (31), 9771–9777.
https://doi.org/10.1523/JNEUROSCI.1319-09.2009
Maguire, E. A. (2001). The retrosplenial contribution to human
navigation: A review of lesion and neuroimaging findings.Scandinavian Journal of Psychology , 42 (3), 225–238.
https://doi.org/10.1111/1467-9450.00233
Manvich, D. F., Webster, K. A., Foster, S. L., Farrell, M. S., Ritchie,
J. C., Porter, J. H., & Weinshenker, D. (2018). The DREADD agonist
clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces
clozapine-like interoceptive stimulus effects in rats and mice.Scientific Reports , 8 (1), 1–10.
https://doi.org/10.1038/s41598-018-22116-z
Melo, M. B. de, Favaro, V. M., & Oliveira, M. G. M. (2020). The dorsal
subiculum is required for contextual fear conditioning consolidation in
rats. Behavioural Brain Research , 390 (March).
https://doi.org/10.1016/j.bbr.2020.112661
Milczarek, M. M., Vann, S. D., & Sengpiel, F. (2018). Spatial Memory
Engram in the Mouse Retrosplenial Cortex. Current Biology ,28 (12), 1975-1980.e6. https://doi.org/10.1016/j.cub.2018.05.002
Miller, A. M. P., Mau, W., & Smith, D. M. (2019). Retrosplenial
Cortical Representations of Space and Future Goal Locations Develop with
Learning. Current Biology , 29 (12), 2083-2090.e4.
https://doi.org/10.1016/j.cub.2019.05.034
Miller, A. P., Vedder, L. C., Law, M. L., & Smith, D. M. (2014). Cues,
context, and long-term memory: The role of the retrosplenial cortex in
spatial cognition. Frontiers in Human Neuroscience ,8 (AUG), 1–15. https://doi.org/10.3389/fnhum.2014.00586
Miyashita, T., & Rockland, K. S. (2007). GABAergic projections from the
hippocampus to the retrosplenial cortex in the rat. European
Journal of Neuroscience , 26 (5), 1193–1204.
https://doi.org/10.1111/j.1460-9568.2007.05745.x
Mizumori, S. J. Y., Cooper, B. G., Leutgeb, S., & Mizumori, S. J. Y.
(2000). A neural systems analysis of adaptive navigation.Molecular Neurobiology , 21 (1–2), 57–82.
https://doi.org/10.1385/MN:21:1-2:057
Morris, R. G. M., Schenk, F., Tweedie, F., & Jarrard, L. E. (1990).
Ibotenate Lesions of Hippocampus and/or Subiculum: Dissociating
Components of Allocentric Spatial Learning. European Journal of
Neuroscience , 2 (12), 1016–1028.
https://doi.org/10.1111/j.1460-9568.1990.tb00014.x
Moser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid
cells, and the brain’s spatial representation system. Annual
Review of Neuroscience , 31 , 69–89.
https://doi.org/10.1146/annurev.neuro.31.061307.090723
Moser, M. B., & Moser, E. I. (1998). Functional differentiation in the
hippocampus. Hippocampus , 8 (6), 608–619.
https://doi.org/10.1002/(SICI)1098-1063(1998)8:6<608::AID-HIPO3>3.0.CO;2-7
Nelson, A. J. D., Hindley, E. L., Vann, S. D., & Aggleton, J. P.
(2018). When is the rat retrosplenial cortex required for stimulus
integration? Behavioral Neuroscience , 132 (5), 366–377.
https://doi.org/10.1037/bne0000267
Nelson, A. J., Hindley, E. L., Pearce, J. M., Vann, S. D., & Aggleton,
J. P. (2015). The effect of retrosplenial cortex lesions in rats on
incidental and active spatial learning. Frontiers in Behavioral
Neuroscience , 9 (FEB), 1–16.
https://doi.org/10.3389/fnbeh.2015.00011
Nestor, P. J., Fryer, T. D., Ikeda, M., & Hodges, J. R. (2003).
Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive
impairment (prodromal Alzheimer’s disease). European Journal of
Neuroscience , 18 (9), 2663–2667.
https://doi.org/10.1046/j.1460-9568.2003.02999.x
O’Keefe, J., & Nadel, L. (1979). Hippocampus as cognitive map .
487–533.
O’Mara, S. (2005). The subiculum: What it does, what it might do, and
what neuroanatomy has yet to tell us. Journal of Anatomy ,207 (3), 271–282.
https://doi.org/10.1111/j.1469-7580.2005.00446.x
O’Mara, S. M., Sanchez-Vives, M. V., Brotons-Mas, J. R., & O’Hare, E.
(2009). Roles for the subiculum in spatial information processing,
memory, motivation and the temporal control of behaviour. Progress
in Neuro-Psychopharmacology and Biological Psychiatry , 33 (5),
782–790. https://doi.org/10.1016/j.pnpbp.2009.03.040
Pan, T.-T., Liu, C., Li, D.-M., Zhang, T.-H., Zhang, W., Zhao, S.-L.,
Zhou, Q.-X., Nie, B.-B., Zhu, G.-H., Xu, L., & Liu, H. (2022).
Retrosplenial Cortex Effects Contextual Fear Formation Relying on
Dysgranular Constituent in Rats. Frontiers in Neuroscience ,16 (May), 1–10. https://doi.org/10.3389/fnins.2022.886858
Pothuizen, H. H. J., Aggleton, J. P., & Vann, S. D. (2008). Do rats
with retrosplenial cortex lesions lack direction? European Journal
of Neuroscience , 28 (12), 2486–2498.
https://doi.org/10.1111/j.1460-9568.2008.06550.x
Pothuizen, H. H. J., Davies, M., Aggleton, J. P., & Vann, S. D. (2010).
Effects of selective granular retrosplenial cortex lesions on spatial
working memory in rats. Behavioural Brain Research ,208 (2), 566–575. https://doi.org/10.1016/j.bbr.2010.01.001
Pothuizen, H. H. J., Davies, M., Albasser, M. M., Aggleton, J. P., &
Vann, S. D. (2009). Granular and dysgranular retrosplenial cortices
provide qualitatively different contributions to spatial working memory:
Evidence from immediate-early gene imaging in rats. European
Journal of Neuroscience , 30 (5), 877–888.
https://doi.org/10.1111/j.1460-9568.2009.06881.x
Potvin, O., Doré, F. Y., & Goulet, S. (2007). Contributions of the
dorsal hippocampus and the dorsal subiculum to processing of idiothetic
information and spatial memory. Neurobiology of Learning and
Memory , 87 (4), 669–678.
https://doi.org/10.1016/j.nlm.2007.01.002
Potvin, O., Doré, F. Y., & Goulet, S. (2009). Lesions of the dorsal
subiculum and the dorsal hippocampus impaired pattern separation in a
task using distinct and overlapping visual stimuli. Neurobiology
of Learning and Memory , 91 (3), 287–297.
https://doi.org/10.1016/j.nlm.2008.10.003
Potvin, O., Lemay, F., Dion, M., Corado, G., Doré, F. Y., & Goulet, S.
(2010). Contribution of the dorsal subiculum to memory for temporal
order and novelty detection using objects, odors, or spatial locations
in the rat. Neurobiology of Learning and Memory , 93 (3),
330–336. https://doi.org/10.1016/j.nlm.2009.11.007
Powell, A., Connelly, W. M., Vasalauskaite, A., Nelson, A. J. D., Vann,
S. D., Aggleton, J. P., Sengpiel, F., & Ranson, A. (2020). Stable
Encoding of Visual Cues in the Mouse Retrosplenial Cortex.Cerebral Cortex , January 2001 , 1–14.
https://doi.org/10.1093/cercor/bhaa030
Roth, B. L. (2016). DREADDs for Neuroscientists. Neuron ,89 (4), 683–694. https://doi.org/10.1016/j.neuron.2016.01.040
Roth, B. L. (2017). Use of DREADDS. Neuron , 89 (4),
683–694. https://doi.org/10.1016/j.neuron.2016.01.040.DREADDs
Smith, D. M., Barredo, J., & Mizumori, S. J. Y. (2012). Complimentary
roles of the hippocampus and retrosplenial cortex in behavioral context
discrimination. Hippocampus , 22 (5), 1121–1133.
https://doi.org/10.1002/hipo.20958
Sripanidkulchai, K., & Wyss, J. M. (1986). Thalamic projections to
retrosplenial cortex in the rat. Journal of Comparative
Neurology , 254 (2), 143–165.
https://doi.org/10.1002/cne.902540202
Strange, B. A., Witter, M. P., Lein, E. S., & Moser, E. I. (2014).
Functional organization of the hippocampal longitudinal axis.Nature Reviews Neuroscience , 15 (10), 655–669.
https://doi.org/10.1038/nrn3785
Sugar, J., Witter, M. P., van Strien, N. M., & Cappaert, N. L. M.
(2011). The retrosplenial cortex: Intrinsic connectivity and connections
with the (para)hippocampal region in the rat. An interactive connectome.Frontiers in Neuroinformatics , 5 (July), 1–13.
https://doi.org/10.3389/fninf.2011.00007
Sutherland, R. J., & Rodriguez, A. J. (1989). The role of the
fornix/fimbria and some related subcortical structures in place learning
and memory. Behavioural Brain Research , 32 (3), 265–277.
https://doi.org/10.1016/S0166-4328(89)80059-2
Sutherland, Robert J., & Hoesing, J. M. (1993). Posterior Cingulate
Cortex and Spatial Memory: A Microlimnology Analysis. Neurobiology
of Cingulate Cortex and Limbic Thalamus , 461–477.
https://doi.org/10.1007/978-1-4899-6704-6_17
Tabachnick, B. G. & Fidell, L. S. (2018). Using Multivariate Statitics.
7th ed. Pearson, 2018
Troy Harker, K., & Whishaw, I. Q. (2004). A reaffirmation of the
retrosplenial contribution to rodent navigation: Reviewing the
influences of lesion, strain, and task. Neuroscience and
Biobehavioral Reviews , 28 (5), 485–496.
https://doi.org/10.1016/j.neubiorev.2004.06.005
Tsai, T. C., Yu, T. H., Hung, Y. C., Fong, L. I., & Hsu, K. Sen.
(2022). Distinct Contribution of Granular and Agranular Subdivisions of
the Retrosplenial Cortex to Remote Contextual Fear Memory Retrieval.The Journal of Neuroscience : The Official Journal of the Society
for Neuroscience , 42 (5), 877–893.
https://doi.org/10.1523/JNEUROSCI.1303-21.2021
Umaba, R., Kitanishi, T., & Mizuseki, K. (2021). Monosynaptic
connection from the subiculum to medial mammillary nucleus neurons
projecting to the anterior thalamus and Gudden’s ventral tegmental
nucleus. Neuroscience Research , 171 (xxxx), 1–8.
https://doi.org/10.1016/j.neures.2021.01.006
van Groen, T., & Wyss, J. M. (1992). Connections of the retrosplenial
dysgranular cortex in the rat. Journal of Comparative Neurology ,315 (2), 200–216. https://doi.org/10.1002/cne.903150207
Vann, S. D., & Aggleton, J. P. (2004). Testing the importance of the
retrosplenial guidance system: Effects of different sized retrosplenial
cortex lesions on heading direction and spatial working memory.Behavioural Brain Research , 155 (1), 97–108.
https://doi.org/10.1016/j.bbr.2004.04.005
Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the
retrosplenial cortex do? Nature Reviews Neuroscience ,10 (11), 792–802. https://doi.org/10.1038/nrn2733
Vann, S. D., Wilton, L. A. K., Muir, J. L., & Aggleton, J. P. (2003).
Testing the importance of the caudal retrosplenial cortex for spatial
memory in rats. Behavioural Brain Research , 140 (1–2),
107–118. https://doi.org/10.1016/S0166-4328(02)00274-7
Vogt, B. A., & Paxinos, G. (2012). Cytoarchitecture of mouse and
rat cingulate cortex with human homologies . 1909 .
https://doi.org/10.1007/s00429-012-0493-3
Wesierska, M., Adamska, I., & Malinowska, M. (2009). Retrosplenial
cortex lesion affected segregation of spatial information in place
avoidance task in the rat. Neurobiology of Learning and Memory ,91 (1), 41–49. https://doi.org/10.1016/j.nlm.2008.09.005
Witter, M. P. (2006). Connections of the subiculum of the rat:
Topography in relation to columnar and laminar organization.Behavioural Brain Research , 174 (2), 251–264.
https://doi.org/10.1016/j.bbr.2006.06.022
Witter, M. P., Ostendorf, R. H., & Groenewegen, H. J. (1990).
Heterogeneity in the Dorsal Subiculum of the Rat. Distinct Neuronal
Zones Project to Different Cortical and Subcortical Targets.European Journal of Neuroscience , 2 (8), 718–725.
https://doi.org/10.1111/j.1460-9568.1990.tb00462.x
Wolbers, T., & Büchel, C. (2005). Dissociable retrosplenial and
hippocampal contributions to successful formation of survey
representations. Journal of Neuroscience , 25 (13),
3333–3340. https://doi.org/10.1523/JNEUROSCI.4705-04.2005
Yamawaki, N., Corcoran, K. A., Guedea, A. L., Shepherd, G. M. G., &
Radulovic, J. (2019a). Differential Contributions of Glutamatergic
Hippocampal→Retrosplenial Cortical Projections to the Formation and
Persistence of Context Memories. Cerebral Cortex , 29 (6),
2728–2736. https://doi.org/10.1093/cercor/bhy142
Yamawaki, N., Li, X., Lambot, L., Ren, L. Y., Radulovic, J., &
Shepherd, G. M. G. (2019b). Long-range inhibitory intersection of a
retrosplenial thalamocortical circuit by apical tuft-targeting CA1
neurons. Nature Neuroscience , 22 (April).
https://doi.org/10.1038/s41593-019-0355-x
Yamawaki, N., Radulovic, J., & Shepherd, G. M. G. (2016). A
corticocortical circuit directly links retrosplenial cortex to M2 in the
mouse. Journal of Neuroscience , 36 (36), 9365–9374.
https://doi.org/10.1523/JNEUROSCI.1099-16.2016