References
Adamack AT, Gruber B (2014) PopGenReport: simplifying basic population
genetic analyses in R. Methods in Ecology and Evolution 5:384–387. doi:
10.1111/2041-210X.12158
Aizawa M, Maekawa K, Mochizuki H, et al (2018) Unveiling the origin of
Quercus serrata subsp. mongolicoides found in Honshu, Japan, by using
genetic and morphological analyses. Plant Species Biology 33:174–190.
doi: 10.1111/1442-1984.12207
Aizawa M, Maekawa K, Mochizuki H, Iizuka K (2021) Taxonomic revision of
quercus serrata subsp. Mongolicoides. Acta Phytotaxonomica et
Geobotanica 72:113–123. doi: 10.18942/apg.202017
Bekku YS, Kurokochi H, Matsuki Y, et al (2019) Genetic structure of
Pinus parviflora on Mt. Fuji in relation to the hoarding behavior of the
Japanese nutcracker. Ecosphere 10:3–8. doi: 10.1002/ecs2.2694
Bettin O, Cornejo C, Edwards PJ, Holderegger R (2007) Phylogeography of
the high alpine plant Senecio halleri (Asteraceae) in the European Alps:
In situ glacial survival with postglacial stepwise dispersal into
peripheral areas. Molecular Ecology 16:2517–2524. doi:
10.1111/j.1365-294X.2007.03273.x
Bohutínská M, Vlček J, Yair S, et al (2021) Genomic basis of parallel
adaptation varies with divergence in Arabidopsis and its relatives.
Proceedings of the National Academy of Sciences of the United States of
America. doi: 10.1073/pnas.2022713118
Brookfield JFY (1996) A simple new method for estimating null allele
frequency from heterozygote deficiency. Molecular Ecology 5:453–455.
doi: 10.1046/j.1365-294X.1996.00098.x
Fujii N, Senni K (2006) Phylogeography of Japanese alpine plants:
Biogeographic importance of alpine region of Central Honshu in Japan.
Taxon 55:43–52. doi: 10.2307/25065527
Gomez JM (2003) Spatial patterns in long-distance dispersal of Quercus
ilex acorns by jays in a heterogeneous landscape. Ecography 26:573–584.
Goudet J (2005) Hierfstat, a package for R to compute and test variance
components and F-statistics. Molecular Ecology Notes 5:184–186.
Hipp AL, Manos PS, Hahn M, et al (2020) Genomic landscape of the global
oak phylogeny. New Phytologist 226:1198–1212. doi: 10.1111/nph.16162
Hirao AS, Shimono Y, Narita K, et al (2019) Ecotypic divergences of the
alpine herb Potentilla matsumurae adapted to fellfield–snowbed habitats
across a series of mountain sky islands. American Journal of Botany
106:772–787. doi: 10.1002/ajb2.1290
Holliday JA, Zhou L, Bawa R, et al (2016) Evidence for extensive
parallelism but divergent genomic architecture of adaptation along
altitudinal and latitudinal gradients in Populus trichocarpa. New
Phytologist 209:1240–1251. doi: 10.1111/nph.13643
Ikeda H (2022) Decades-long phylogeographic issues: complex historical
processes and ecological factors on genetic structure of alpine plants
in the Japanese Archipelago. Journal of Plant Research 135:191–201.
doi: 10.1007/s10265-022-01377-w
Japan_Meteolorogical_Agency (1987) Explanation of climatic value mesh
data. Document 14.
Jombart T (2008) Adegenet: A R package for the multivariate analysis of
genetic markers. Bioinformatics 24:1403–1405. doi:
10.1093/bioinformatics/btn129
Kanno M, Yokoyama J, Suyama Y, et al (2004) Geographical distribution of
two haplotypes of chloroplast DNA in four oak species (Quercus) in
Japan. Journal of Plant Research 117:311–317. doi:
10.1007/s10265-004-0160-8
Knotek A, Konečná V, Wos G, et al (2020) Parallel alpine differentiation
in Arabidopsis arenosa. Frontiers in Plant Science 11:1–12. doi:
10.3389/fpls.2020.561526
Konečná V, Nowak MD, Kolář F (2019) Parallel colonization of subalpine
habitats in the central European mountains by Primula elatior.
Scientific Reports 9:1–12. doi: 10.1038/s41598-019-39669-2
Liu HZ, Harada K (2014) Geographic distribution and origin of the
chloroplast T/C-type in Quercus mongolica var. crispula in northeastern
Japan. Plant Species Biology 29:207–211. doi: 10.1111/1442-1984.12008
Lowry DB (2012) Ecotypes and the controversy over stages in the
formation of new species. Biological Journal of the Linnean Society
106:241–257. doi: 10.1111/j.1095-8312.2012.01867.x
Nagamitsu T, Shimizu H, Aizawa M, Nakanishi A (2019) An admixture of
Quercus dentata in the coastal ecotype of Q. mongolica var. crispula in
northern Hokkaido and genetic and environmental effects on their traits.
Journal of Plant Research 132:211–222. doi: 10.1007/s10265-018-01079-2
Nagamitsu T, Uchiyama K, Izuno A, et al (2020) Environment-dependent
introgression from Quercus dentata to a coastal ecotype of Quercus
mongolica var. crispula in northern Japan. New Phytologist. doi:
10.1111/nph.16131
Noshiro S (1984) Variations of Quercus mongolica var. undulatifolia and
var. grosseserrata on Mt. Makihata, Central Japan. Journal of
Phytogeography and Taxonomy 32:116–126. doi: 10.24517/00056232
Ohashi H (1988) The new name instead of Quercus mongolica Fisch. var.
grosseserrata (Bl.) Rehd. & Wilis. (Fagaceae). Journal of Japanese
Botany 63:13–14.
Ohba H (1989) New names and notes of Japanese woody plants. Journal of
Japanese Botany 64:321–329.
Ohba H (2006) Fagaceae. In: Iwatsuki K, Boufford DE, Ohba H (eds) Flora
of Japan, IIa. Kodansha, Tokyo, pp 42–60
Ohsawa T, Ide Y (2011) Phylogeographic patterns of highland and lowland
plant species in Japan. Alpine Botany 121:49–61. doi:
10.1007/s00035-010-0083-z
Ohsawa T, Tsuda Y, Saito Y, Ide Y (2011) The genetic structure of
Quercus crispula in northeastern Japan as revealed by nuclear simple
sequence repeat loci. Journal of Plant Research 124:645–654. doi:
10.1007/s10265-010-0402-x
Okaura T, Nguyen DQ, Ubukata M, Harada K (2007) Phylogeographic
structure and late Quaternary population history of the Japanese oak
Quercus mongolica var. crispula and related species revealed by
chloroplast DNA variation. Genes and Genetic Systems 82:465–477. doi:
10.1266/ggs.82.465
Onosato K, Shitara T, Matsumoto A, et al (2021) Contact zone of two
different chloroplast lineages and genetic guidelines for seed transfer
in Quercus serrata and Quercus crispula. Plant Species Biology
36:72–83. doi: 10.1111/1442-1984.12296
Ortego J, Bonal R, Muñoz A, Aparicio JM (2014) Extensive pollen
immigration and no evidence of disrupted mating patterns or reproduction
in a highly fragmented holm oak stand. Journal of Plant Ecology
7:384–395. doi: 10.1093/jpe/rtt049
Paradis E, Schliep K (2019) ape 5.0: an environment for modern
phylogenetics and evolutionary analyses in R. Bioinformatics
35:526–528. doi: 10.1093/bioinformatics/bty633
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population
structure using multilocus genotype data. Genetics 155:945–959. doi:
10.1093/genetics/155.2.945
Quang ND, Ikeda S, Harada K (2008) Nucleotide variation in Quercus
crispula Blume. Heredity 101:166–174. doi: 10.1038/hdy.2008.42
R_Core_Team (2019) A language and environment for statistical
computing. R Foundation for Statistical Computing
San Jose-Maldia L, Matsumoto A, Ueno S, et al (2017) Geographic patterns
of genetic variation in nuclear and chloroplast genomes of two related
oaks (Quercus aliena and Q. serrata) in Japan: implications for seed and
seedling transfer. Tree Genetics and Genomes. doi:
10.1007/s11295-017-1202-4
Solé-Medina A, Robledo-Arnuncio JJ, Ramírez-Valiente JA (2022)
Multi‐trait genetic variation in resource‐use strategies and phenotypic
plasticity correlates with local climate across the range of a
Mediterranean oak (Quercus faginea). New Phytologist. doi:
10.1111/nph.17968
Szukala A, Lovegrove-Walsh J, Luqman H, et al (2023) Polygenic routes
lead to parallel altitudinal adaptation in Heliosperma pusillum
(Caryophyllaceae). Molecular Ecology 32:1832–1847. doi:
10.1111/mec.16393
Tanimoto S, Inoue K, Shibata O (1992) Allozyme variation in Quercus
crispula var. crispula and var. horikawae. Journal of Phytogeography and
Taxonomy 40:1–4. doi: 10.24517/00055719
Tomaru N, Uchiyama K, Tamaki I, Sakaguchi S (2022) Genetic diversity and
population genetic structure of forest tree species in Japan. Japanese
Society of Forest Genetics and Tree Breeding, Hitachi
Trucchi E, Frajman B, Haverkamp THA, et al (2017) Genomic analyses
suggest parallel ecological divergence in heliosperma pusillum
(caryophyllaceae). New Phytologist 216:267–278. doi: 10.1111/nph.14722
Tsumura Y (2006) The phylogeographic structure of Japanese coniferous
species as revealed by genetic markers. Taxon 55:53–66. doi:
10.2307/25065528
Tsumura Y (2022) Genetic guidelines for tree species and perspectives on
the conservation and sustainable use of forests. Journal of Forest
Research 27:83–95. doi: 10.1080/13416979.2022.2040096
Ueno S, Aoki K, Tsumura Y (2009a) Generation of expressed sequence tags
and development of microsatellite markers for castanopsis sieboldii var.
sieboldii (Fagaceae). Annals of Forest Science 66:509–509. doi:
10.1051/forest/2009037
Ueno S, Taguchi Y, Tomaru N, Tsumura Y (2009b) Development of EST-SSR
markers from an inner bark cDNA library of Fagus crenata (fagaceae).
Conservation Genetics 10:1477–1485. doi: 10.1007/s10592-008-9764-1
Ueno S, Taguchi Y, Tsumura Y (2008) Microsatellite markers derived from
Quercus mongolica var. crispula (Fagaceae) inner bark expressed sequence
tags. Genes and Genetic Systems 83:179–187. doi: 10.1266/ggs.83.179
Ueno S, Tsumura Y (2008) Development of ten microsatellite markers for
Quercus mongolica var. crispula by database mining. Conservation
Genetics 9:1083–1085. doi: 10.1007/s10592-007-9462-4
Wos G, Arc E, Hülber K, et al (2022) Parallel local adaptation to an
alpine environment in Arabidopsis arenosa. Journal of Ecology
110:2448–2461. doi: 10.1111/1365-2745.13961
Yang J, Di X, Meng X, et al (2016) Phylogeography and evolution of two
closely related oak species (Quercus) from north and northeast China.
Tree Genetics and Genomes. doi: 10.1007/s11295-016-1044-5
Yang J, Vázquez L, Feng L, et al (2018) Climatic and soil factors shape
the demographical history and genetic diversity of a deciduous oak
(quercus liaotungensis) in Northern China. Frontiers in Plant Science
871:1–14. doi: 10.3389/fpls.2018.01534