Reference:
Algire C, Moiseeva O, Deschenes-Simard X, Amrein L, Petruccelli L,
Birman E, et al. (2012). Metformin reduces endogenous reactive
oxygen species and associated DNA damage. Cancer Prev Res (Phila)
5: 536-543.
Aspal M, & Zemans RL (2020). Mechanisms of ATII-to-ATI Cell
Differentiation during Lung Regeneration. Int J Mol Sci 21.
Bartis D, Mise N, Mahida RY, Eickelberg O, & Thickett DR (2014).
Epithelial-mesenchymal transition in lung development and disease: does
it exist and is it important? Thorax 69: 760-765.
Berridge MJ, Bootman MD, & Roderick HL (2003). Calcium signalling:
dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517-529.
Bhardwaj N, & Saxena RK (2014). Elimination of young erythrocytes from
blood circulation and altered erythropoietic patterns during paraquat
induced anemic phase in mice. PLoS One 9: e99364.
Bouyeh M (2012). Effect of Excess Lysine and Methionine on Immune system
and performance of broilers. Annals of Biological Research 3:3218-3224.
Cao ZX, Song YQ, Bai WJ, Wang WJ, Zhao Y, Zhang SL, et al.(2019). Neutrophil-lymphocyte ratio as an early predictor for patients
with acute paraquat poisoning: A retrospective analysis. Medicine
(Baltimore) 98: e17199.
Chi CC, Wang SH, Delamere FM, Wojnarowska F, Peters MC, & Kanjirath PP
(2015). Interventions for prevention of herpes simplex labialis (cold
sores on the lips). Cochrane Database Syst Rev: CD010095.
Chowdhury AR, Zielonka J, Kalyanaraman B, Hartley RC, Murphy MP, &
Avadhani NG (2020). Mitochondria-targeted paraquat and metformin mediate
ROS production to induce multiple pathways of retrograde signaling: A
dose-dependent phenomenon. Redox Biol 36: 101606.
Dawson JK, Quah E, Earnshaw B, Amoasii C, Mudawi T, & Spencer LG
(2021). Does methotrexate cause progressive fibrotic interstitial lung
disease? A systematic review. Rheumatol Int 41: 1055-1064.
Desai TJ, Brownfield DG, & Krasnow MA (2014). Alveolar progenitor and
stem cells in lung development, renewal and cancer. Nature 507:190-194.
Dinis-Oliveira RJ, Duarte JA, Sanchez-Navarro A, Remiao F, Bastos ML, &
Carvalho F (2008). Paraquat poisonings: mechanisms of lung toxicity,
clinical features, and treatment. Crit Rev Toxicol 38: 13-71.
Feng N, Bian Z, Zhang X, Wang C, & Chen J (2019). Rapamycin reduces
mortality in acute-stage paraquat-induced toxicity in zebrafish.
Singapore Med J 60: 241-246.
Gauldie J (2002). Pro: Inflammatory mechanisms are a minor component of
the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Crit Care
Med 165: 1205-1206.
George PM, Wells AU, & Jenkins RG (2020). Pulmonary fibrosis and
COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med
8: 807-815.
Gooch JL, Gorin Y, Zhang BX, & Abboud HE (2004). Involvement of
calcineurin in transforming growth factor-beta-mediated regulation of
extracellular matrix accumulation. J Biol Chem 279:15561-15570.
Hoyles RK, Ellis RW, Wellsbury J, Lees B, Newlands P, Goh NS, et
al. (2006). A multicenter, prospective, randomized, double-blind,
placebo-controlled trial of corticosteroids and intravenous
cyclophosphamide followed by oral azathioprine for the treatment of
pulmonary fibrosis in scleroderma. Arthritis Rheum 54:3962-3970.
Hutchinson J, Fogarty A, Hubbard R, & McKeever T (2015). Global
incidence and mortality of idiopathic pulmonary fibrosis: a systematic
review. Eur Respir J 46: 795-806.
Idiopathic Pulmonary Fibrosis Clinical Research N, Raghu G, Anstrom KJ,
King TE, Jr., Lasky JA, & Martinez FJ (2012). Prednisone, azathioprine,
and N-acetylcysteine for pulmonary fibrosis. N Engl J Med 366:1968-1977.
Johannson KA, Chaudhuri N, Adegunsoye A, & Wolters PJ (2021). Treatment
of fibrotic interstitial lung disease: current approaches and future
directions. Lancet 398: 1450-1460.
Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell
AN, et al. (2006). Alveolar epithelial cell mesenchymal
transition develops in vivo during pulmonary fibrosis and is regulated
by the extracellular matrix. Proc Natl Acad Sci U S A 103:13180-13185.
Kim KK, Wei Y, Szekeres C, Kugler MC, Wolters PJ, Hill ML, et al.(2009). Epithelial cell alpha3beta1 integrin links beta-catenin and Smad
signaling to promote myofibroblast formation and pulmonary fibrosis. J
Clin Invest 119: 213-224.
Kondoh T, Kameishi M, Mallick HN, Ono T, & Torii K (2010). Lysine and
arginine reduce the effects of cerebral ischemic insults and inhibit
glutamate-induced neuronal activity in rats. Front Integr Neurosci
4: 18.
Kuhl M, Sheldahl LC, Park M, Miller JR, & Moon RT (2000). The Wnt/Ca2+
pathway: a new vertebrate Wnt signaling pathway takes shape. Trends
Genet 16: 279-283.
Lederer DJ, & Martinez FJ (2018). Idiopathic Pulmonary Fibrosis. N Engl
J Med 378: 1811-1823.
Meziani L, Mondini M, Petit B, Boissonnas A, Thomas de Montpreville V,
Mercier O, et al. (2018). CSF1R inhibition prevents radiation
pulmonary fibrosis by depletion of interstitial macrophages. Eur Respir
J 51.
Moss BJ, Ryter SW, & Rosas IO (2022). Pathogenic Mechanisms Underlying
Idiopathic Pulmonary Fibrosis. Annu Rev Pathol 17: 515-546.
Nathan SD, Albera C, Bradford WZ, Costabel U, Glaspole I, Glassberg
MK, et al. (2017). Effect of pirfenidone on mortality: pooled
analyses and meta-analyses of clinical trials in idiopathic pulmonary
fibrosis. Lancet Respir Med 5: 33-41.
Nathan SD, Costabel U, Albera C, Behr J, Wuyts WA, Kirchgaessler
KU, et al. (2019). Pirfenidone in patients with idiopathic
pulmonary fibrosis and more advanced lung function impairment. Respir
Med 153: 44-51.
Navaratnam V, Fogarty AW, Glendening R, McKeever T, & Hubbard RB
(2013). The increasing secondary care burden of idiopathic pulmonary
fibrosis: hospital admission trends in England from 1998 to 2010. Chest
143: 1078-1084.
O’Dwyer DN, & Moore BB (2018). Animal Models of Pulmonary Fibrosis.
Methods Mol Biol 1809: 363-378.
Okonek S, Hofmann A, & Henningsen B (1976). Efficacy of gut lavage,
hemodialysis, and hemoperfusion in the therapy of paraquat or diquat
intoxication. Arch Toxicol 36: 43-51.
Qian J, Wu CY, Wu DM, Li LH, Li Q, Deng T, et al. (2021).
Anthrahydroquinone-2-6-disulfonate is a novel, powerful antidote for
paraquat poisoning. Sci Rep 11: 20159.
Raghu G, Rochwerg B, Zhang Y, Garcia CA, Azuma A, Behr J, et al.(2015). An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline:
Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011
Clinical Practice Guideline. Am J Respir Crit Care Med 192:e3-19.
Soboloff J, Rothberg BS, Madesh M, & Gill DL (2012). STIM proteins:
dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13:549-565.
Song S, Babicheva A, Zhao T, Ayon RJ, Rodriguez M, Rahimi S, et
al. (2020). Notch enhances Ca(2+) entry by activating calcium-sensing
receptors and inhibiting voltage-gated K(+) channels. Am J Physiol Cell
Physiol 318: C954-C968.
Spagnolo P, Kropski JA, Jones MG, Lee JS, Rossi G, Karampitsakos
T, et al. (2020). Idiopathic pulmonary fibrosis: Disease
mechanisms and drug development. Pharmacol Ther 222: 107798.
Strieter RM (2002). Con: Inflammatory mechanisms are not a minor
component of the pathogenesis of idiopathic pulmonary fibrosis. Am J
Respir Crit Care Med 165: 1206-1207; discussion 1207-1208.
Su SD, Cong SG, Bi YK, & Gao DD (2018). Paraquat promotes the
epithelial-mesenchymal transition in alveolar epithelial cells through
regulating the Wnt/beta-catenin signal pathway. Eur Rev Med Pharmacol
Sci 22: 802-809.
Subbiah R, & Tiwari RR (2021). The herbicide paraquat-induced molecular
mechanisms in the development of acute lung injury and lung fibrosis.
Crit Rev Toxicol 51: 36-64.
Tai W, Deng S, Wu W, Li Z, Lei W, Wang Y, et al. (2020).
Rapamycin attenuates the paraquat-induced pulmonary fibrosis through
activating Nrf2 pathway. J Cell Physiol 235: 1759-1768.
Vancheri C, Failla M, Crimi N, & Raghu G (2010). Idiopathic pulmonary
fibrosis: a disease with similarities and links to cancer biology. Eur
Respir J 35: 496-504.
Wei J, Deng Y, Ye J, Luo Y, Weng J, He Q, et al. (2021).
Store-operated Ca(2+) entry as a key oncogenic Ca(2+) signaling driving
tumor invasion-metastasis cascade and its translational potential.
Cancer Lett 516: 64-72.
Wijsenbeek M, Suzuki A, & Maher TM (2022). Interstitial lung diseases.
Lancet 400: 769-786.
Wilson MS, & Wynn TA (2009). Pulmonary fibrosis: pathogenesis, etiology
and regulation. Mucosal Immunol 2: 103-121.
Wu H, Yu Y, Huang H, Hu Y, Fu S, Wang Z, et al. (2020).
Progressive Pulmonary Fibrosis Is Caused by Elevated Mechanical Tension
on Alveolar Stem Cells. Cell 180: 107-121 e117.
Wu L, Cen Y, Feng M, Zhou Y, Tang H, Liao X, et al. (2019).
Metformin Activates the Protective Effects of the AMPK Pathway in Acute
Lung Injury Caused by Paraquat Poisoning. Oxid Med Cell Longev
2019: 1709718.
Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, et al. (2016).
Single-cell RNA sequencing identifies diverse roles of epithelial cells
in idiopathic pulmonary fibrosis. JCI Insight 1: e90558.
Xu Y, Tai W, Qu X, Wu W, Li Z, Deng S, et al. (2017). Rapamycin
protects against paraquat-induced pulmonary fibrosis: Activation of Nrf2
signaling pathway. Biochem Biophys Res Commun 490: 535-540.
Yamada A, Aki T, Unuma K, Funakoshi T, & Uemura K (2015). Paraquat
induces epithelial-mesenchymal transition-like cellular response
resulting in fibrogenesis and the prevention of apoptosis in human
pulmonary epithelial cells. PLoS One 10: e0120192.
Yang W, Tian R, Zhu Y, Huang P, Ma X, Meng X, et al. (2022).
Paraquat is an agonist of STIM1 and increases intracellular calcium
levels. Commun Biol 5: 1151.
Zhao Y, Song YQ, Gao J, Feng SY, & Li Y (2019). Monocytes as an Early
Predictor for Patients with Acute Paraquat Poisoning: A Retrospective
Analysis. Biomed Res Int 2019: 6360459.
Zheng F, Goncalves FM, Abiko Y, Li H, Kumagai Y, & Aschner M (2020).
Redox toxicology of environmental chemicals causing oxidative stress.
Redox Biol 34: 101475.
Author Contribution: Z. Y. and W. Y. generated the concept,
designed the experiments, analyzed the data, and wrote the manuscript.
W. Y. and Z. Y. conducted the key experiments. X. M., Y. Z., X. Ma., Z.
C., M. W. and W. D. performed the experiments and analyzed the results.
R.T., Z. Y. and R. W. interpreted the results and supervised the study.
Y. T., X. J., and R.T. collected and provided human samples. R. T.
analyzed the clinical information. All the authors approved the final
manuscript.
Acknowledgment: This work was supported by grants from the
National Natural Science Foundation of China (81971555, 82272645 to
Z.Y., 81901951 to Y.Z., 82072210 to R.W.), Shanghai Pujiang Program
(19PJ1408700 to Z.Y.), Shanghai Sailing Program (19YF1440100 to Y.Z.),
Natural Science Foundation of Shanghai (20ZR1445200 to R.W.), the
National Key Clinical Specialist Construction Project (No.
Z155080000004), Innovation Promotion Program of NHC and Shanghai Key
Labs SIBPT (RC2023-01 to W.D.), Shanghai Academy of Science &
Technology (SKY2022003 to W.D.), and the National Key Research and
Development Project (2020YFA0112900). We thank Shanghai Oebiotech Co.,
Ltd. (Shanghai, China) for assistance with Metabolomics analysis.
Competing Interests’ Statement: The authors declare that they
have no conflicts of interest with the contents of this article.