低温Al2O3/MoOx高性能工业级TOPCon太阳能电池

Lijuan Zhang¹, Hao Cheng¹, Jiawang Qiu¹, Zhongguo Zhou¹, Sihua Zhong¹, Linxing Shi¹, Haipeng Yin², Rui Tong², Jinghong Zhang³, Xiaomin Song¹, and Zengguang Huang¹

¹Jiangsu Ocean University ²JA Solar ³Jinghaiyang Semiconductor Materials Co Ltd

November 25, 2023

Abstract

Thanks to the excellent passivation, high conductivity, low parasitic absorption and simple process, the wide-bandgap dopingfree carrier selective contacts have been attracting much attention. In this work, the wide-bandgap high work function of Al $_2O_3/MoO_x$ stacks were prepared using the low-temperature atomic layer deposition and thermal evaporation technique, respectively, and the interfacial evolution and the elements distribution were examined using high-resolution transmission electron microscopy coupled with energy-dispersive spectroscopy. The passivation and conductivity of the Al $_2O_3/MoO_x$ stacks were systematical investigated by varying their thicknesses. The high effective minority carriers lifetime of 513 μ s and the low series resistance of 0.24 m Ω are realized on the 7nm-Al $_2O_3/5$ nm-MoO $_x$ and 7nm-Al $_2O_3/3$ nm-MoO $_x$ stacks, respectively. Benefiting from the excellent surface passivation and conductivity, the industrial size (182×185.3 mm²) n-TOPCon solar cell with a total area front 7nm-Al $_2O_3/3$ nm-MoO $_x$ stacks demonstrates a champion power conversion efficiency (PCE) of 24.48%, as well as a short-circuit current density of 41.06 mA cm⁻², an open-circuit voltage of 721 mV, and a fill factor of 82.66%. This work provides an effective way to enable the PCE over 26.0% and lower the process temperature for TOPCon solar cells with doping-free carrier selective contacts.