REFERENCES
Aase, K., Jensen, H., & Muff, S. (2022). Genomic estimation of quantitative genetic parameters in wild admixed populations.Methods in Ecology and Evolution , 13 (5), 1014–1026. https://doi.org/10.1111/2041-210X.13810
Altwegg, R., Ringsby, T. H., & Sæther, B.-E. (2000). Phenotypic correlates and consequences of dispersal in a metapopulation of house sparrows Passer domesticus. Journal of Animal Ecology ,69 (5), 762–770. https://doi.org/10.1046/j.1365-2656.2000.00431.x
Araya-Ajoy, Y. G., Ranke, P. S., Kvalnes, T., Rønning, B., Holand, H., Myhre, A. M., … Wright, J. (2019). Characterizing morphological (co)variation using structural equation models: Body size, allometric relationships and evolvability in a house sparrow metapopulation.Evolution , 73 (3), 452–466. https://doi.org/10.1111/evo.13668
Baalsrud, H. T., Sæther, B. E., Hagen, I. J., Myhre, A. M., Ringsby, T. H., Pärn, H., & Jensen, H. (2014). Effects of population characteristics and structure on estimates of effective population size in a house sparrow metapopulation. Molecular Ecology ,23 (11), 2653–2668. https://doi.org/10.1111/mec.12770
Barson, N. J., Aykanat, T., Hindar, K., Baranski, M., Bolstad, G. H., Fiske, P., … Primmer, C. R. (2015). Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon.Nature , 528 (7582), 405–408. https://doi.org/10.1038/nature16062
Bossu, C. M., Heath, J. A., Kaltenecker, G. S., Helm, B., & Ruegg, K. C. (2022). Clock-linked genes underlie seasonal migratory timing in a diurnal raptor. Proceedings of the Royal Society B: Biological Sciences , 289 (1974). https://doi.org/10.1098/rspb.2021.2507
Boualit, L., Pichenot, J., Besnard, A., Helder, R., Joly, P., & Cayuela, H. (2019). Environmentally mediated reproductive success predicts breeding dispersal decisions in an early successional amphibian. Animal Behaviour , 149 , 107–120. https://doi.org/10.1016/j.anbehav.2019.01.008
Bowler, D. E., & Benton, T. G. (2005). Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biological Reviews , 80 (2), 205–225. https://doi.org/10.1017/S1464793104006645
Brown, G. P., Phillips, B. L., & Shine, R. (2014). The straight and narrow path: The evolution of straight-line dispersal at a cane toad invasion front. Proceedings of the Royal Society B: Biological Sciences , 281 (1795). https://doi.org/10.1098/rspb.2014.1385
Cayuela, H., Rougemont, Q., Prunier, J. G., Moore, J. S., Clobert, J., Besnard, A., & Bernatchez, L. (2018). Demographic and genetic approaches to study dispersal in wild animal populations: A methodological review. Molecular Ecology , 27 (20), 3976–4010. https://doi.org/10.1111/mec.14848
Clobert, J., Baguette, M., Benton, T. G., & Bullock, J. M. (2012).Dispersal ecology and evolution (2012th ed.). Oxford University Press.
de Villemereuil, P., Schielzeth, H., Nakagawa, S., & Morrissey, M. (2016). General methods for evolutionary quantitative genetic inference from generalized mixed models. Genetics , 204 (3), 1281–1294. https://doi.org/10.1534/genetics.115.186536
Dobritzsch, D., Meijer, J., Meinsma, R., Maurer, D., Monavari, A. A., Gummesson, A., … van Kuilenburg, A. B. P. (2022). β-Ureidopropionase deficiency due to novel and rare UPB1 mutations affecting pre-mRNA splicing and protein structural integrity and catalytic activity. Molecular Genetics and Metabolism ,136 (3), 177–185. https://doi.org/10.1016/j.ymgme.2022.01.102
Dochtermann, N. A., Schwab, T., Anderson Berdal, M., Dalos, J., & Royauté, R. (2019). The Heritability of Behavior: A Meta-analysis.Journal of Heredity , 110 (4), 403–410. https://doi.org/10.1093/jhered/esz023
Edelsparre, A. H., Vesterberg, A., Lim, J. H., Anwari, M., & Fitzpatrick, M. J. (2014). Alleles underlying larval foraging behaviour influence adult dispersal in nature. Ecology Letters ,17 (3), 333–339. https://doi.org/10.1111/ele.12234
Elgvin, T. O., Trier, C. N., Tørresen, O. K., Hagen, I. J., Lien, S., Nederbragt, A. J., … Sætre, G.-P. (2017). The genomic mosaicism of hybrid speciation. Science Advances , 3 (6), e1602996. https://doi.org/10.1126/sciadv.1602996
González-Benítez, E., Guinzberg, R., Díaz-Cruz, A., & Pia, E. (2002). Regulation of glycogen metabolism in hepatocytes through adenosine receptors. Role of Ca2+ and cAMP. European Journal of Pharmacology , 437 (3), 105–111. https://doi.org/10.1016/S0014-2999(02)01299-2
Haag, C. R., Saastamoinen, M., Marden, J. H., & Hanski, I. (2005). A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proceedings of the Royal Society B: Biological Sciences , 272 (1580), 2449–2456. https://doi.org/10.1098/rspb.2005.3235
Hanski, I., Schulz, T., Wong, S. C., Ahola, V., Ruokolainen, A., & Ojanen, S. P. (2017). Ecological and genetic basis of metapopulation persistence of the Glanville fritillary butterfly in fragmented landscapes. Nature Communications , 8 . https://doi.org/10.1038/ncomms14504
Hobson, R. M., Saunders, B., Ball, G., Harris, R. C., & Sale, C. (2012). Effects of β-alanine supplementation on exercise performance: A meta-analysis. Amino Acids , 43 (1), 25–37. https://doi.org/10.1007/s00726-011-1200-z
Holand, A. M., Steinsland, I., Martino, S., & Jensen, H. (2013). Animal models and integrated nested laplace approximations. G3: Genes, Genomes, Genetics , 3 (8), 1241–1251. https://doi.org/10.1534/g3.113.006700
Holsinger, K. E., & Weir, B. S. (2009). Genetics in geographically structured populations: Defining, estimating and interpreting FST.Nature Reviews Genetics , 10 (9), 639–650. https://doi.org/10.1038/nrg2611
Holyoak, M., Casagrandi, R., Nathan, R., Revilla, E., & Spiegel, O. (2008). Trends and missing parts in the study of movement ecology.Proceedings of the National Academy of Sciences of the United States of America , 105 (49), 19060–19065.
Husby, A., Kawakami, T., Rönnegård, L., Smeds, L., Ellegren, H., & Qvarnström, A. (2015). Genome-wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life-history trait. Proceedings of the Royal Society B: Biological Sciences , 282 (1806). https://doi.org/10.1098/rspb.2015.0156
Jensen, H., Moe, R., Hagen, I. J., Holand, A. M., Kekkonen, J., Tufto, J., & Sæther, B. E. (2013). Genetic variation and structure of house sparrow populations: Is there an island effect? Molecular Ecology , 22 (7), 1792–1805. https://doi.org/10.1111/mec.12226
Johnston, S. E., McEwan, J. C., Pickering, N. K., Kijas, J. W., Beraldi, D., Pilkington, J. G., … Slate, J. (2011). Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population.Molecular Ecology , 20 (12), 2555–2566. https://doi.org/10.1111/j.1365-294X.2011.05076.x
Korte, A., & Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS : a review Self-fertilisation makes Arabidopsis particularly well suited to GWAS. Plant Methods , 9 (1), 29.
Kruuk, L. E. B. (2004). Estimating genetic parameters in natural populations using the “animal model.” Philosophical Transactions of the Royal Society B: Biological Sciences , 359 (1446), 873–890. https://doi.org/10.1098/rstb.2003.1437
Kruuk, L. E. B., Slate, J., & Wilson, A. J. (2008). New answers for old questions: The evolutionary quantitative genetics of wild animal populations. Annual Review of Ecology, Evolution, and Systematics , 39 , 525–548. https://doi.org/10.1146/annurev.ecolsys.39.110707.173542
Lande, R. (1979). Quantitative Genetic Analysis of Multivariate Evolution, Applied to Brain: Body Size Allometry. Evolution ,33 (1), 402. https://doi.org/10.2307/2407630
Lawson, L. P., & Petren, K. (2017). The adaptive genomic landscape of beak morphology in Darwin’s finches. Molecular Ecology ,26 (19), 4978–4989. https://doi.org/10.1111/mec.14166
Legrand, D., Cote, J., Fronhofer, E. A., Holt, R. D., Ronce, O., Schtickzelle, N., … Clobert, J. (2017). Eco-evolutionary dynamics in fragmented landscapes. Ecography , 40 (1), 9–25. https://doi.org/10.1111/ecog.02537
Leon, C., Banks, S., Beck, N., & Heinsohn, R. (2022). Population genetic structure and dispersal patterns of a cooperative breeding bird in variable environmental conditions. Animal Behaviour ,183 , 127–137. https://doi.org/10.1016/j.anbehav.2021.11.005
Lundregan, S. L., Hagen, I. J., Gohli, J., Niskanen, A. K., Kemppainen, P., Ringsby, T.-H., … Jensen, H. (2018). Inferences of genetic architecture of bill morphology in house sparrow using a high ‐ density SNP array point to a polygenic basis. Molecular Ecology , (27), 3498–3514. https://doi.org/10.1111/mec.14811
Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits (Vol. 1). Sinauer Sunderland, MA.
Maag, N., Cozzi, G., Clutton-Brock, T., & Ozgul, A. (2018). Density-dependent dispersal strategies in a cooperative breeder.Ecology , 99 (9), 1932–1941. https://doi.org/10.1002/ecy.2433
Massot, M., Clobert, J., Lorenzon, P., & Rossi, J. M. (2002). Condition-dependent dispersal and ontogeny of the dispersal behaviour: An experimental approach. Journal of Animal Ecology ,71 (2), 253–261. https://doi.org/10.1046/j.1365-2656.2002.00592.x
Matthews, M. M., Liao, W., Kvalnes-Krick, K. L., & Traut, T. W. (1992). β-Alanine synthase: Purification and allosteric properties.Archives of Biochemistry and Biophysics , 293 (2), 254–263. https://doi.org/10.1016/0003-9861(92)90393-B
Matthysen, E. (2005). Density-dependent dispersal in birds and mammals.Ecography , 28 (3), 403–416. https://doi.org/10.1111/j.0906-7590.2005.04073.x
Mattila, A. L. K., & Hanski, I. (2014). Heritability of flight and resting metabolic rates in the Glanville fritillary butterfly.Journal of Evolutionary Biology , 27 (8), 1733–1743. https://doi.org/10.1111/jeb.12426
McCaslin, H. M., Caughlin, T. T., & Heath, J. A. (2020). Long-distance natal dispersal is relatively frequent and correlated with environmental factors in a widespread raptor. Journal of Animal Ecology ,89 (9), 2077–2088. https://doi.org/10.1111/1365-2656.13272
McGaugh, S. E., Schwanz, L. E., Bowden, R. M., Gonzalez, J. E., & Janzen, F. J. (2010). Inheritance of nesting behaviour across natural environmental variation in a turtle with temperature-dependent sex determination. Proceedings of the Royal Society B: Biological Sciences , 277 (1685), 1219–1226. https://doi.org/10.1098/rspb.2009.1883
Messier, G. D., Garant, D., Bergeron, P., & Réale, D. (2012). Environmental conditions affect spatial genetic structures and dispersal patterns in a solitary rodent. Molecular Ecology , 21 (21), 5363–5373. https://doi.org/10.1111/mec.12022
Milioni, F., De Poli, R. A. B., Saunders, B., Gualano, B., Da Rocha, A. L., Da Silva, A. S. R., … Zagatto, A. M. (2019). Effect of β-alanine supplementation during high-intensity interval training on repeated sprint ability performance and neuromuscular fatigue.Journal of Applied Physiology , 127 (6), 1599–1610. https://doi.org/10.1152/japplphysiol.00321.2019
Millon, A., Lambin, X., Devillard, S., & Schaub, M. (2019). Quantifying the contribution of immigration to population dynamics: a review of methods, evidence and perspectives in birds and mammals.Biological Reviews . https://doi.org/10.1111/brv.12549
Muff, S., Niskanen, A. K., Saatoglu, D., Jensen, H., & Keller, L. F. (2019). Animal models with group-specific additive genetic variances: extending genetic group models. Genetics Selection Evolution ,51 (7).
Nakagawa, S., & Schielzeth, H. (2010). Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biological Reviews , 85 (4), 935–956. https://doi.org/10.1111/j.1469-185X.2010.00141.x
Niitepõald, K., Smith, A. D., Osborne, J. L., Reynolds, D. R., Carreck, N. L., Martin, A. P., … Hanski, I. (2009). Flight metabolic rate and Pgi genotype influence butterfly dispersal rate in the field.Ecology , 90 (8), 2223–2232. https://doi.org/10.1890/08-1498.1
Niitepõld, K., Mattila, A. L. K., Harrison, P. J., & Hanski, I. (2011). Flight metabolic rate has contrasting effects on dispersal in the two sexes of the Glanville fritillary butterfly. Oecologia ,165 (4), 847–854. https://doi.org/10.1007/s00442-010-1886-8
Niitepõld, K., & Saastamoinen, M. (2017). A candidate gene in an ecological model species: Phosphoglucose isomerase (Pgi) in the glanville fritillary butterfly (melitaea cinxia). Annales Zoologici Fennici , 54 (1–4), 259–273. https://doi.org/10.5735/086.054.0122
Niskanen, A. K., Billing, A. M., Holand, H., Hagen, I. J., Araya-Ajoy, Y. G., Husby, A., … Jensen, H. (2020). Consistent scaling of inbreeding depression in space and time in a house sparrow metapopulation. Proceedings of the National Academy of Sciences of the United States of America , 117 (25), 14584–14592. https://doi.org/10.1073/pnas.1909599117
O’Neill, J. S., & Reddy, A. B. (2012). The essential role of cAMP/Ca 2+ signalling in mammalian circadian timekeeping. Biochemical Society Transactions , 40 (1), 44–50. https://doi.org/10.1042/BST20110691
Orr, H. A. (2005). The genetic theory of adaptation: A brief history.Nature Reviews Genetics , 6 (2), 119–127. https://doi.org/10.1038/nrg1523
Pärn, H., Jensen, H., Ringsby, T. H., & Sæther, B. E. (2009). Sex-specific fitness correlates of dispersal in a house sparrow metapopulation. Journal of Animal Ecology , 78 (6), 1216–1225. https://doi.org/10.1111/j.1365-2656.2009.01597.x
Pärn, H., Ringsby, T.-H., Jensen, H., & Sæther, B.-E. (2012). Spatial heterogeneity in the effects of climate and density-dependence on dispersal in a house sparrow metapopulation. Proceedings of the Royal Society B: Biological Sciences , 279 (1726), 144–152. https://doi.org/10.1098/rspb.2011.0673
Phillips, B. L., Brown, G. P., & Shine, R. (2010). Evolutionarily accelerated invasions: The rate of dispersal evolves upwards during the range advance of cane toads. Journal of Evolutionary Biology ,23 (12), 2595–2601. https://doi.org/10.1111/j.1420-9101.2010.02118.x
Ranke, P. S., Araya-Ajoy, Y. G., Ringsby, T. H., Pärn, H., Rønning, B., Jensen, H., … Sæther, B. E. (2021). Spatial structure and dispersal dynamics in a house sparrow metapopulation. Journal of Animal Ecology , (August), 1–15. https://doi.org/10.1111/1365-2656.13580
Remington, D. L. (2015). Alleles versus mutations: Understanding the evolution of genetic architecture requires a molecular perspective on allelic origins. Evolution , 69 (12), 3025–3038. https://doi.org/10.1111/evo.12775
Ronce, O. (2007). How Does It Feel to Be Like a Rolling Stone? Ten Questions About Dispersal Evolution. Annual Review of Ecology, Evolution, and Systematics , 38 , 231–253. https://doi.org/10.1146/annurev.ecolsys.38.091206.095611
Rönnegård, L., McFarlane, S. E., Husby, A., Kawakami, T., Ellegren, H., & Qvarnström, A. (2016). Increasing the power of genome wide association studies in natural populations using repeated measures – evaluation and implementation. Methods in Ecology and Evolution ,7 (7), 792–799. https://doi.org/10.1111/2041-210X.12535
Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society. Series B: Statistical Methodology , 71 (2), 319–392. https://doi.org/10.1111/j.1467-9868.2008.00700.x
Saastamoinen, M. (2008). Heritability of dispersal rate and other life history traits in the Glanville fritillary butterfly. Heredity ,100 (1), 39–46. https://doi.org/10.1038/sj.hdy.6801056
Saastamoinen, M., Bocedi, G., Cote, J., Legrand, D., Guillaume, F., Wheat, C. W., … del Mar Delgado, M. (2018). Genetics of dispersal. Biological Reviews , 93 (1), 574–599. https://doi.org/10.1111/brv.12356
Saatoglu, D., Niskanen, A. K., Froy, H., Ranke, P. S., Goedert, D., Reid, J. M., … Jensen, H. (n.d.). Metapopulation-level analyses reveal positive fitness-consequences of dispersal in a small bird .
Saatoglu, D., Niskanen, A. K., Kuismin, M., Ranke, P. S., Hagen, I. J., Araya-Ajoy, Y. G., … Jensen, H. (2021). Dispersal in a house sparrow metapopulation: An integrative case study of genetic assignment calibrated with ecological data and pedigree information.Molecular Ecology , (July), 1–17. https://doi.org/10.1111/mec.16083
San‐Jose, L. M., Bestion, E., Pellerin, F., Richard, M., Di Gesu, L., Salmona, J., … Cote, J. (2023). Investigating the genetic basis of vertebrate dispersal combining RNA‐seq, RAD‐seq and quantitative genetics. Molecular Ecology , (February), 1–16. https://doi.org/10.1111/mec.16916
Simpson, D., Rue, H., Riebler, A., Martins, T. G., & Sørbye, S. H. (2017). Penalising model component complexity: A principled, practical approach to constructing priors. Statistical Science ,32 (1), 1–28. https://doi.org/10.1214/16-STS576
Steinsland, I., Larsen, C. T., Roulin, A., & Jensen, H. (2014). Quantitative genetic modeling and inference in the presence of nonignorable missing data. Evolution , 68 (6), 1735–1747. https://doi.org/10.1111/evo.12380
Tietgen, L., Hagen, I. J., Kleven, O., Bernardi, C. Di, Kvalnes, T., Norén, K., … Jensen, H. (2021). Fur colour in the Arctic fox: Genetic architecture and consequences for fitness. Proceedings of the Royal Society B: Biological Sciences , 288 (1959), 158–170. https://doi.org/10.1098/rspb.2021.1452
Tiffin, P., & Ross-Ibarra, J. (2014). Advances and limits of using population genetics to understand local adaptation. Trends in Ecology and Evolution , 29 (12), 673–680. https://doi.org/10.1016/j.tree.2014.10.004
Tufto, J., Ringsby, T., Dhondt, A. A., Adriaensen, F., & Matthysen, E. (2005). A Parametric Model for Estimation of Dispersal Patterns Applied to Five Passerine Spatially Structured Populations. The American Naturalist , 165 (1), E13–E26. https://doi.org/10.1086/426698
Van Dyck, H., & Baguette, M. (2005). Dispersal behaviour in fragmented landscapes: Routine or special movements? Basic and Applied Ecology , 6 (6), 535–545. https://doi.org/10.1016/j.baae.2005.03.005
Van Kuilenburg, A. B. P., Meinsma, R., Beke, E., Assmann, B., Ribes, A., Lorente, I., … Van Gennip, A. H. (2004). β-Ureidopropionase deficiency: An inborn error of pyrimidine degradation associated with neurological abnormalities. Human Molecular Genetics ,13 (22), 2793–2801. https://doi.org/10.1093/hmg/ddh303
Walls, S. S., Kenward, R. E., & Holloway, G. J. (2005). Weather to disperse? Evidence that climatic conditions influence vertebrate dispersal. Journal of Animal Ecology , 74 (1), 190–197.
Warren, W. C., Clayton, D. F., Ellegren, H., Arnold, A. P., Hillier, L. W., Künstner, A., … Fairley, S. (2010). The genome of a songbird.Nature , 464 (7289), 757–762.
Waser, P. M., & Jones, W. T. (1989). Heritability of dispersal in banner-tailed kangaroo rats, Dipodomys spectabilis. Animal Behaviour , 37 , 987–991.
Wilson, A. J., Réale, D., Clements, M. N., Morrissey, M. M., Postma, E., Walling, C. A., … Nussey, D. H. (2010). An ecologist’s guide to the animal model. Journal of Animal Ecology , 79 (1), 13–26. https://doi.org/10.1111/j.1365-2656.2009.01639.x
Wolak, M. E. (2012). Nadiv: An R package to create relatedness matrices for estimating non-additive genetic variances in animal models.Methods in Ecology and Evolution , 3 (5), 792–796. https://doi.org/10.1111/j.2041-210X.2012.00213.x
Wolak, M. E., & Reid, J. M. (2017). Accounting for genetic differences among unknown parents in microevolutionary studies: how to include genetic groups in quantitative genetic animal models. Journal of Animal Ecology , 86 (1), 7–20. https://doi.org/10.1111/1365-2656.12597
Wu, N. C., & Seebacher, F. (2022). Physiology can predict animal activity, exploration, and dispersal. Communications Biology ,5 (1), 1–11. https://doi.org/10.1038/s42003-022-03055-y
Zera, A. J., & Brisson, J. A. (2012). Quantitative, physiological, and molecular genetics of
dispersal/migration. In J. Clobert, M. Baguette, T. G. Benton, & J. M. Bullock (Eds.),
Dispersal ecology and evolution (pp. 63–82). Oxford University Press Oxford.