Synthesis of
spiro[isochroman-3,1’-isoindoline]-1,3’,4-trione (6)
i) 2’-(5-methoxyquinolin-8-yl)spiro[isochroman-3,1’-isoindo-
line]-1,3’,4-trione (4r , 87 mg, 0.2 mmol) was placed in a 10
mL two-necked reaction flask, which was filled with nitrogen by using
the standard Schlenk technique. DCM (1.0 mL) was sequentially injected
via a syringe. To the suspension was added BBr3 (0.24
mL, 1M in THF, 0.24 mmol) at 0 °C (ice-water bath). The mixture was
stirred at 0 °C (ice-water bath) for 5 min and then allowed to warm to
room temperature for 18 h. The resulting mixture was quenched with water
at 0 °C and extracted with ethyl acetate three times. The combined
organic layer was washed with water and dried over anhydrous
Na2SO4.
ii) The crude product dissolved in MeCN/H2O
(MeCN/H2O = 4:1, 2 mL),
Ce(NH4)2(NO3)6(CAN, 658 mg, 1.2 mmol) was added to the mixture with a portion at room
temperature, and the mixture was stirred for 12 h at 60 °C (oil bath).
After the reation completed, H2O (5 mL) was added and
the mixture was extracted with ethyl acetate (3 mL ×3). Combined organic
phase was dried over anhydrous Na2SO4,
filtered through Celite and the filtrate was concentrated. The crude
residue was purified by flash chromatography in petroleum ether:ethyl
acetate= 1:1 to give 6 as white soild (25 mg, 45%).
Supporting Information
The supporting information for this article is available on the WWW
under https://doi.org/10.1002/cjoc.2023xxxxx.
Acknowledgement
We are grateful to the National Natural Science Foundation of China
(22101075, U2004189), Central Plains Science and Technology Innovation
Leader Project (224200510009), Postdoctoral Research Grant in Henan
Province (202103085), Henan Key Laboratory of Organic Functional
Molecules and Drug Innovation, and 111 Project (D17007) for financial
support.
References
- (a) Zheng, Y.; Tice, C. M.; Singh, S. B. The Use of Spirocyclic
Scaffolds in Drug Discovery, Bioorg. Med. Chem. Lett.2014, 24, 3673–3682. (b) Smith, L. K.; Baxendale, I.
R. Total Syntheses of Natural Products Containing Spirocarbocycles,Org. Biomol. Chem. 2015, 13, 9907–9933. (c)
Zheng, Y. J.; Tice, C. M. The Utilization of Spirocyclic Scaffolds in
Novel Drug Discovery. Expert. Opin. Drug. Dis. 2016,11, 831–834. (d) Hiesinger, K.; Dar’in, D.; Proschak, E.;
Krasavin, M. Spirocyclic Scaffolds in Medicinal Chemistry. J.
Med. Chem. 2021, 64, 150–183.
- (a) Sharma, S.; Oh, Y.; Mishra, N. K.; De, U.; Jo, H.; Sachan, R.;
Kim, H. S.; Jung, Y. H.; Kim, I. S. Rhodium-Catalyzed [3 + 2]
Annulation of Cyclic N-Acyl Ketimines with Activated Olefins:
Anticancer Activity of Spiroisoindolinones. J. Org. Chem.2017, 82, 3359–3367. (b) Wrobel, J.; Dietrich, A.;
Woolson, S. A.; Millen, J.; McCaleb, M.; Harrison, M. C.; Hohman, T.
C.; Sredy, J.; Sullivan, D. Novel SpiroSuccinimides with Incorporated
Isoindolone and Benzisothiazole 1,1-Dioxide Moieties as Aldose
Reductase Inhibitors and Antihyperglycemic Agents. J. Med.
Chem. 1992, 35, 4613–4627. (c) Chia, Y. C.; Chang,
F. R.; Wu, C. C.; Teng, C. M.; Chen, K. S.; Wu, Y. C. Effect of
Isoquinoline Alkaloids of Different Structural Types on Antiplatelet
Aggregation in vitro. Planta Med. 2006, 72,
1238–1241. (d) Wang, J.; Chen, F.; Liu, Y.; Liu, Y.; Li, K.; Yang,
X.; Liu, S.; Zhou, X.; Yang, J. Spirostaphylotrichin X From a
Marine-Derived Fungus as an Anti-influenza Agent Targeting RNA
Polymerase PB2. J. Nat. Prod. 2018, 81,
2722–2730.
- (a) Ding, A.; Meazza, M.; Guo, H.; Yang, J. W.; Rios, R. New
Development in the Enantioselective Synthesis of Spiro Compounds.Chem. Soc. Rev. 2018, 47, 5946–5996. (b)
Alves, A. J. S.; Alves, N. G.; Soares, M. I. L.; Melo, T. M. V. D. P.
Strategies and Methodologies for the Construction of Spiro-γ-lactams:
An Update. Org. Chem. Front. 2021, 8,
3543–3593.
- (a) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J. Q.
Palladium-Catalyzed Transformations of Alkyl C−H Bonds. Chem.
Rev. 2017, 117, 8754–8786. (b) Rej, S.; Chatani, N.
Rhodium-Catalyzed C(sp2)−or
C(sp3)−H Bond Functionalization Assisted by
Removable Directing Groups. Angew. Chem., Int. Ed.2019, 58, 8304–8329. (c) Wu, Y.; Pi, C.; Wu, Y.; Cui,
X. Directing Group Migration Strategy in Transition-Metal-Catalysed
Direct C−H Functionalization. Chem. Soc. Rev. 2021,50, 3677–3689.
- (a) Su, B.; Cao, Z. C.; Shi, Z. J. Exploration of Earth-Abundant
Transition Metals (Fe, Co, and Ni) as Catalysts in Unreactive Chemical
Bond Activations. Acc. Chem. Res. 2015, 48,
886–896. (b) Zweig, J. E.; Kim, D. E.; Newhouse, T. R. Methods
Utilizing First-Row Transition Metals in Natural Product Total
Synthesis. Chem. Rev. 2017, 117, 11680–11752.
(c) Li, Y.; Hu, Y.; Wu, X. F. Non-Noble Metal-Catalysed Carbonylative
Transformations. Chem. Soc. Rev. 2018, 47,
172–194. (d) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz,
S.; Ackermann. L. 3d Transition Metals for C−H Activation. Chem.
Rev. 2019, 119, 2192–2452.
- (a) Moselage, M.; Li, J.; Ackermann, L. Cobalt-Catalyzed C−H
Activation. ACS Catal. 2016, 6, 498–525. (b)
Kommagalla, Y.; Chatani, N. Cobalt(II)-Catalyzed CAH Functionalization
Using an N, N’-Bidentate Directing Group. Coord. Chem. Rev.2017, 350, 117–135. (c) Cizikovs, A.; Lukasevics, L.;
Grigorjeva, L. Cobalt-Catalyzed C−H Bond Functionalization Using
Traceless Directing Group. Tetrahedron 2021,93, 132307. (d) Banjare, S. K.; Nanda, T.; Pati, B. V.; Biswal,
P.; Ravikumar, P. C. O-Directed C−H Functionalizationvia Cobaltacycles: A Sustainable Approach for C−C and
C-Heteroatom Bond Formations. Chem. Commun. 2021,57, 3630–3647.
- (a) Xiang, Y.; Wang, C.; Ding, Q.; Peng, Y. Diazo Compounds: Versatile
Synthons for the Synthesis of Nitrogen Heterocycles viaTransition Metal-Catalyzed Cascade C−H Activation/Carbene
Insertion/Annulation Reactions. Adv. Synth. Catal.2019, 361, 919–944. (b) Nunewar, S.; Kumar, S.;
Talakola, S.; Nanduri, S.; Kanchupalli, V. Co(III), Rh(III) &
Ir(III)-Catalyzed Direct C−H Alkylation/Alkenylation/Arylation with
Carbene Precursors. Chem. Asian J. 2021, 16,
443–459. (c) Solovyev, I.; Eremeyeva, M.; Zhukovsky, D.; Dar’in, D.;
Krasavin, M. Cyclic Diazo Compounds in the Construction of Spirocyclic
Scaffolds. Tetrahedron Lett. 2021, 62, 152671.
(d) Kumar, S.; Nunewar, S.; Oluguttula, S.; Nanduri, S.; Kanchupalli,
V. Recent Advances in Rh(III)/ Ir(III)-Catalyzed C−H
Functionalization/Annulation via Carbene Migratory Insertion.Org. Biomol. Chem. 2021, 19, 1438–1458.
- (a) Berger, M.; Chauhan, R.; Rodrigues, C. A. B.; Maulide, N. Bridging
C−H Activation: Mild and Versatile Cleavage of the 8-Aminoquinoline
Directing Group. Chem. -Eur. J. 2016, 22,
16805–16808. (b) Deguchi, T.; Xin, H. L.; Morimoto, H.; Ohshima, T.
Direct Catalytic Alcoholysis of Unactivated 8-Aminoquinoline Amides.ACS Catal. 2017, 7, 3157–3161. (c) Fitzgerald,
L. S.; O’Duill, M. L. A Guide to Directing Group Removal:
8-Aminoquinoline. Chem. -Eur. J. 2021, 27,
8411–8436. (d) Liu, B.; Romine, A. M.; Rubel, C. Z.; Engle, K. M.;
Shi, B. F. Transition-Metal-Catalyzed, Coordination-Assisted
Functionalization of Nonactivated C(sp3)−H Bonds.Chem. Rev. 2021, 121, 14957–15074.
- Xu, M. R.; Yuan, Y.; Wang, Y.; Tao, Q. H.; Wang, C. Y.; Li, Y. Z.
Controllable α- or β-Functionalization of α-Diazoketones with Aromatic
Amides via Cobalt-Catalyzed C−H Activation: A Regioselective Approach
to Isoindolinones. Org. Lett. 2019, 21,
6264–6269.
- Li, M. H.; Si, X. J.; Zhang, H.; Yang, D. D.; Niu, J. L.; Song, M. P.
Directed Cobalt-Catalyzed C−H Activation to Form C−C and C−O Bonds in
One Pot via Three-Component Coupling. Org. Lett. 2021,23, 914–919.
- (a) Guo, C.; Li, B.; Liu, H.; Zhang, X.; Fan, X. Synthesis of Fused or
Spiro Polyheterocyclic Compounds via the Dehydrogenative
Annulation Reactions of 2-Arylindazoles with Maleimides. Org.
Lett. 2019, 21, 7189–7193. (b) Li, B.; Guo, C. H.;
Shen, N. N.; Zhang, X. Y.; Fan, X. S. Synthesis of Maleimide Fused
Benzocarbazoles and Imidazo[1,2-a]pyridines via
Rhodium(III)-Catalyzed [4 + 2] Oxidative Cycloaddition. Org.
Chem. Front. 2020, 7, 3698–3704. (c) Li, H.; Shen,
M. Y.; Li, B.; Zhang, X. Y.; Fan, X. S. Solvent-Dependent Selective
Synthesis of CF3-Tethered Indazole Derivatives Based
on Multiple Bond Activations. Org. Lett. 2023,25, 720–725. (d) Song, X.; Wang, K. L.; Zhang, X. Y.; Fan, X.
S. Unsymmetrical Relay C−H Alkenylation and [2 + 2] Cycloaddition
of N-Arylsydnones with Allenyl Acetates Leading to
Quinoline-Fused Cyclobutanes. Org. Chem. Front. 2023,10, 1191–1197.
- (a) Li, B.; Zhang, B. B.; Zhang, X. Y.; Fan, X. S. Regio-selective
Synthesis of Diversely Substituted Benzo[a]carbazoles
through Rh(III)-Catalyzed Annulation of 2-Arylindoles with α-Diazo
Carbonyl Compounds. Chem. Commun. 2017, 53,
1297–1300. (b) Li, B.; Shen, N. N.; Zhang, X. Y.; Fan, X. S.
Synthesis of Fused Imidazo[1,2-a]pyridines Derivatives
through Cascade C(sp2)−H Functionalizations.Org. Biomol. Chem. 2019, 17, 9140–9150. (c)
Li, B.; Shen, N. N.; Yang, Y. J.; Zhang, X. Y.; Fan, X. S. Synthesis
of Naphtho[1’,2’:4,5]imidazo- [1,2-a]pyridinesvia Rh(III)-Catalyzed C−H Functionalization of
2-Arylimidazo[1,2-a]pyridines with Cyclic
2-Diazo-1,3-diketones Featuring with a Ring Opening and Reannulation.Org. Chem. Front. 2020, 7, 919–925. (d) Li,
B.; Shen, N. N.; Yang, Y. J.; Zhang, X. Y.; Fan, X. S. Tunable
Synthesis of Indeno[1,2-c]furans and 3-Benzoylindenones via
FeCl3-Catalyzed Carbene/Alkyne Metathesis Reaction ofo-Alkynylbenzoyl Diazoacetates. Org. Lett.2021, 23, 388–393. (e) Li, B.; Shen, N. N.; Wang, K.
L.; Fan, X. S.; Zhang, X. Y. Rh(III)-Catalyzed Reaction of
2-Aryl-3-acyl-1H-indoles with α-Diazo Carbonyl Compounds:
Synthesis of 5-Carbonyl Substituted Benzo[a]carbazolesvia [5 + 1] Annulation. Asian J. Org. Chem.2022, 11, e202100710.
- (a) Lian, X. L.; Lei, H.; Quan, X. J.; Ren, Z. H.; Wang, Y. Y.; Guan,
Z. H. Oxidation of 2-Arylindoles for Synthesis of 2-Arylbenzoxazinones
with Oxone as the Sole Oxidant. Chem. Commun. 2013,49, 8196–8198. (b) Yamashita, M.; Iida, A. Copper-Mediated
Oxidative Tandem Reactions with Molecular Oxygen: Synthesis of
2-Arylbenzoxazinone Derivatives from Indoles. Tetrahedron Lett.2014, 55, 2991–2993. (c) Feng, Y. D.; Li, Y. D.;
Cheng, G. L.; Wang, L. H.; Cui, X. L. Copper-Catalyzed Synthesis of
2-Arylquinazolinones from 2-Arylindoles with Amines or Ammoniums.J. Org. Chem. 2015, 80, 7099–7107.