References:
[1].
Abrams,
P., et al., Fourth International Consultation on Incontinence
Recommendations of the International Scientific Committee: Evaluation
and treatment of urinary incontinence, pelvic organ prolapse, and fecal
incontinence. Neurourol Urodyn, 2010. 29(1): p. 213-40.
[2].
Haylen,
B.T., et al., An International Urogynecological Association
(IUGA)/International Continence Society (ICS) joint report on the
terminology for female pelvic floor dysfunction. Int Urogynecol J, 2010.
21(1): p. 5-26.
[3].
Andersson,
K.E. and A. Arner, Urinary bladder contraction and relaxation:
physiology and pathophysiology. Physiol Rev, 2004. 84(3): p. 935-86.
[4].
Fry,
C.H., et al., Spontaneous activity and electrical coupling in human
detrusor smooth muscle: implications for detrusor overactivity? Urology,
2004. 63(3 Suppl 1): p. 3-10.
[5].
Saitoh,
S., et al., Hydrogen peroxide: a feed-forward dilator that couples
myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc
Biol, 2006. 26(12): p. 2614-21.
[6].
Grivas,
N., et al., The effectiveness of otis urethrotomy combined with six
weeks urethral dilations until 40 Fr in the treatment of bladder outlet
obstruction in women: a prospective study. Urol J, 2014. 10(4): p.
1063-6.
[7].
Kennelly,
M., et al., Efficacy and Safety of AbobotulinumtoxinA in Patients with
Neurogenic Detrusor Overactivity Incontinence Performing Regular Clean
Intermittent Catheterization: Pooled Results from Two Phase 3 Randomized
Studies (CONTENT1 and CONTENT2). Eur Urol, 2022. 82(2): p. 223-232.
[8].
Xiao,
N., et al., Roles of polyuria and hyperglycemia in bladder dysfunction
in diabetes. J Urol, 2013. 189(3): p. 1130-6.
[9].
Zhang,
Q., et al., Effects of ischemia and oxidative stress on bladder
purinoceptors expression. Urology, 2014. 84(5): p. 1249.e1-7.
[10].
Gomez-Pinilla,
P.J., et al., Melatonin restores impaired contractility in aged guinea
pig urinary bladder. J Pineal Res, 2008. 44(4): p. 416-25.
[11].
Swindle,
E.J., J.A. Hunt and J.W. Coleman, A comparison of reactive oxygen
species generation by rat peritoneal macrophages and mast cells using
the highly sensitive real-time chemiluminescent probe pholasin:
inhibition of antigen-induced mast cell degranulation by
macrophage-derived hydrogen peroxide. J Immunol, 2002. 169(10): p.
5866-73.
[12].
Yu,
H.J., et al., Hypoxia preconditioning attenuates bladder
overdistension-induced oxidative injury by up-regulation of Bcl-2 in the
rat. J Physiol, 2004. 554(Pt 3): p. 815-28.
[13].
Allen,
C.L. and U. Bayraktutan, Oxidative stress and its role in the
pathogenesis of ischaemic stroke. Int J Stroke, 2009. 4(6): p. 461-70.
[14].
Huang,
Y.B., et al., Anti-oxidant activity and attenuation of bladder
hyperactivity by the flavonoid compound kaempferol. Int J Urol, 2014.
21(1): p. 94-8.
[15].
Masuda,
H., et al., BJU Int, 2008. 101(6): p. 775-80.
[16].
Azadzoi,
K.M., S.V. Yalla and M.B. Siroky, Oxidative stress and neurodegeneration
in the ischemic overactive bladder. J Urol, 2007. 178(2): p. 710-5.
[17].
Wang,
M., et al., Regulation of Spontaneous Contractions in Intact Rat Bladder
Strips and the Effects of Hydrogen Peroxide. Biomed Res Int, 2018. 2018:
p. 2925985.
[18].
Homan,
T., et al., Novel mouse Reactive oxygen species mediate detrusor
overactivity via sensitization of afferent pathway in the bladder of
anaesthetized rats. model of chronic inflammatory and overactive bladder
by a single intravesical injection of hydrogen peroxide. J Pharmacol
Sci, 2013. 121(4): p. 327-37.
[19].
Han,
J.H., et al., Effect of low concentrations of hydrogen peroxide on the
contractile responses of rat detrusor smooth muscle strips. Eur J
Pharmacol, 2010. 638(1-3): p. 115-20.
[20].
Fry,
C.H. and K.D. McCloskey, Spontaneous Activity and the Urinary Bladder.
Adv Exp Med Biol, 2019. 1124: p. 121-147.
[21].
Biers,
S.M., J.M. Reynard and A.F. Brading, The effects of a new selective
beta3-adrenoceptor agonist (GW427353) on spontaneous activity and
detrusor relaxation in human bladder. BJU Int, 2006. 98(6): p. 1310-4.
[22].
Finney,
S.M., L.H. Stewart and J.I. Gillespie, Cholinergic activation of phasic
activity in the isolated bladder: possible evidence for M3- and
M2-dependent components of a motor/sensory system. BJU Int, 2007.
100(3): p. 668-78.
[23].
Maggi,
C.A., et al., Regional differences in the motor response to capsaicin in
the guinea-pig urinary bladder: relative role of pre- and postjunctional
factors related to neuropeptide-containing sensory nerves. Neuroscience,
1988. 27(2): p. 675-88.
[24].
Lee,
K., et al., Role of PTHrP and Sensory Nerve Peptides in Regulating
Contractility of Muscularis Mucosae and Detrusor Smooth Muscle in the
Guinea Pig Bladder. J Urol, 2016. 196(4): p. 1287-94.
[25].
Gillespie,
J.I., Inhibitory actions of calcitonin gene-related peptide and
capsaicin: evidence for local axonal reflexes in the bladder wall. BJU
Int, 2005. 95(1): p. 149-56.
[26].
Maggi,
C.A., et al., Further studies on the motor response of the human
isolated urinary bladder to tachykinins, capsaicin and electrical field
stimulation. Gen Pharmacol, 1989. 20(5): p. 663-9.
[27].
Streng,
T., et al., Distribution and function of the hydrogen sulfide-sensitive
TRPA1 ion channel in rat urinary bladder. Eur Urol, 2008. 53(2): p.
391-9.
[28].
Nicholas,
S., et al., Hydrogen peroxide preferentially activates
capsaicin-sensitive high threshold afferents via TRPA1 channels in the
guinea pig bladder. Br J Pharmacol, 2017. 174(2): p. 126-138.
[29].
Daugherty,
S.L., et al., TRP Channel Agonists Activate Different Afferent
Neuromodulatory Mechanisms in Guinea Pig Urinary Bladder. Front Physiol,
2021. 12: p. 692719.
[30].
Artim,
D.E., et al., Nitro-oleic acid targets transient receptor potential
(TRP) channels in capsaicin sensitive afferent nerves of rat urinary
bladder. Exp Neurol, 2011. 232(1): p. 90-9.
[31].
Andrade,
E.L., et al., Contractile mechanisms coupled to TRPA1 receptor
activation in rat urinary bladder. Biochem Pharmacol, 2006. 72(1): p.
104-14.
[32].
Sawada,
Y., et al., Activation of transient receptor potential ankyrin 1 by
hydrogen peroxide. Eur J Neurosci, 2008. 27(5): p. 1131-42.
[33].
Andersson,
D.A., et al., Transient receptor potential A1 is a sensory receptor for
multiple products of oxidative stress. J Neurosci, 2008. 28(10): p.
2485-94.
[34].
Sugiyama,
D., et al., Hydrogen Peroxide Induces Muscle Nociception via Transient
Receptor Potential Ankyrin 1 Receptors. Anesthesiology, 2017. 127(4): p.
695-708.
[35].
Sibley,
G.N., A comparison of spontaneous and nerve-mediated activity in bladder
muscle from man, pig and rabbit. J Physiol, 1984. 354: p. 431-43.
[36].
Taylor-Clark,
T.E., Role of reactive oxygen species and TRP channels in the cough
reflex. Cell Calcium, 2016. 60(3): p. 155-62.
[37].
McNamara,
C.R., et al., TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U
S A, 2007. 104(33): p. 13525-30.
[38].
Saitoh,
C., et al., The differential contractile responses to capsaicin and
anandamide in muscle strips isolated from the rat urinary bladder. Eur J
Pharmacol, 2007. 570(1-3): p. 182-7.
[39].
Gillespie,
J.I., Inhibitory actions of calcitonin gene-related peptide and
capsaicin: evidence for local axonal reflexes in the bladder wall. BJU
Int, 2005. 95(1): p. 149-56.
[40].
Maggi,
C.A., et al., Contractile response of the human isolated urinary bladder
to neurokinins: involvement of NK-2 receptors. Eur J Pharmacol, 1988.
145(3): p. 335-40.
[41].
Dion,
S., et al., Substance P and neurokinins as stimulants of the human
isolated urinary bladder. Neuropeptides, 1988. 11(2): p. 83-7.
[42].
Dion,
S., et al., Receptors for neurokinins in human bronchus and urinary
bladder are of the NK-2 type. Eur J Pharmacol, 1990. 178(2): p. 215-9.
[43].
Kobayter,
S., J.S. Young and K.L. Brain, Prostaglandin E2 induces spontaneous
rhythmic activity in mouse urinary bladder independently of efferent
nerves. Br J Pharmacol, 2012. 165(2): p. 401-13.
[44].
Quinn,
T., C. Collins and A.W. Baird, Mechanisms of neurokinin A- and substance
P-induced contractions in rat detrusor smooth muscle in vitro. BJU Int,
2004. 94(4): p. 651-7.
[45].
Stephany,
H.A., et al., Chronic cyclic bladder over distention up-regulates
hypoxia dependent pathways. J Urol, 2013. 190(4 Suppl): p. 1603-9.
[46].
Nomiya,
M., K.E. Andersson and O. Yamaguchi, Chronic bladder ischemia and
oxidative stress: new pharmacotherapeutic targets for lower urinary
tract symptoms. Int J Urol, 2015. 22(1): p. 40-6.
[47].
Du S,
et al., Differential expression profile of cold (TRPA1) and cool (TRPM8)
receptors in human urogenital organs. Urology, 2008. 72(2): p. 450-5.
[48].
Andersson,
K.E., C. Gratzke and P. Hedlund, The role of the transient receptor
potential (TRP) superfamily of cation-selective channels in the
management of the overactive bladder. BJU Int, 2010. 106(8): p. 1114-27.
[49].
Zhao,
M., et al., Functional Expression of Transient Receptor Potential and
Piezo1 Channels in Cultured Interstitial Cells of Human-Bladder Lamina
Propria. Front Physiol, 2021. 12: p. 762847.
[50].
Philyppov,
I.B., et al., TRPA1-dependent regulation of bladder detrusor smooth
muscle contractility in normal and type I diabetic rats. J Smooth Muscle
Res, 2016. 52: p. 1-17.