References:
[1]. Abrams, P., et al., Fourth International Consultation on Incontinence Recommendations of the International Scientific Committee: Evaluation and treatment of urinary incontinence, pelvic organ prolapse, and fecal incontinence. Neurourol Urodyn, 2010. 29(1): p. 213-40.
[2]. Haylen, B.T., et al., An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Int Urogynecol J, 2010. 21(1): p. 5-26.
[3]. Andersson, K.E. and A. Arner, Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev, 2004. 84(3): p. 935-86.
[4]. Fry, C.H., et al., Spontaneous activity and electrical coupling in human detrusor smooth muscle: implications for detrusor overactivity? Urology, 2004. 63(3 Suppl 1): p. 3-10.
[5]. Saitoh, S., et al., Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol, 2006. 26(12): p. 2614-21.
[6]. Grivas, N., et al., The effectiveness of otis urethrotomy combined with six weeks urethral dilations until 40 Fr in the treatment of bladder outlet obstruction in women: a prospective study. Urol J, 2014. 10(4): p. 1063-6.
[7]. Kennelly, M., et al., Efficacy and Safety of AbobotulinumtoxinA in Patients with Neurogenic Detrusor Overactivity Incontinence Performing Regular Clean Intermittent Catheterization: Pooled Results from Two Phase 3 Randomized Studies (CONTENT1 and CONTENT2). Eur Urol, 2022. 82(2): p. 223-232.
[8]. Xiao, N., et al., Roles of polyuria and hyperglycemia in bladder dysfunction in diabetes. J Urol, 2013. 189(3): p. 1130-6.
[9]. Zhang, Q., et al., Effects of ischemia and oxidative stress on bladder purinoceptors expression. Urology, 2014. 84(5): p. 1249.e1-7.
[10]. Gomez-Pinilla, P.J., et al., Melatonin restores impaired contractility in aged guinea pig urinary bladder. J Pineal Res, 2008. 44(4): p. 416-25.
[11]. Swindle, E.J., J.A. Hunt and J.W. Coleman, A comparison of reactive oxygen species generation by rat peritoneal macrophages and mast cells using the highly sensitive real-time chemiluminescent probe pholasin: inhibition of antigen-induced mast cell degranulation by macrophage-derived hydrogen peroxide. J Immunol, 2002. 169(10): p. 5866-73.
[12]. Yu, H.J., et al., Hypoxia preconditioning attenuates bladder overdistension-induced oxidative injury by up-regulation of Bcl-2 in the rat. J Physiol, 2004. 554(Pt 3): p. 815-28.
[13]. Allen, C.L. and U. Bayraktutan, Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke, 2009. 4(6): p. 461-70.
[14]. Huang, Y.B., et al., Anti-oxidant activity and attenuation of bladder hyperactivity by the flavonoid compound kaempferol. Int J Urol, 2014. 21(1): p. 94-8.
[15]. Masuda, H., et al., BJU Int, 2008. 101(6): p. 775-80.
[16]. Azadzoi, K.M., S.V. Yalla and M.B. Siroky, Oxidative stress and neurodegeneration in the ischemic overactive bladder. J Urol, 2007. 178(2): p. 710-5.
[17]. Wang, M., et al., Regulation of Spontaneous Contractions in Intact Rat Bladder Strips and the Effects of Hydrogen Peroxide. Biomed Res Int, 2018. 2018: p. 2925985.
[18]. Homan, T., et al., Novel mouse Reactive oxygen species mediate detrusor overactivity via sensitization of afferent pathway in the bladder of anaesthetized rats. model of chronic inflammatory and overactive bladder by a single intravesical injection of hydrogen peroxide. J Pharmacol Sci, 2013. 121(4): p. 327-37.
[19]. Han, J.H., et al., Effect of low concentrations of hydrogen peroxide on the contractile responses of rat detrusor smooth muscle strips. Eur J Pharmacol, 2010. 638(1-3): p. 115-20.
[20]. Fry, C.H. and K.D. McCloskey, Spontaneous Activity and the Urinary Bladder. Adv Exp Med Biol, 2019. 1124: p. 121-147.
[21]. Biers, S.M., J.M. Reynard and A.F. Brading, The effects of a new selective beta3-adrenoceptor agonist (GW427353) on spontaneous activity and detrusor relaxation in human bladder. BJU Int, 2006. 98(6): p. 1310-4.
[22]. Finney, S.M., L.H. Stewart and J.I. Gillespie, Cholinergic activation of phasic activity in the isolated bladder: possible evidence for M3- and M2-dependent components of a motor/sensory system. BJU Int, 2007. 100(3): p. 668-78.
[23]. Maggi, C.A., et al., Regional differences in the motor response to capsaicin in the guinea-pig urinary bladder: relative role of pre- and postjunctional factors related to neuropeptide-containing sensory nerves. Neuroscience, 1988. 27(2): p. 675-88.
[24]. Lee, K., et al., Role of PTHrP and Sensory Nerve Peptides in Regulating Contractility of Muscularis Mucosae and Detrusor Smooth Muscle in the Guinea Pig Bladder. J Urol, 2016. 196(4): p. 1287-94.
[25]. Gillespie, J.I., Inhibitory actions of calcitonin gene-related peptide and capsaicin: evidence for local axonal reflexes in the bladder wall. BJU Int, 2005. 95(1): p. 149-56.
[26]. Maggi, C.A., et al., Further studies on the motor response of the human isolated urinary bladder to tachykinins, capsaicin and electrical field stimulation. Gen Pharmacol, 1989. 20(5): p. 663-9.
[27]. Streng, T., et al., Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol, 2008. 53(2): p. 391-9.
[28]. Nicholas, S., et al., Hydrogen peroxide preferentially activates capsaicin-sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder. Br J Pharmacol, 2017. 174(2): p. 126-138.
[29]. Daugherty, S.L., et al., TRP Channel Agonists Activate Different Afferent Neuromodulatory Mechanisms in Guinea Pig Urinary Bladder. Front Physiol, 2021. 12: p. 692719.
[30]. Artim, D.E., et al., Nitro-oleic acid targets transient receptor potential (TRP) channels in capsaicin sensitive afferent nerves of rat urinary bladder. Exp Neurol, 2011. 232(1): p. 90-9.
[31]. Andrade, E.L., et al., Contractile mechanisms coupled to TRPA1 receptor activation in rat urinary bladder. Biochem Pharmacol, 2006. 72(1): p. 104-14.
[32]. Sawada, Y., et al., Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci, 2008. 27(5): p. 1131-42.
[33]. Andersson, D.A., et al., Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci, 2008. 28(10): p. 2485-94.
[34]. Sugiyama, D., et al., Hydrogen Peroxide Induces Muscle Nociception via Transient Receptor Potential Ankyrin 1 Receptors. Anesthesiology, 2017. 127(4): p. 695-708.
[35]. Sibley, G.N., A comparison of spontaneous and nerve-mediated activity in bladder muscle from man, pig and rabbit. J Physiol, 1984. 354: p. 431-43.
[36]. Taylor-Clark, T.E., Role of reactive oxygen species and TRP channels in the cough reflex. Cell Calcium, 2016. 60(3): p. 155-62.
[37]. McNamara, C.R., et al., TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A, 2007. 104(33): p. 13525-30.
[38]. Saitoh, C., et al., The differential contractile responses to capsaicin and anandamide in muscle strips isolated from the rat urinary bladder. Eur J Pharmacol, 2007. 570(1-3): p. 182-7.
[39]. Gillespie, J.I., Inhibitory actions of calcitonin gene-related peptide and capsaicin: evidence for local axonal reflexes in the bladder wall. BJU Int, 2005. 95(1): p. 149-56.
[40]. Maggi, C.A., et al., Contractile response of the human isolated urinary bladder to neurokinins: involvement of NK-2 receptors. Eur J Pharmacol, 1988. 145(3): p. 335-40.
[41]. Dion, S., et al., Substance P and neurokinins as stimulants of the human isolated urinary bladder. Neuropeptides, 1988. 11(2): p. 83-7.
[42]. Dion, S., et al., Receptors for neurokinins in human bronchus and urinary bladder are of the NK-2 type. Eur J Pharmacol, 1990. 178(2): p. 215-9.
[43]. Kobayter, S., J.S. Young and K.L. Brain, Prostaglandin E2 induces spontaneous rhythmic activity in mouse urinary bladder independently of efferent nerves. Br J Pharmacol, 2012. 165(2): p. 401-13.
[44]. Quinn, T., C. Collins and A.W. Baird, Mechanisms of neurokinin A- and substance P-induced contractions in rat detrusor smooth muscle in vitro. BJU Int, 2004. 94(4): p. 651-7.
[45]. Stephany, H.A., et al., Chronic cyclic bladder over distention up-regulates hypoxia dependent pathways. J Urol, 2013. 190(4 Suppl): p. 1603-9.
[46]. Nomiya, M., K.E. Andersson and O. Yamaguchi, Chronic bladder ischemia and oxidative stress: new pharmacotherapeutic targets for lower urinary tract symptoms. Int J Urol, 2015. 22(1): p. 40-6.
[47]. Du S, et al., Differential expression profile of cold (TRPA1) and cool (TRPM8) receptors in human urogenital organs. Urology, 2008. 72(2): p. 450-5.
[48]. Andersson, K.E., C. Gratzke and P. Hedlund, The role of the transient receptor potential (TRP) superfamily of cation-selective channels in the management of the overactive bladder. BJU Int, 2010. 106(8): p. 1114-27.
[49]. Zhao, M., et al., Functional Expression of Transient Receptor Potential and Piezo1 Channels in Cultured Interstitial Cells of Human-Bladder Lamina Propria. Front Physiol, 2021. 12: p. 762847.
[50]. Philyppov, I.B., et al., TRPA1-dependent regulation of bladder detrusor smooth muscle contractility in normal and type I diabetic rats. J Smooth Muscle Res, 2016. 52: p. 1-17.