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Abstract16

The rapid growth of liquefied natural gas (LNG) exports underscores the importance of17

CO2 monitoring for LNG export terminals. This study presents a method for measur-18

ing CO2 emissions using remote sensing imaging spectroscopy applied to LNG terminals.19

The method is first validated using 47 power plant emission events with in situ measured20

data, then applied to 22 emission events in Sabine Pass and Cameron LNG terminals.21

The power plant dataset shows a robust correlation between our emission rate estimates22

and in situ data, with R2 0.9146 and the average error −2%. At Sabine Pass, 8 point23

sources are identified with emission rates ranging from 219.69 ± 54.95 to 1083.22 ± 308.0624

t/hr. At Cameron, 3 point sources are identified with emission rates ranging from 91.6425

± 25.81 to 265.61 ± 67.80 t/hr. This study illustrates the potential of remote sensing26

to validate environmental reporting and CO2 inventories for industrial facilities.27

Plain Language Summary28

The natural gas system is an important source of carbon dioxide (CO2) emissions.29

Rising domestic production of natural gas in the U.S. and the international energy de-30

mand have contributed to a rapid growth of liquefied natural gas (LNG) exports. This31

makes it increasingly important to assess the CO2 emissions along the LNG supply chain,32

especially during gas liquefaction at LNG export terminals. However, existing invento-33

ries only provide annual/monthly emissions data reported by LNG operators for some34

major LNG terminals, and those data lack measurement-based in situ validation. Here35

we introduce a top-down CO2 measuring method using remote sensing imaging spectroscopy,36

which is able to provide an independent third-party CO2 emissions data source with uni-37

form measuring technology across all infrastructure. Additionally, the emission measure-38

ments obtained by this method would help enable rapid responses to any unexpected in-39

creases in emissions. When combined with remote sensing methane detection, this tech-40

nology can further contribute to a more efficient monitoring system of the carbon emis-41

sions along the natural gas supply chain. This study also shows the mapping and quan-42

tification capability of imaging spectroscopy on the plumes with emission rate of 100-43

3000 t CO2/hr, implying its potential for broader applications in CO2 top-down detec-44

tion.45

1 Introduction46

Natural gas (NG) accounts for 22% of global fossil carbon dioxide (CO2) emissions,47

following coal (41%) and oil (32%) in 2021 (Friedlingstein et al., 2022). To reduce green-48

house gas (GHG) emissions from the NG system, it is crucial to quantify and understand49

how emissions are distributed throughout the NG supply chain (Hamedi et al., 2009; Zarei50

& Amin-Naseri, 2019).51

The liquefied natural gas (LNG) supply chain is a special component in the broader52

NG supply chain. It is commonly used for long-distance transportation by sea. The United53

States plays an important role in the international LNG market. With the shale gas rev-54

olution boosting domestic production from 2016, it rapidly emerged as the world’s lead-55

ing LNG exporter (U.S. EIA, 2022). In 2022, U.S. LNG exports reached 10.6 billion cu-56

bic feet per day (Bcf/d), tying Qartar as the world’s top LNG exporter (U.S. EIA, 2023).57

The rapid growth of U.S. LNG exports underscores the growing importance of assess-58

ing GHG emissions in the U.S. LNG supply chain and developing methods that can be59

applied internationally.60

In addition to the upstream stages and downstream combustion stage, in which NG61

is generally in gaseous form, the LNG supply chain comprises three stages: liquefaction,62

transportation and regasification (Balcombe et al., 2017). Typically, NG is converted into63

its liquefied state at liquefaction trains, then transported via special ocean-going LNG64
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carriers, and finally reconverted to its gaseous state at regasification terminals. As of 2022,65

U.S. has a total of seven industrial-scale LNG export terminals, with total liquefaction66

capacity of over 92 million tonnes per annum (mtpa) (Alam et al., 2023), most of which67

are located in the United States Gulf Coast states of Louisiana and Texas (Table S1).68

Previous studies show that liquefaction accounts for the highest proportion of GHG69

emissions across the three-stage LNG supply chain. These emissions are mainly from fuel70

combustion for refrigeration compressors and generator turbines. A small amount is also71

from flare combustion to destroy waste gases. Abrahams et al. (2015) collected lique-72

faction emissions estimates from various studies and reported a range of 2.4-8.8 g CO273

eq/MJ, compared to the end-use combustion emissions of 43-50 g CO2 eq/MJ for final74

gas combustion in electricity generation. Balcombe et al. (2017) and Gan et al. (2020)75

concluded similar ranges of 4.1-7.7 g CO2 eq/MJ and 4.1-7.6 g CO2 eq/MJ from liter-76

ature search and environment assessment reports, respectively. However, the data in the77

past studies are mostly from LNG operators or past literature, which are often not trans-78

parent in their measuring technology. Some studies calculated liquefaction emissions by79

collecting emission factors and activity factors (Cohen, 2013; Barnett, 2010; Okamura80

et al., 2007). But most of these data are before the U.S. shale gas production surge (U.S.81

EIA, 2022), thus become less valuable in the current LNG industry. And practical ex-82

perience in methane emissions estimation suggests that calculated emissions can differ83

greatly from empirical measurements of emissions for the same facility or region (Chen84

et al., 2022; E. Sherwin et al., 2023)85

Given the substantial increase of U.S. LNG exports and the importance of CO2 emis-86

sions in the liquefaction stage, the development of a monitoring system for liquefaction87

CO2 emissions at LNG export terminals is of growing importance. The Greenhouse Gas88

Reporting Program (GHGRP) operated by the U.S. Environmental Protection Agency89

(U.S. EPA) produces the valuable Facility Level Information on GreenHouse gases Tool90

(FLIGHT) dataset (U.S. EPA, 2022). FLIGHT includes annual and monthly CO2 emis-91

sions data for five out of the seven major LNG terminals (excluding Calcasieu Pass and92

Elba Island), based on estimates reported by LNG operators at the total facility level93

and at the equipment/unit level. However, there is currently not an independent third-94

party source for emissions measurement data at LNG terminals using uniform measur-95

ing technology across all infrastructure. It would also be valuable to complement FLIGHT96

data with more frequent emission measurements, enabling rapid response to any unex-97

pected increases in emissions.98

Remote sensing imaging spectroscopy could enable more rapid, independent mon-99

itoring of LNG terminal CO2 emissions. These instruments measure the solar radiance100

reflected off the Earth’s surface at many wavelengths, providing insight into surface and101

atmospheric properties (Cusworth et al., 2021). The Next-Generation Airborne Visible/Infrared102

Imaging Spectrometer (AVIRIS-NG) and the Global Airborne Observatory (GAO) have103

been proven effective for methane emissions measuring because of their fine spatial res-104

olution (2-10 m) and spectral resolution (5 nm sampling between 400-2500 nm) (Duren105

et al., 2019; Frankenberg et al., 2016; Asner et al., 2012). Because these spectrometers106

also cover the shortwave infrared wavelength range, where atmospheric CO2 strongly ab-107

sorbs solar radiance, they can also be leveraged for CO2 measuring. Dennison et al. (2013)108

and Thorpe et al. (2017) did CO2 mapping on power plants using AVIRIS and AVIRIS-109

NG, confirming the capability of imaging spectrometers for CO2 detection. Cusworth110

et al. (2021) conducted the first facility-scale CO2 emissions quantification study using111

data from AVIRIS-NG, GAO, and the satellite spectrometer PRISMA. By employing112

the Iterative Maximum A Posteriori–Differential Optical Absorption Spectroscopy (IMAP-113

DOAS) method, they estimated emissions from 17 coal and gas fired power plants in the114

U.S., with robust correlation and 21% average estimate error with simultaneous in situ115

measured data. Foote et al. (2021) also quantified 7 CO2 emissions examples, conclud-116

ing that generating the scene-specific unit enhancement spectra could achieve quantifi-117
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cation improvement. However, it is important to note that these studies have primar-118

ily focused on power plants, as they are often high-volume point sources of CO2 emis-119

sions equipped with continuous emissions monitoring systems (CEMS) that provide in120

situ measured data for calibration purposes (U.S. EPA, 2023). Until now, there is still121

a lack of studies on the measuring of smaller-volume CO2 emissions from other sources,122

such as LNG terminals.123

In this study, we present an updated matched filter method of CO2 emissions mea-124

suring, which is different from the method in Cusworth et al. (2021), and apply it to LNG125

terminals using imaging spectroscopy data from AVIRIS-NG and GAO. The method is126

first validated by 47 power plant emission events with in situ measured data. Subsequently,127

the calibrated method is applied to 22 emission events in two major LNG terminals: Sabine128

Pass and Cameron. Based on these measurements, an estimation of the life-cycle car-129

bon intensity (CI) of the liquefaction process is also conducted. Compared to existing130

LNG terminal CO2 emissions data which largely rely on LNG operators, this method131

provides an independent third-party data source with uniform measuring technology. It132

could also be used in regions or industries without rigorous emissions reporting. Addi-133

tionally, the emission measurements obtained by this method would help enable rapid134

responses to any unexpected increases in emissions. If with more emission samples, our135

method is going to be able to provide a more robust life-cycle CI estimation for the LNG136

liquefaction process. When combined with methane detection, it can further contribute137

to a more efficient monitoring system of the carbon emissions along the LNG supply chain.138

This study also shows the mapping and quantification capability of imaging spectroscopy139

on power plant CO2 emissions, implying its potential for broader applications in CO2140

top-down detection.141

2 Methods142

In this study, two datasets from AVIRIS-NG and GAO imagery are collected, fo-143

cusing on coal/natural gas-fired power plants and LNG terminals, respectively. The power144

plant dataset comprises 47 emission events from 22 facilities in 2017-2022. Among these145

infrastructure, 13 are coal-fired power plants, and 9 are gas-fired. For the ground-truths146

at power plants, we rely on hourly in situ measured CO2 volumes of these power plants147

from CEMS data (U.S. EPA, 2023). The LNG terminal dataset consists of 22 emission148

events in two major terminals: Sabine Pass and Cameron, all in 2021-2022. These LNG149

terminals do not report in situ CEMS data. Specific steps of detection and quantifica-150

tion are as follows.151

2.1 Detection152

The CO2 retrieval method in this study is adapted from the matched filter methane153

retrieval method in Thorpe et al. (2016). It uses a sparse matched filter with albedo cor-154

rection to retrieve gas concentration-pathlength enhancements from the calibrated and155

orthorectified radiance from raw imagery. The resulting concentration-pathlength en-156

hancement, also known as the mixing ratio length (α), is measured in parts per million157

meter (ppm-m), where ppm represents concentration and m represents the path length158

over which absorption occurs. This methane retrieval method has been demonstrated159

to be capable of detecting plumes with emissions as small as 2-10 kg CH4/hr (Thorpe160

et al., 2016; Duren et al., 2019). Compared to CH4 retrieval, the CO2 retrieval method161

makes several key adjustments. First, it uses wavelength bands within the range 1928-162

2200 nm where CO2 has strong absorption effects on the radiance. Second, it simulates163

CO2 concentration enhancements above background, starting at 0 ppm-m and incremen-164

tally doubling up from 20,000 ppm-m to 1,280,000 ppm-m (Foote et al., 2021). Finally,165

it applies an independent matched filter to a group of 50 adjacent columns of the im-166
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age to improve the covariance estimate by suppressing artifacts from non-uniformity among167

detector elements (Ayasse et al., 2019).168

The resulting CO2 enhancement imagery is then analyzed manually to identify the169

presence of a CO2 plume. During this step, a Red, Green, Blue (RGB) image is gener-170

ated from raw radiance data, and hourly wind data of this area are collected from the171

Dark Sky API (Apple Inc., 2023) to assist identification (see details in Section S1).172

In addition, to improve the accuracy of quantification, we conduct an automatic173

artifact masking process to remove certain artifacts close to the CO2 plume. One such174

artifact occurs when the plume source is in close proximity to a roof painted with white175

paint. This can result in short-wave infrared (SWIR) absorption due to hydrocarbon ab-176

sorption from oil-based paints (Ayasse et al., 2018). Another example is the presence of177

flaring, which can lead to sensor saturation in the SWIR bands while emitting CO2. Note178

that excluding these pixels from quantification may introduce low bias if it does not change179

the plume length (see details in Section S2).180

2.2 Quantification181

After detection, the next step is quantifying the emission rate of the identified CO2182

plume. We first define a circular area around the plume, centered on the plume origin,183

with a radius called the fetch radius (rc). The circle reaches the plume boundary to en-184

sure complete coverage (i.e., rc approximates the plume length, further details described185

in Section 2.3). Within the area, we define a minimum (αl) and a maximum (αh) thresh-186

old for the mixing ratio length α, so that the pixels out of the range αl-αh would be ex-187

cluded from quantification. We also define a merge distance, which allows for a defini-188

tion of contiguous plumes in the presence of gaps inside the circle. Therefore, the pix-189

els within the range αl−αh and with distance less than or equal to the merge distance190

are included into quantification (see details in Section S3).191

Next, we calculate the integrated mass enhancement (IME) of the plume within192

the circle as follows:193

IMErc = k

n∑
i=0

α(i)S(i) (1)194

Where i ∈ [0, N ] are the pixels of the plume, α is the mixing ratio length of each195

pixel, S is the pixel area, and the constant k represents the conversion factor from concentration-196

pathlength to mass. Here we calculate the ratio of IME/r for each radius from the ini-197

tial radius (pixel size) to the fetch radius, increasing by the pixel size (r = r1, r2, . . . , rj , . . . , rc).198

Then the average of the IME/r estimates IME/r and the 10-meter wind speed from199

Dark Sky API (Apple Inc., 2023) are used to calculate the emission rate:200

Q = (IME/r)U10 (2)201

Note that this method includes all the valid pixels within the circle identified as202

containing a CO2 enhancement without attempting to separate a masked plume. There-203

fore, this approach may include small background noise enhancements into the estimated204

overall mass enhancement (see Section 3.1).205

2.3 Fetch Radius Calculation206

The fetch radius rc is an important input during quantification as shown in equa-207

tion 1 and 2. However, manual determination of rc can be time-consuming and labor-208
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intensive. In this section, we introduce a way of automatically determining rc and dis-209

cuss how rc influences the emission rate estimation (Figure S1).210

First, we introduce a parameter ∆IME, which represents the additional mass en-211

hancement as the radius expands a differential amount from rj−1 to rj . Most of the in-212

cremental mass enhancement is expected to be from the plume (∆IMEp), while a small213

amount may be from background noise (∆IMEb). With a stable emission rate and wind214

speed and direction, ∆IMEp would be a positive constant value as the radius expands215

until the circle area reaches the plume boundary. Then ∆IMEp would drop to zero and216

remain zero as radius further expands. On the other hand, ∆IMEb is proportional to217

the ring area if the background noise pixels are randomly distributed. Thus, ∆IMEb would218

linearly increase along the radius expansion. Consequently, the relationship between ∆IME219

and rj can be expressed as follows:220

∆IME = ∆IMEp +∆IMEb =

{
∆IMEp + β(2π∆r · rj − π∆r2), 0 < rj ≤ rc

β(2π∆r · rj − π∆r2), rj > rc
(3)221

where ∆r is the incremental radius (pixel size) and β is the slope coefficient. In a222

detectable and quantifiable emission event, ∆IMEb is expected to be much smaller than223

∆IMEp within the radius range 0−rc, so the minimum value of ∆IME would occur224

at rc due to the drop of ∆IMEp. Therefore, to automatically determine rc, we calcu-225

late ∆IME over a wide radius range and define rc as the radius where the minimum ∆IME226

is achieved. Note that ∆IME often exhibits fluctuations over small radius ranges. To227

mitigate this effect, we set a starting radius rs for the ∆IME calculation instead of be-228

ginning at the plume origin. For the power plant dataset, we explore two scenarios with229

rs values of 100 m and 300 m. Further analysis is discussed in Section 3.1. For the LNG230

terminal dataset, we set rs as 100 m to ensure that only one plume is included within231

the study area, considering the presence of multiple adjacent plumes in one terminal. Ad-232

ditionally, an ending radius of rc calculation is set as 1500 m to include even large CO2233

plumes with long plume lengths.234

Based on equation 2 and 3, the relationship between Q and rj can be further ex-235

pressed as follows:236

Q = (
IMEp

rj
+
IMEb

rj
)U10 =

{
U10(

∆IMEp

∆r + βπ
j

∑j
k=1 rk), 0 < rj ≤ rc

U10(
c
j
∆IMEp

∆r + c
j∆IMEp

∑j
k=c+1

1
rk

+ βπ
j

∑j
k=1 rk), rj > rc

(4)

Therefore, the emission rate estimate would slightly increase within the radius range237

0 − rc, resulting in a modestly higher Q estimate at rj = rc due to background noise238

(U10
βπ
j

∑j
k=1 rk). However, this bias from background noise can be ignored if ∆IMEb239

is much smaller than ∆IMEp (see Section 3.1).240

3 Results241

3.1 Power Plant Emission Events242

We compare the estimated emission rates to in situ CEMS measurements for the243

47 power plant emission events. Two scenarios are considered, with the starting radius244

during fetch radius calculation rs of 300 m and 100 m, respectively. The uncertainty bounds245

are generated by assuming ±25% errors of the mix ratio length minimum threshold αl,246

fetch radius rc and wind speed U10. We use ordinary least squares regression to assess247

quantification accuracy (E. D. Sherwin et al., 2023; Rutherford et al., 2023). The sce-248

nario with rs = 300 m demonstrates the best performance (Figure 1). The estimates have249

–6–



manuscript submitted to Geophysical Research Letters

a robust correlation (R2 = 0.9149) with the in situ data, with a tendency to somewhat250

underestimate emissions (slope = 0.8322) for emissions ranging from 200-3000 t/hr (met-251

ric tons per hour). The average estimate error is -2% (min/max interval [-64%, 127%]),252

with 81% of the estimates falling within ±50% of the in situ emission rates. However,253

if rs = 100 m, there is a higher underestimation tendency (slope = 0.7371) in the range254

of 100-3000 t/hr, with R2 = 0.8445 (Figure S2). These estimates have larger error (av-255

erage -25%, [-83%, 41%]), but the proportion of estimates falling within ±50% of the in256

situ emission rates remains similar (79%).257

Figure 1. Power plant emission rate estimates compared to in situ emission rates in scenario

1: rs = 300 m. (A): Emission rate estimates. (B): Emission rate estimation errors.

13 emission events in this study with in situ emission rate ranging in 150-1800 t/hr258

were also analyzed in Cusworth et al. (2021). They reported a lower R2 (0.8840) com-259

pared to scenario 1 (rs = 300 m) but higher than scenario 2 (rs = 100 m). The aver-260

age estimate error is 16% [-9%, 65%], with 85% of the estimates falling within ±50% of261

the in situ emission rates. The difference between the estimates in this study and Cusworth262

et al. (2021) is within ±60% for all the 13 events in both two scenarios (Figure S3).263

Figure 2 shows a plume quantification example at the Four Corners Power Plant264

on August 4th, 2020 (see all plume results in Figure S5-S8 and Table S2). Based on the265

automatic fetch radius calculation, rc is determined to be 563.5 m where the minimum266

∆IME is achieved. The circular study area defined by rc covers the whole plume, with267

few background noise pixels included. The emission rate is estimated as 1426 ± 459.76268

t/hr, which is 104% ([71%, 138%]) of the in situ measured rate.269

Note that our method includes as CO2 signals all the pixels that meet the quan-270

tification criteria, without attempting to manually separate a masked plume. Therefore,271

it is possible that part of the resulting mass enhancement is from background noise in-272

stead of the plume. In Figure 2, for example, the pixels marked in red rectangles are very273

likely to be background noise. The IME of these pixels is around 4% of the IME in the274

study area, implying that the influence of background noise on the emission rate esti-275

mation is small. In another example in Figure S4 (B), however, the majority of the en-276

hancement is likely to be background noise. The IME of these pixels accounts for around277

60% of the IME in the study area. Some of these artifacts align with the surface features278
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Figure 2. A power plant plume example. Time: 08/04/2020 17:07:56 UTC. Location: Four

Corners Power Plant, (36.6862, -108.4775). (A) left: plume figure in a zoomed-out view (gen-

erated by the matched filter method); (A) right: plume figures in the circle study area of rc =

563.5 m, with and without RGB basemap. Background noise is outlined by red rectangles. Note

that both two starting radius (rs = 300 m and rs = 100 m) return the same rc value in this

example. (B) top: ∆IME over radius; (B) bottom: emission rate estimate Q as a function of

radius rc.

in shape, suggesting that the surface features are the true reason of spurious high CO2279

enhancement. Our emission rate estimate of this emission event is 1.85 times higher than280

in situ data, implying that background noise can lead to overestimation.281

Removing background noise from CO2 plumes remains difficult to implement sys-282

tematically across a diverse set of observing environments. However, given these issues,283

the results from Figure 1 show that the approaches implemented in this study are suf-284

ficient to accurately quantify power plant CO2 emissions. As methods to remove noise285

from retrievals are refined, we anticipate further improvement and agreement of remotely286

sensed emission estimates to ground truth.287

3.2 LNG Terminal Emission Events288

Compared to power plants, CO2 plumes from LNG terminals exhibit several dis-289

tinct characteristics. First, LNG terminal plumes are typically smaller in size and have290

lower emission rates. Second, the presence of complex background surface features in the291

vicinity of LNG terminal point sources introduces more background noise. Third, in large292

terminals with multiple independent LNG trains, there are often multiple plumes present.293

The first two aspects suggest that a smaller rs (scenario 2) would be more suitable to294

mitigate overestimation by including less background noise. The last aspect suggests that295

it is more appropriate to treat multiple CO2 plumes as individual emission events rather296

than a single event, so a smaller rs (scenario 2) is also preferred. Therefore, our method297

with rs = 100m is used for LNG terminal CO2 quantification.298

In Sabine Pass, a total of 8 point sources are identified during 6 overpasses. Among299

these point sources, 5 are from fuel combustion and 3 are from flare combustion. The300

emission rate estimates of the fuel combustion point sources range from 219.69 ± 54.95301

to 1083.22 ± 308.06 t/hr. Flare combustion point sources exhibit lower emissions rate302
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estimates, ranging from 247.75 ± 84.62 to 508.44 ± 137.29 t/hr. Point source B has the303

highest number of emission events, with emission rate estimates ranging from 269.59 ±304

77.89 to 1022.65 ± 280.10 t/hr. There are two groups of flare combustion events on Oc-305

tober 30th 2021, with a time difference of approximately 5 minutes between them. The306

plumes display similar lengths and shapes at both timestamps, and the emission rate es-307

timates of the latter events are 13-39% higher than the former ones. In Cameron, 3 point308

sources from fuel combustion are identified during 2 overpasses. The emission rates range309

from 91.64 ± 25.81 to 265.61 ± 67.80 t/hr, suggesting that all three point sources have310

emission rates of similar magnitude (see plume examples in Figure 3 and all LNG plume311

results in Figure S9-S10 and Table S3).312

Figure 3. LNG plume examples. (A) Sabine Pass terminal. Point source A-E are from fuel

combustion and point source F-H are from flare combustion. (B) Cameron terminal. Point source

A-C are from fuel combustion.

Overall, the emission rate estimates of the LNG terminal plumes approximately313

range from 100-1000 t/hr. The interquartile range of LNG terminal plumes [220.85, 389.45]314

t/hr falls within the interquartile range of the power plant dataset [212.45, 877.74] t/hr315

(Figure S11), suggesting that our method has comparable capability in estimating CO2316

emissions for both LNG terminals and power plants. However, it is important to note317

that the LNG terminal plumes exhibit higher levels of background noise, which can in-318

troduce greater variance in our estimates compared to the power plants. Future work319

is needed to assess whether this is the case. It may be possible to increase the quantifi-320

cation accuracy by manually identifying emission plumes and excluding background noise321

before applying the current quantification method.322

3.3 Life-cycle Carbon Intensity323

In this section, we conduct a rough estimation of liquefaction CI based on our 22324

emission rate samples, although a larger dataset would aid in generating a more robust325

estimation. First, we sum up the emission rates of all the point sources of each LNG ter-326

minal in each overpass. The total emission rates are considered as the daily average of327

each terminal, except for the date October 30th 2021, when we have two overpasses, so328

the average of these two is calculated. Then we obtain the daily export data of each LNG329

terminal from the U.S. Department of Energy (U.S. DOE, 2023), assuming that the amount330
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of exported LNG equals to the amount of liquefied LNG at the same day. There are cases331

where we fail to find records of LNG exports at the same day of the emission events, so332

the exports at the closest date after the emission event are used instead, assuming that333

LNG was officially recorded after being liquefied and transported. Finally, we calculate334

the CI of each date for each terminal and take the average (see Table S4).335

Sabine Pass, with emissions data from 6 overpasses, has an average CI of 7.25 [2.45,336

12.97] g CO2 eq/MJ. Cameron has an average CI of 3.14 [2.91, 3.36] g CO2 eq/MJ based337

on the emissions data of 2 overpasses. The numbers are mostly within the range of 2.4-338

8.8 g CO2 eq/MJ in Abrahams et al. (2015), 4.1-7.7 g CO2 eq/MJ in Balcombe et al.339

(2017) and 4.1-7.6 g CO2 eq/MJ in Gan et al. (2020). Our estimate of Sabine Pass also340

aligns with the estimate of Roman-White et al. (2021), which is 4.64 g CO2/MJ (100-341

year GWP) based on the 2018 GHGRP data of Sabine Pass. Note that the CO2 emis-342

sions detected by this study are not the only sources of GHG emissions. Other sources343

include fugitive methane emissions and post-acid gas (AGR) CO2 venting emissions, which344

require methane detection methods and a lower detection limit of our method to cap-345

ture. However, fuel combustion accounts for over 98% of the total emissions (Roman-346

White et al., 2021), so we believe our method is still able to provide a whole picture of347

the liquefaction CI. Although in this estimation, the small amount of samples suggests348

that the temporal variability could be an important uncertainty source, we are confident349

that this method can greatly complement to a more robust estimation of the liquefac-350

tion life-cycle CI if with a larger dataset. When combined with methane detection, it can351

further contribute to a more efficient monitoring system of the carbon emissions along352

the LNG supply chain.353

4 Conclusion354

The rapid growth of U.S. LNG exports underscores the importance of CO2 mon-355

itoring for LNG export terminals. However, existing inventories only provide annual/monthly356

emissions data reported by LNG operators for some major LNG terminals. This study357

presents a CO2 emissions measuring method applied to LNG terminals using imaging358

spectroscopy data from AVIRIS-NG and GAO. The method is first validated using 47359

power plant emission events with in situ measured data, then applied to 22 emission events360

in two major LNG terminals: Sabine Pass and Cameron. Results show that the emis-361

sion rate estimates of the LNG terminal plumes approximately range from 100-1000 t/hr.362

At Sabine Pass, 8 point sources of either fuel combustion or flare combustion are iden-363

tified, with emission rates ranging from 219.69 ± 54.95 to 1083.22 ± 308.06 t/hr. At Cameron,364

3 point sources are identified with emission rates ranging from 91.64 ± 25.81 to 265.61365

± 67.80 t/hr. Based on these estimates, we calculate the life-cycle CI of two terminals366

as 7.25 [2.45, 12.97] g CO2 eq/MJ and 3.14 [2.91, 3.36] g CO2 eq/MJ, respectively.367

We see a robust correlation between our emission rate estimates and in situ mea-368

sured data of the power plant dataset, with the R2 as 0.9146 and the average errors as369

−2% if the starting radius during fetch radius calculation rs is set as 300 m. A smaller370

value of rs is more suitable for small plumes with significant background noise, as it helps371

mitigate overestimation by including less background noise.372

Compared to power plant CO2 plumes, LNG terminal CO2 plumes are generally373

smaller in shape, with lower emission rates and more background noise. This can intro-374

duce greater variance to our estimates compared to the power plant results, which we375

were only able to qualitatively assess in this study based on the number of available mea-376

surements at LNG facilities. However, the performance of our method on power plant377

emissions with similar magnitudes suggests comparable capabilities at LNG terminal CO2378

emissions quantification.379
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Our method provides an independent third-party data source with uniform mea-380

suring technology to the LNG terminal CO2 emissions monitoring. Additionally, the emis-381

sion measurements obtained by this method would help enable rapid responses to any382

unexpected increases in emissions. If with a larger emission dataset, our method is able383

to provide a more robust life-cycle CI estimation for the LNG liquefaction. When com-384

bined with methane detection, it can further contribute to a more efficient monitoring385

system of the GHG emissions along the LNG supply chain. Furthermore, this study val-386

idates the quantification performance of imaging spectroscopy on the plumes with emis-387

sion rate of 100-3000 t/hr, implying its potential for broader application in CO2 top-down388

detection.389
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