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Introduction  26 

    Text S1 and Text S2 provide additional details on the snow projection datasets 27 

compared in the main text. Figures S1 through S12 provide additional figures in formats 28 

analogous to those presented in the main text, but for different domains and periods. 29 

Finally Table 1 includes snow projection statistics, including specific statistics and values 30 

referenced in the main text. Here, these text, figures, and statistics support and 31 

complement the findings of the associated study, but are not necessary for the 32 

understanding of the study results presented in the main text. 33 

Text S1: NEX6-C and NEX6-M modeling procedure 34 

    The NEX6-M and NEX6-C snow water equivalent (SWE) projections developed for 35 

this study were made using a two-step modeling approach, which 1) developed baseline 36 

simulations representative of snow evolution in historical periods, and 2) perturbed the 37 

baseline simulations with future climate-change signals. While straightforward, this 38 

change-factor approach (also termed the delta method) is a reliable approach for 39 

determining hydrological and ecological climate sensitivities (Barsugli et al., 2020; 40 

McKelvey et al., 2011; Sofaer et al., 2017).  41 

    Historical snow simulations were forced with meteorological data from the Modern-42 

Era Retrospective Reanalysis, version 2 (MERRA-2; Gelaro et al., 2017). The forcing 43 

variables used were air temperature, specific humidity, downwelling shortwave radiation, 44 

downwelling longwave radiation, wind speed, wind direction, surface pressure, and 45 

precipitation. Prior to forcing simulations, MERRA-2 was downscaled to the model 46 

resolution (0.01°). Coarse grid cell mean precipitation from MERRA-2 was spatially 47 

disaggregated using the underlying and finer-scale (1 km) monthly climatology 48 

precipitation patterns from Parameter-elevation Regressions on Independent Slopes 49 

Model (PRISM; Daly et al., 2008, 1997). MERIT elevations maps and terrain-based lapse 50 

rates (e.g., Cosgrove et al., 2003) were also used to downscale meteorological forcing 51 

data. Finally, slope and aspect corrections were used to calculate terrain shading impacts. 52 

The downscaling approaches used here are discussed in-depth in Arsenault et al. (2018). 53 

    Future climate change signals were derived from the Coupled Model Intercomparison 54 

Project, phase 6 (CMIP6; Eyring et al., 2016). Prior to accessing this data, CMIP6 daily-55 

average historical and future climate data were downscaled to 0.1° resolution by the 56 

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDD-CMIP6; 57 

Thrasher et al., 2022). NEX-GDDP-CMIP6 data was downscaled using the popular bias 58 

correction spatial disaggregation (BCSD) approach (Wood et al., 2004), which uses 59 

overlapping periods of climate models (from CMIP6) and historical observations as the 60 

basis for determining the climate model bias and sub-grid variability at monthly intervals. 61 

Here, observations came from the reanalysis-based Global Meteorological Forcing 62 

Dataset (GMFD; Sheffield et al., 2006). Readers are referenced to Thrasher et al. (2022) 63 

and Wood et al. (2004) for more information on NEX-GDDP-CMIP6 and BCSD, 64 

respectively.  65 

    The Land Information System (LIS; Kumar et al., 2006) was used to simulate snow 66 

evolution at fine spatial resolutions (0.01°, ~1 km) and hourly timesteps over the five 67 

Western US montane watersheds. LIS simulations in this study were performed using the 68 

Noah-Multiparameterization (Noah-MP) land surface model (Niu et al., 2011), which 69 

accounts for a discrete canopy layer, and multilayer snow representations. Landcover 70 

classifications came from satellite-derived International Geosphere-Biosphere 71 
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Programme (IGBP) classifications (Friedl et al., 2022, 2002), and soil maps were derived 72 

from the International Soil Reference and Information Centre (ISRIC; Batjes, 1995). 73 

Spatially varying maximum snow albedo was prescribed using historic observations 74 

(Barlage et al., 2005) from the MODerate Resolution Imaging Spectroradiometer 75 

(MODIS). Finally, modeled snow albedo decayed in accordance to a decay factor from 76 

the Canadian Land Surface Scheme (CLASS) parameterization (Verseghy, 1991). 77 

Snowfall and rainfall were partitioned at each hourly timestep using a method from 78 

Jordan (1991), 79 

𝐹𝑠𝑛𝑜𝑤 = 1:                          𝑇𝑎𝑖𝑟 < 0.5°𝐶 80 

𝐹𝑠𝑛𝑜𝑤 = 1 − [0.2𝑇𝑎𝑖𝑟]:    0.5°𝐶 < 𝑇𝑎𝑖𝑟 < 2.0°𝐶 81 

𝐹𝑠𝑛𝑜𝑤 = 0.6:                       2.0°𝐶 < 𝑇𝑎𝑖𝑟 ≤ 2.5°𝐶 82 

𝐹𝑠𝑛𝑜𝑤 = 0:                           𝑇𝑎𝑖𝑟 > 2.5°𝐶 83 

 84 

where 𝑇𝑎𝑖𝑟 is hourly and 0.01° air temperature and 𝐹𝑠𝑛𝑜𝑤 is the fraction of precipitation 85 

that fell as snow. This model setup is similar to a number of recent studies that employed 86 

LIS and Noah-MP for snow modeling purposes (Cho et al., 2022; Kim et al., 2021; 87 

Wrzesien et al., 2022). 88 

     We partitioned the historical and future records into discrete records of time that were 89 

long enough to encompass climate variability, while short enough to compare climate 90 

impacts on snow across multiple periods between present-day and 2100. Here, we used a 91 

variogram-type approach to determine the number of years at which historical and 92 

projected interannual climate variability plateaued (e.g., Chiverton et al., 2015; Subyani, 93 

2019). First, we calculated the downscaled NEX-GDDP-CMIP6 median air temperature 94 

for each 0.01° grid cell across all days in a random water-year. Then, the spatial 95 

coefficient of variation (standard deviation divided by the mean) was calculated.  This 96 

was performed initially for one year, and then was repeated, starting again in the same 97 

year, but including successively longer periods of time (e.g., 1 year, 2 years, 3 years, and 98 

so on). By plotting the air temperature coefficient of variation versus the number of years 99 

it was calculated over, we could determine the number of years beyond which interannual 100 

climate variability did not increase further (i.e., the variogram reaches a plateau). This 101 

approach was repeated for both air temperature and cumulative precipitation, and for 102 

randomly selected starting years.  103 

     In all cases, periods of 14 – 18 years minimized the impact of annual climate 104 

variability on median air temperature and precipitation. Here, to increase the likelihood of 105 

encompassing interannual climate variability, we partitioned the historical and future 106 

climate records into 20-year windows. Since the NEX-GDDP-CMIP6 “historic” data 107 

record runs from January 1950 to December 2014, the 20-year historical period for this 108 

study was assumed to span from water-year 1995 to water-year 2014 (October 1994 to 109 

September 2014). Since the CMIP6 “projections” started on January 2015, we selected 110 

the first 20-year future period to span between October 2015 and September 2035 (water-111 

year 2016 to 2035). We then identified three more future 20-year periods including 112 

water-years: 2036 – 2055, 2056 – 2075, and 2076 – 2095. The 20-year windows used in 113 

this study align with period-lengths used by several other climate studies (e.g., Mahony et 114 

al., 2022; Planton et al., 2012; Reifen and Toumi, 2009). 115 

    Baseline snow simulations were developed to represent historical snow evolution 116 

between water-year 1995 and 2014. For each individual grid cell and hour of the water-117 
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year, model forcings were provided from the downscaled MERRA-2 forcing discussed 118 

above. We then used a two-step calibration approach to match 1995 – 2014 total snow 119 

volume from the Western US reanalysis (Fang et al., 2020; Margulis et al., 2016) (see 120 

Section 2.1 in the main text). Since precipitation is commonly cited as the first-order 121 

driver of model errors in mountainous regions (e.g., Cho et al., 2022; Günther et al., 122 

2019; Raleigh et al., 2015; Wayand et al., 2013; Wrzesien et al., 2022), we first focused 123 

on tuning the precipitation forcing. Starting in October of each year, the simulated 124 

cumulative increases in SWE were calculated from LIS simulations. This was then 125 

compared to the cumulative increases SWE from the WUS reanalysis in the same month. 126 

Using the percent-difference between the end-of-month cumulative increases in SWE 127 

from the reanalysis and LIS simulation, cumulative precipitation for the baseline 128 

simulation was scaled (assumed to be constant in space). Snow simulations were then 129 

performed again, and this procedure was repeated until end-of-month cumulative 130 

increases in SWE from the reanalysis and LIS-simulations converged. This method was 131 

repeated for each successive month in the snow accumulation season, between October 132 

and May.  133 

    Overall, the baseline simulation tended to have SWE that was more spatially 134 

homogeneous than the snow reanalysis. This is a known issue for land surface models in 135 

mountainous terrain, which do not always represent complex processes like wind-136 

redistribution, preferential deposition, and avalanching. While modeling approaches have 137 

been developed to correct for these issues (e.g., Pflug et al., 2021; Vögeli et al., 2016; 138 

Wrzesien et al., 2022), it was not clear whether spatial disagreements in SWE between 139 

the baseline simulation and reanalysis were due to missing processes in Noah-MP, or 140 

issues with the spatial heterogeneity of model forcing (Livneh et al., 2014). To avoid 141 

over-fitting the baseline simulations, we only calibrated the precipitation using the 142 

approach discussed above. We expect this simulation to serve as a strong baseline for 143 

historical snow evolution, especially given the first-order elevation, vegetation, and 144 

terrain-shading drivers of snow accumulation and depletion represented in the LIS 145 

modeling framework. In fact, after calibration, the total snow volume for these two 146 

datasets had a temporal coefficient of variation of greater than 0.95, and the SWE spatial 147 

coefficient of variation at peak snowpack timing ranged between 0.78 and 0.91, across 148 

the five domains.  149 

   The NEX-GDDP-CMIP6 product was used to derive 20-year average changes (relative 150 

to the historical period) to meteorological conditions for each model grid cell. These 151 

change signals were calculated for a set of 23 Global Climate Models (GCMs) available 152 

at the time of this project (Thrasher et al., 2022) and emissions scenarios from Shared 153 

Socioeconomic Pathway 2-4.5 (SSP 2-4.5). The GCMs used in this study can be found in 154 

Text S2. For each GCM, model grid cell, and day of the water year, the difference 155 

between the median future (e.g., 2056 – 2075) and historical (1995 – 2016) climate 156 

variables were calculated. Climate conditions for a single day of the water year can vary 157 

significantly across 20-year time frames, so we do not expect change factors calculated at 158 

daily time steps to be representative of the underlying trends with climate change. 159 

Therefore, following approaches used by Barsugli et al. (2020), the difference between 160 

future and historical climate variables were averaged across monthly time frames to 161 

calculate change-factors, or future differences to the monthly-average air temperature, 162 

relative humidity, shortwave radiation, longwave radiation, wind speed, and cumulative 163 
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precipitation, relative to the historical period. We noted that differences in climate 164 

variables at monthly time frames sometimes resulted in sporadic change-factors. For 165 

example, at monthly intervals, a difference of one or two precipitation events could result 166 

in significant differences (-100% to 150%) in monthly cumulative precipitation. To 167 

minimize this issue, we aggregated monthly change-factors across three-month moving 168 

windows, including the months both before and after the focus month. These change 169 

signals were then applied to the baseline simulation to generate the two novel snow 170 

projections presented in the main text. We did this two ways: 171 

1. NEX6-C: NEX-GDDP-CMIP6 20-year average monthly projected changes to 172 

climate were applied to the 20-year baseline calibrated simulation. Despite the 173 

interannual variations in meteorological and snow conditions, the monthly 174 

perturbations to the climate variables were assumed to be the same in each year. 175 

2. NEX6-M: The same climate perturbations as the NEX6-C simulation were used 176 

to perturb the snow simulation. However, these perturbations were applied to a 177 

single-year baseline simulation performed using the 20-year median 178 

meteorological conditions from the historical period (1995 – 2014).  179 

 180 

Text S2: GCMs used by each snow projection dataset 181 

NEX6-M [CMIP6, SSP2-4.5]: ACCESS-CM2, ACCESS-ESM1-5, CESM2, CESM2-182 

WACCM, CMCC-ESM2, CNRM-CM6-1, CNRM-ESM2-1, EC-Earth3, 183 

FGOALS-g3, GFDL-CM4, GFDL-CM4_gr2, GFDL-ESM4, GISS-E2-1-G, ITM-184 

ESM, INM-CM4-8, INM-CM5-0, KACE-1-0-G, MIROC-ES2L, MPI-ESM1-2-185 

HR, MP1-EMS1-2-LR, MRI-ESM2-0, NorESM2-LM, NorESM2-MM 186 

NEX6-C [CMIP6, SSP2-4.5]: ACCESS-CM2, ACCESS-ESM1-5, CESM2, CESM2-187 

WACCM, CMCC-ESM2, CNRM-CM6-1, CNRM-ESM2-1, EC-Earth3, 188 

FGOALS-g3, GFDL-CM4, GFDL-CM4_gr2, GFDL-ESM4, GISS-E2-1-G, ITM-189 

ESM, INM-CM4-8, INM-CM5-0, KACE-1-0-G, MIROC-ES2L, MPI-ESM1-2-190 

HR, MP1-EMS1-2-LR, MRI-ESM2-0, NorESM2-LM, NorESM2-MM 191 

LOCA5 [CMIP5, RCP 4.5]: ACCESS1-0, ACCESS1-3, CESM1-BGC, CESM1-CAM5, 192 

CMCC-CM, CMCC-CMS, CNRM-CM5,EC-Earth, FGOALS-g2, GFDL-CM3, 193 

GFDL-EMS2G, GFDL-EMS2M, GISS-E2-H, GISS-E2-R, INMCM4, MIROC-194 

ESM, MIROC-ESM-CHEM, MIROC5, MPI-ESM-LR, MPI-ESM-MR, MRI-195 

CGCM3, NorESM1-M 196 

BCSD5 [CMIP5, RCP 4.5]: ACCESS1-0, BCC-CSM1-1, BCC-CSM1-1-M, CANESM2, 197 

CCSM4, CESM1-BGC, CESM1-CAM5, CMCC-CM, CNRM-CM5, CSIRO-198 

Mk3-6-0, FGOALS-G2, FIO-ESM, GFDL-CM3, GFDL-EMS2G, GFDL-199 

EMS2M, GISS-E2-H-CC, GISS-E2-R, GISS-E2-R-CC, HadGEM2-AO, 200 

HadGEM2-CC, HadGEM2-ES, INMCM4, IPSL-CM5A-MR, IPSL-CM5B-LR, 201 

MIROC-ESM, MIROC-ESM-CHEM, MIROC5, MPI-ESM-LR, MPI-ESM-MR, 202 

MRI-CGCM3, NorESM1-M 203 

MACA5 [CMIP5, RCP 4.5]: BCC-CSM1-1-M, CANESM2, CCSM4, CNRM-CM5, 204 

CSIRO-Mk3-6-0, HadGEM2-CC, HadGEM2-ES, IPSL-CM5A-MR, MIROC5, 205 

NorESM1-M 206 

DBCCA6 [CMIP6, SSP2-4.5]: ACCES-CM2, BCC-CSM2-MR, CNRM-ESM2-1, MPI-207 

ESM1-2-HR, MRI-ESM2-0, NorESM2-MM 208 
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 209 
Figure S1. Spatial plots of GCM-ensemble median percent changes to 15 May SWE. 210 
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 211 
Figure S2. Same as Figure 5, but shows data for the WA Cascades domain on 15 May. 212 
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 213 
Figure S3. Same as Figure 5, but shows data for the ID Rockies domain on 15 April. 214 
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 215 
Figure S4. Same as Figure 5, but shows data for the ID Rockies domain on 15 May. 216 
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 217 
Figure S5. Same as Figure 5, but shows data for the MT Rockies domain on 15 April. 218 
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 219 
Figure S6. Same as Figure 5, but shows data for the MT Rockies domain on 15 May. 220 
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 221 
Figure S7. Same as Figure 5, but shows data for the WY Rockies domain on 15 April. 222 
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 223 
Figure S8. Same as Figure 5, but shows data for the WY Rockies domain on 15 May. 224 
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 225 
Figure S9. Same as Figure 5, but shows data for the CO Rockies domain on 15 April. 226 
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 227 
Figure S10. Same as Figure 5, but shows data for the CO Rockies domain on 15 May. 228 
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 229 
Figure S11. Same as Figure 8, but shows data for 15 May. 230 

 231 
Figure S12. SWE magnitude (top) in the WA Cascades domain averaged for 4 different 232 

elevation bands in the early 21st century (solid) and end-of-century (dashed periods). The 233 

lines are colored by the data from NEX6-M (blue), NEX6-C (red), and DBCCA6 (green) 234 

proejctions. The bottom plot depicts the percent-difference between the end-of-century 235 

and early 21st century SWE from each day presented in the top plot. 236 
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Table S1. Snow projection statistics. Statistics are broken down by elevation bands 237 

selected to highlight spans where different elevational patterns emerge for each 238 

projection dataset. 239 
D

o
m

a
in

 

Projection 

Maximum 

elevation 

resolved 

First 

elevation 

with SWE 

increases 

 

Lower 

limit 

Upper 

limit 

Mean SWE %-

difference 

SWE projection 

gradient [SWE %-

diff/100m] 

W
A

 C
a
sc

a
d

es
 

NEX6-M 2775 1650 

450 1350 -68 2 

1350 1650 -11 12 

1650 2550 5 0 

NEX6-C 2775 1950 

550 1350 -88 3 

1350 1850 -24 12 

1850 2550 1 0 

LOCA5 2434 - 350 2250 -47 3 

BCSD5 2124 - 250 1850 -57 4 

MACA5 2434 2050 
350 1450 -64 2 

1450 2250 -10 4 

DBCCA6 2463 - 350 2550 -52 2 

ID
 R

o
ck

ie
s 

NEX6-M  2295 1750 

550 1350 -79 6 

1350 1650 -19 12 

1650 2350 3 1 

NEX6-C 2295 1850 

750 1350 -94 4 

1350 1850 -41 18 

1850 2350 2 0 

LOCA5 2076 - 550 2150 -61 5 

BCSD5 2103 - 650 2150 -65 4 

MACA5 2076 - 
550 850 -94 -3 

850 2150 -57 6 

DBCCA6 2105 - 650 2150 -79 4 

M
T

 R
o

ck
ie

s 

NEX6-M 2967  2150  

950 1850 -64 6 

1850 2150 -14 6 

2150 2950 4 0 

NEX6-C  2967  2450  

950 1450 -98 4 

1450 2350 -48 9 

2350 2950 3 1 

LOCA5 2813 - 950 2850 -52 2 

BCSD5 2801 - 850 2550 -54 3 

MACA5 2813 - 950 2850 -49 4 

DBCCA6 2868 - 950 2950 -79 1 

W Y
 

R o c k i e s NEX6-M  3916  2450  1450 2250 -68 7 
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2250 2450 -8 15 

2450 3950 5 0 

NEX6-C  3916  2750  

1550 2250 -88 8 

2250 2450 -40 19 

2450 3950 -1 2 

LOCA5 3793  3550 
1750 2450 -55 6 

2450 3850 -12 1 

BCSD5 3691  3450 
1650 2550 -49 7 

2550 3750 -11 1 

MACA5 3793 3850 
1750 2550 -48 9 

2550 3850 -8 1 

DBCCA6 3830 - 
1650 2750 -77 5 

2750 3850 -52 0 

C
O

 R
o

ck
ie

s 

NEX6-M  4159  3450  

2050 2750 -91 4 

2750 3250 -42 12 

3250 4250 0 1 

NEX6-C  4159  3450  

2050 2750 -89 11 

2750 3250 -37 12 

3250 4250 0 0 

LOCA5 4087 - 
2050 3250 -59 5 

3250 4250 -13 1 

BCSD5 3903 4150 2050 3950 -43 4 

MACA5 4087 - 
2050 3450 -59 5 

3450 4150 -13 1 

DBCCA6 4030 - 
2050 2950 -94 2 

2950 4050 -65 4 
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