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Key points: 14 

• The relationship between snow projections had similar patterns with increases in 15 

elevation in five montane domains 16 

• Projection magnitude and spread were used to benchmark when and where end-of-17 

century changes to SWE were larger than model disparity 18 

• Model coherence can be used to identify the locations of greatest projection confidence, 19 

and where improvements would be most beneficial  20 

Abstract:  21 

   Montane snowpack is a vital source of water supply in the Western United States. However, 22 

the future of snow in these regions in a changing climate is uncertain. Here, we use a large-23 

ensemble approach to evaluate the consistency across 124 statistically downscaled snow water 24 

equivilent (SWE) projections between end-of-century (2076 – 2095) and early 21st century (2106 25 

– 2035) periods. Comparisons were performed on dates corresponding with the end of winter (15 26 

April) and spring snowmelt (15 May) in five western US montane domains. By benchmarking 27 

SWE climate change signals using the disparity between snow projections, we identified 28 

relationships between SWE projections that were repeatable across each domain, but shifted in 29 

elevation. In low to mid-elevations, 15 April average projected decreases to SWE of 48% or 30 

larger were greater than the disparity between models. Despite this, a significant portion of 15 31 

April SWE volume (39 – 93%) existed in higher elevation regions where the disparities between 32 

snow projections exceeded the projected changes to SWE. Results also found that 15 April and 33 

15 May projections were strongly correlated (r ≥ 0.82), suggesting that improvements to the 34 

spread and certainty of 15 April SWE projections would translate to improvements in later dates. 35 

The results of this study show that large-ensemble approaches can be used to measure coherence 36 

between snow projections and identify both 1) the highest-confidence changes to future snow 37 

water resources, and 2) the locations and periods where and when improvements to snow 38 

projections would most benefit future snow projections. 39 



 2 

Plain Language Summary: 40 

    A significant portion of the Western United State’s water originates from mountain 41 

snowpack.This study combines a large set of snow projections generated using different 42 

modeling approaches to determine 1) where snow projections agree, and 2) the proportion of 43 

snow that falls within regions where end-of-century projections of snow disagree. Results show 44 

that while a majority of the area in the interior Rocky Mountains and Washington Cascade 45 

mountain range have snow projections that agree, most of the annual snow water supply exists in 46 

the highest elevations where estimates of end-of-winter snowpack diverge. This study highlights 47 

the similar patterns of snow projection disparities, and the locations where further research may 48 

most improve our confidence in future snow water supplies. 49 

1. Introduction: 50 

    Seasonal snow in mountainous terrain is a crucial source of water storage, providing runoff 51 

throughout the spring and summer snowmelt periods for agriculture, human consumption, 52 

industry, energy production, and ecosystems. In the Western United States, a majority of annual 53 

runoff is sourced from snowmelt (Li et al., 2017), but the volume and timing of snowmelt will 54 

change with projected changes to climate (e.g., Alder and Hostetler, 2019; Barsugli et al., 2020; 55 

Fyfe et al., 2017; Gergel et al., 2017; Ghan and Shippert, 2006; Ikeda et al., 2021; Leung et al., 56 

2004; Li et al., 2017; López-Moreno et al., 2017; McCrary and Mearns, 2019; Qian et al., 2010; 57 

Rasmussen et al., 2014; Rhoades et al., 2018b, 2018a; Ullrich et al., 2018). Siirila-Woodburn et 58 

al. (2021) estimated that 78 – 94% of Western US regions in the second half of the century (2050 59 

– 2099) will have 70% or larger declines to peak snow water equivalent (SWE), and annually-60 

persistent low snow conditions emerging within the next 35 – 60 years. Historical snow 61 

observations in the Western U.S. have also confirmed climate change’s impact on the volume of 62 

annual SWE accumulation, the frequency of snowfall and rainfall, and the timing of spring 63 

snowmelt onset (Hamlet et al., 2007; Harpold et al., 2012; Kapnick and Hall, 2012; Mote et al., 64 

2018; Musselman et al., 2021). 65 

    Changes to the volume and timing of montane snowpack threaten local ecosystems and alter 66 

how water is partitioned between the land surface, evapotranspiration, and streamflow (Barnett et 67 
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al., 2005; Hale et al., 2022; Harpold and Brooks, 2018; Musselman et al., 2017), making this 68 

information crucial for operational and policy decisions. Despite this, projections of future snow 69 

water resources are uncertain in montane regions. One of the greatest drivers of this uncertainty 70 

is the mismatch in spatial scales between the spatial heterogeneity of snowpack and the scale of 71 

climate projections. For instance, global climate models (GCMs) discretize the land surface at 72 

spatial scales much coarser (e.g., 50 – 200 km) than the variability of the topography in mountain 73 

terrain. These models commonly misrepresent the snow evolution that occurs in higher-elevation 74 

and snow dominated terrain, which may account for a small areal fraction of a GCM grid cell, 75 

but a large portion of that grid cell’s snow volume. Misrepresentations of the spatial 76 

heterogeneity of snow and topography in the GCMs can also have key feedback on montane 77 

climate through processes like snow albedo feedbacks (Walton et al., 2017), and meteorological 78 

processes like mountain-pass air mixing, orographic gradients, rain shadows, and barrier jets 79 

(e.g., Guan et al., 2016; Hughes et al., 2009; Lundquist et al., 2010).  80 

    Snow evolution is also sensitive to processes like air temperature gradients and terrain 81 

shading, both of which occur at length-scales much smaller than the spatial resolution of GCMs 82 

(Clark et al., 2011). To represent these processes, it is common practice to downscale climate 83 

projections. To date, dynamic and statistical downscaling are the two most common downscaling 84 

approaches. Dynamic downscaling leverages the use of weather prediction models to more 85 

directly simulate the interactions between the coarser-scale climate projections and the 86 

underlying terrain. This approach resolves local weather patterns in a way that is not strictly 87 

correlated with local terrain features, but instead attempts to resolve the meteorological impacts 88 

that could occur from the interconnectedness of the land-atmosphere system (Gutmann et al., 89 

2012; Minder et al., 2016; Walton et al., 2017). However, dynamic downscaling approaches are 90 



 4 

computationally expensive, and often still misrepresent the land surface conditions, interactions 91 

between the land surface and atmosphere, and the resulting local meteorological conditions in 92 

mountainous terrain (e.g., Aas et al., 2017; Le Roux et al., 2018; Xue et al., 2014). In this study, 93 

we focus on statistically downscaled snow projections which are less computationally expensive 94 

and more common in practice. Statistical downscaling derives finer resolution meteorology using 95 

the relationship between GCMs and reference meteorological datasets in historical periods (e.g., 96 

Abatzoglou and Brown, 2012; Hidalgo et al., 2008; Orlowsky et al., 2010; Pierce et al., 2014; 97 

Wood et al., 2004). However, this approach assumes that the reference datasets are accurate 98 

when in reality, there are often biases in these datasets, particularly in remote and high-elevation 99 

montane regions (e.g., Currier et al., 2017; Lundquist et al., 2015; Wayand et al., 2013). 100 

Statistical downscaling also assumes a static relationship between the GCM output and finer-101 

scale reference dataset, when this relationship could change in time with a changing climate.  102 

    Even if credible meteorological forcings are available, modeling decisions have impacts on 103 

estimates of snow evolution in complex terrain (Chegwidden et al., 2019; Srikrishnan et al., 104 

2022). Most snow projections simulate snow using spatiotemporally continuous climate 105 

projections. However, other approaches have used the delta-method (e.g, Barsugli et al., 2020; 106 

Sofaer et al., 2017), where monthly or more-frequent perturbations are made to a historical 107 

record of climate (e.g., 20 – 30 years) based on average projected changes to meteorological 108 

variables (e.g., temperature, precipitation, etc.). This approach prescribes future simulations with 109 

the interannual variability from the historical climate record, but more-explicitly relates the 110 

difference in modeled state variables to average changes in meteorological conditions. Different 111 

land surface and snow models are also subject to different parameterizations and modeling 112 

decisions, such as rain and snow thresholding, canopy interception, wind-redistribution, and 113 
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liquid water percolation. These parameterizations cause snow simulations across different 114 

models to diverge from each other (Essery et al., 2013; Jennings et al., 2018; Lumbrazo et al., 115 

2022; Pflug et al., 2019; Reynolds et al., 2021). In fact, some studies have documented that the 116 

differences between snow models cause snow simulations to differ by greater amounts than 117 

different meteorological forcing datasets (Kim et al., 2021; Mudryk et al., 2015).  118 

    Different combinations of GCMs, downscaling approaches, and modeling decisions can have 119 

interconnected and cascading impacts on model estimates of snow evolution. This makes the 120 

sensitivities and sources of disparities between projections using different modeling approaches 121 

difficult to attribute. Studies that analyze sensitivities to different model decisions often use a 122 

central model setup with limited and user-defined changes to modeling decisions like 123 

downscaling techniques, process parameterizations, or spatial resolutions (Abatzoglou and 124 

Brown, 2012; Alder and Hostetler, 2019; Barsugli et al., 2020; Gutmann et al., 2014; Hughes et 125 

al., 2017). However, this could underestimate snow projection sensitivity by neglecting the 126 

compounding or compensating impacts that different sets of modeling decisions have (Essery et 127 

al., 2013; Raleigh et al., 2015). For example, a downscaling method that produces air 128 

temperatures closer to 0°C for a longer winter period may exhibit different sensitivities to a set of 129 

rain and snow partitioning functions than colder downscaled estimates of air temperature. 130 

Unfortunately, investigating the full interaction between multiple sets of modeling decisions 131 

often requires large numbers of simulations, which are computationally expensive for snow 132 

simulations over long-term future periods and mountain-range spatial extents. 133 

    Rather than diagnosing the sources of disparities discussed above, this study focuses on 134 

identifying the coherence, or the logical and consistent relationships between projected changes 135 

to snow across six snow projection ensembles with disparate modeling approaches and decisions. 136 
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This approach is motivated by model intercomparison studies like the Earth System Model Snow 137 

Model Intercomparison Project (ESM-SnowMIP; Krinner et al., 2018), which synthesizes 138 

information from a wide set of data sources to draw conclusions about the similarity of modeled 139 

hydrological states. Here, we focus on projected changes to end-of-century snow water resources 140 

in five Western U.S. montane domains spanning a variety of snow climates (Section 2). By 141 

benchmarking projected changes to SWE versus the disparities in SWE projections across 142 

different modeling approaches, we ask: 1) where and when do projected changes to montane 143 

snow water resources from different snow projections show consensus?, and 2) what 144 

proportion of snow water resources exist in the regions with snow projection disparities? In 145 

doing so, we identify 1) the climate change signals of greatest confidence, and 2) the regions 146 

where future improvements in model coherence would most improve future projections of snow 147 

water resources. 148 

2. Domains and data 149 

2.1. Model domains and historical snow reanalyses 150 

    This project focused on five montane domains spanning a variety of snow climates and 151 

latitudes in the Western United States (Figure 1). These regions were chosen to focus on high-152 

elevation domains with seasonal snowpack, with a special focus on the headwaters of snow 153 

reservoirs for the Colorado River and Columbia River basins. These domains also overlapped 154 

with known and proposed reintroduction habitat for snow-adapted species like the Canada lynx 155 

(Lynx canadensis) and North American wolverine (Gulo gulo luscus). Snow projections in this 156 

project were subset into five domains (Figure 1), labeled here as the Colorado (CO) Rockies 157 

(~118,000 𝑘𝑚2), Wyoming (WY) Rockies (~104,000 𝑘𝑚2), Montana (MT) Rockies (~80,000 158 

𝑘𝑚2), Idaho (ID) Rockies (~31,000 𝑘𝑚2), and Washington (WA) Cascades (~31,000 𝑘𝑚2).  159 
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 160 
Figure 1. Western US montane study domains. Each domain is outlined in blue and is 161 

superimposed with a 0.01° grayscale elevation map. 162 

    Historical (1991 – 2021) SWE was defined from the Western United States UCLA Snow 163 

Reanalysis (Fang et al., 2022). This product generates SWE at daily timesteps and 16 arc-second 164 

(~500m) spatial resolution using an ensemble of snow simulations weighted towards annual 165 

observations of snow cover depletion from Landsat using a Bayesian smoother. This product is 166 

among the highest-accuracy estimates of SWE volume and distribution, demonstrating the 167 

capability to match in situ and airborne snow observations (Fang et al., 2020; Pflug et al., 2022). 168 

This data was used to provide an estimation of average historical snow distribution in each 169 

domain, that was independent from the snow projections compared here (Sections 2.2 and 2.3), 170 

as a basis for highlighting the proportion of each domain’s snow water resources that exist in 171 

regions with various levels of agreements and disparities across the snow projections. 172 

2.2. Novel montane snow projections 173 
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    Two snow projections were created for this study. A detailed description of these projections 174 

can be found in Text S1. These projections were performed using a two-step modeling approach 175 

which 1) developed a baseline simulation representative of snow evolution in a historical period 176 

between 1995 and 2016 using forcing downscaled from MERRA2 (Gelaro et al., 2017) with 177 

additional precipitation calibration, and 2) perturbed the MERRA2 baseline simulation with 178 

future climate-change signals. While straightforward, this change-factor approach (also termed 179 

the delta method) is a reliable approach for determining hydrological and ecological climate 180 

sensitivities (Barsugli et al., 2020; Sofaer et al., 2017). In this study, future climate change 181 

signals were derived from NASA Earth Exchange Global Daily Downscaled Projections (NEX-182 

GDD-CMIP6; Thrasher et al., 2022), which downscaled climate projections from the Coupled 183 

Model Intercomparison Project phase 6 (CMIP6; Eyring et al., 2016) using the popular bias 184 

correction spatial disaggregation (BCSD) approach (Wood et al., 2004) and reference historical 185 

meteorological data from the Global Meteorological Forcing Dataset (GMFD; Sheffield et al., 186 

2006). Readers are referred to Thrasher et al. (2022) and Wood et al. (2004) for more 187 

information on NEX-GDDP-CMIP6 and BCSD, respectively. 188 

    Using variogram analysis, we determined that the interannual variability in domain-mean 189 

winter air temperature and precipitation for both the historical snow simulation and NEX-GDDP-190 

CMIP6 data plateaued for 14 – 18 year periods (e.g., Subyani, 2019) (Text S1). Beyond 18 years, 191 

the change to domain mean temperature and precipitation were more driven by climate trends. 192 

To be conservative, we partitioned the historical and future climate records into 20-year 193 

windows. Since the CMIP6 “historic” data record runs from January 1950 to December 2014, the 194 

20-year historical period for this study spanned from October 1994 to September 2014 (water 195 

years 1995 to 2014). We then partitioned 20-year increments forward in time from the historic 196 
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record. Here, we focus on 20-year data records from an early 21st century period (2016 – 2035) 197 

and end-of-century period (2076 to 2095). Monthly maps of change-signals in air temperature, 198 

specific humidity, shortwave radiation, longwave radiation, wind speed, surface pressure, and 199 

precipitation were then calculated for both the early 21st century and end-of-century periods from 200 

the NEX-GDDP-CMIP6 data in those periods, relative to the historical period. 201 

    Finally, SWE projections were performed using two different approaches. First, model forcing 202 

from the 20-year historical simulations between 1995 and 2014 was perturbed with average 203 

monthly 0.01° climate change signals aggregated from the NEX-GDDP-CMIP6 data in the early 204 

21st century and end-of-century periods. This simulation is referenced in this manuscript by 205 

NEX6-C (“C” indicating that climate perturbations were performed in the 20-year continuous 206 

simulation). The second simulation used the median forcing aggregated at daily timesteps for 207 

each grid cell over the 20-year historical period. This simulation was then perturbed using the 208 

same monthly climate change signals from NEX-GDDP-CMIP6. This simulation is referenced 209 

by NEX6-M (“M” indicating that simulations were performed using 20-year median forcing). 210 

    The difference between the NEX6-C and NEX6-M simulations, which were perturbed using 211 

the same climate change signals, were indicative of uneven climate change impacts on subsets of 212 

years. For example, grid cells where NEX6-C projections that had end-of-century projected SWE 213 

decreases that were larger than NEX6-M projections indicated that climate impacts on SWE in 214 

these grid cells were disproportionately large in low snow years, as compared to years with 215 

average snow conditions. This is discussed more in the study Results (Section 4) and Discussion 216 

(Section 5). More information on the NEX6-M and NEX6-C snow projections can be found in 217 

Text S1. 218 

2.3.  Similarities and differences across novel and existing snow projections 219 
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    The snow projections discussed in Section 2.2 were compared with four additional 220 

statistically-downscaled snow projections from the literature (Abatzoglou et al., 2014; Brekke et 221 

al., 2013; Kao et al., 2022a; Vano et al., 2020). Information on each of these snow projections, 222 

and the citations discussing each can be found in Table 1. Each snow projection dataset was 223 

labeled using an acronym representative of the combination of the statistical downscaling and the 224 

CMIP phase (Table 1). However, the commonalities and differences in modeling decisions 225 

among the snow projection datasets go beyond the differences in CMIP phases and downscaling 226 

approaches. For example, although three projection datasets use CMIP6 projections and three use 227 

CMIP5 projections, identical sets of GCMs are only used by 1) NEX6-M and NEX6-C, and 2) 228 

LOCA5 and BCSD5. More information on the GCMs used by each projection dataset can be 229 

found in Text S2. Half of the datasets use the BCSD downscaling (NEX6-M, NEX6-C, and 230 

BCSD5). However, four unique reference datasets are used to downscale these climate 231 

projections compared here, all of which are at different spatial resolutions. Although snow 232 

projections are generated using only two different land surface models, different model 233 

parameterizations and calibrations were used. Here, the cascading differences in the projections, 234 

GCMs, and downscaling decisions in Table 1 alter the model forcing applied for each model 235 

ensemble member. 236 

    As discussed in Section 1, differences in modeling methods make the differences across 237 

projection datasets difficult to attribute, and often even more difficult to determine what 238 

approaches are better and worse than others. For example, assuming that the differences in the 239 

snow projections compared here can be attributed to only the GCMs used by the snow 240 

projections (Text S2), and the degrees of freedom in modeling decisions listed in Table 1 (four 241 

statistical downscaling approaches, four reference datasets, two time discretizations, and two 242 
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land surface models), a full sensitivity analysis covering all possible combinations of GCMs and 243 

modeling decisions would result in 3,520 separate projections. Given this, we hypothesize that 244 

the snow and climate research communities may benefit most from studies that evaluate where 245 

and when disparate modeling decisions approach common results, and the consequences of 246 

uncertainties in locations where models disagree the most. This study focuses on six snow 247 

projection methodologies outputting 124 different snow projections. Our approach for comparing 248 

these projections is covered in Section 3 below. 249 
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Table 1. Selection of the differences between the snow projection datasets compared in this 250 

study. More information on these projections, and how the NEX6-M and NEX6-C projections 251 

were generated can be found in Text S1 and Text S2. 252 
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3. Methods 253 

    This study was designed to investigate 1) the shift in end-of-century projected SWE within 254 

each snow projection dataset, and 2) the disparity in projected changes to SWE between the 255 

projection datasets. Our comparisons were limited to the RCP 4.5 (CMIP5) and SSP2-4.5 256 

(CMIP6) emission scenarios, which represent moderate, “middle-of-the-road” estimates of future 257 

emissions, global populations, and climate adaptation inequities (IPCC, 2021). To compare 258 

continuous snow projections more fairly versus the 20-year median simulations from NEX6-M 259 

(Section 2.2), median SWE was calculated at the grid cell-level for each projection dataset across 260 

early 21st century (2016 – 2035) and end-of-century (2076 – 2095) periods. Here, we focused on 261 

the projected change to SWE on 15 April and 15 May. The 15 April date was chosen to 262 

correspond with a period that was near the conclusion of the early 21st century winter snow 263 

accumulation season, but late enough to ensure that the date of domain maximum SWE volume 264 

occurred prior to that date. The 15 May date was selected to correspond with the period 265 

approximately midway through the melt season based on the snow reanalysis dataset (Section 266 

2.1). In the Western U.S., these dates (15 April and 15 May) correspond with reference dates 267 

used for assessing streamflow, water infrastructure management decisions, and snow refugia 268 

(e.g., Barsugli et al., 2020; Koster et al., 2010; Ray et al., 2020). 269 

    SWE projections for each period (2016 – 2035 and 2076 – 2095, 15 April and 15 May) were 270 

discretized in space using the native spatial resolution for each dataset (Table 1). Each projection 271 

dataset was also disaggregated to a 0.01° grid using nearest-neighbor downscaling. Comparisons 272 

between these two spatial discretizations allowed comparisons between the snow projection 273 

datasets on a common grid, and highlighted how different representations of the land surface 274 

terrain and vegetation impacted the physical processes that influenced snow evolution. For 275 
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example, snow projections at coarser resolutions can smooth features like mountain peaks, which 276 

although small in areal extent, are colder than their surroundings and may therefore be less 277 

sensitive to projected increases in future temperatures. 278 

    The spread of SWE projections for each dataset (Table 1), 20-year period (early 21st century 279 

and end-of-century), and date (15 April and 15 May) was prescribed by the spread of GCMs 280 

(Figure 2). Provided the length of time between the early 21st century and end-of-century 281 

periods, we expect the differences in the GCM ensemble spread between the two periods to be 282 

driven more by differences in GCM physics than internal variability (Hawkins and Sutton, 2009; 283 

Lehner et al., 2020). We started by comparing  the difference in the distributions of SWE 284 

between the two 20-year periods at each 0.01° disaggregated grid cell (Figure 2a). We used a 285 

non-parametric approach, wherein distributions of SWE with no overlap indicated the largest 286 

signal of change, and distributions of SWE with high degrees of overlap indicated little-to-no 287 

change. This measure represented how large and certain SWE changes were over time provided 288 

the spread in SWE estimates from the GCMs in each period. The non-parametric approach we 289 

used was motivated by the Mann-Whitney U test,  290 

                                                     𝑈1 = 𝑛1𝑛2 +
𝑛1(𝑛1+1)

2
− ∑ 𝑅1 ,                                               (1) 291 

                                                      𝑈2 = 𝑛1𝑛2 +
𝑛2(𝑛2+1)

2
− ∑ 𝑅2 ,                                                 (2) 292 

where subscripts 1 and 2 indicate the early 21st century (2016 – 2035) and end-of-century (2076 293 

– 2095) periods, n indicates the number of GCMs, and R indicates the rank of each GCM, ranked 294 

from lowest to highest values, including both 20-year periods (Figure 2a, numbering). The 295 

difference between 𝑈1 and 𝑈2 represents the degree of overlap in the SWE distributions between 296 

the two periods. For example, if projected changes to climate cause the end-of-century 297 

distribution of SWE to fall completely outside of the SWE distribution from the early 21st 298 
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century, then the disparity between the U values would be large, as 𝑈2 and 𝑈1 use the lowest-299 

possible and highest-possible sum of ranks, respectively (∑ 𝑅1 ≫ ∑ 𝑅2). Conversely, grid cells 300 

with little-to-no change in SWE would approach similar sums of ranks (∑ 𝑅1 ≈ ∑ 𝑅2), and 301 

similar U values.  302 

   A similar approach was used to evaluate the disparity between projected changes to SWE 303 

(Figure 2b). Specifically, for each 0.01° grid cell and snow projection dataset, the SWE percent-304 

difference was calculated for each GCM between the early 21st century and end-of-century 305 

periods. To fairly compare snow projections with different numbers of GCMs (n), we calculated 306 

a Normalized Overlap Statistic (NOS) 307 

                                                       𝑁𝑂𝑆 =
min[𝑈1, 𝑈2]

𝑈1 + 𝑈2
,                                                    (3) 308 

where NOS approaching 0.0 indicates a large difference in the distribution of SWE between the 309 

two periods, and NOS approaching 0.5 indicates little-to-no difference. The NOS statistic was 310 

calculated at each 0.01° grid cell for 1) each snow projection dataset using SWE between the 311 

early 21st century and end-of-century periods (e.g., Figure 2a), and 2) for all combinations of two 312 

snow projection datasets using the SWE percent-change between the early 21st century and end-313 

of-century periods (e.g., Figure 2b). The NOS statistic is discussed more in Section 5. 314 
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   315 
Figure 2. Conceptual demonstration of, a) the climate change signal on the SWE distribution 316 

over time for a single snow projection, and b) the difference in projected changes to SWE 317 

between two snow projections. Both subplots represent comparisons at a single 0.01° grid cell, 318 

with each scatter point representing a different GCM. Labels represent the ranks (R from 319 

Equations 1 and 2), and the NOS (Equation 3) for each comparison is labeled beneath the plot. 320 

    Finally, this study found that projected changes to SWE exhibited relationships with elevation 321 

in each domain. Therefore, statistics were aggregated over 100 m elevation bands. For each 322 

elevation band, we calculated the median and spread of 1) SWE percent-changes between the 323 

early 21st century and end-of-century periods, 2) NOS for changes to SWE in time for all 324 

projection datasets (termed climate change signal), 3) NOS for the differences to the projected 325 

changes to SWE between all combinations of two snow projections (termed model disparity), 326 

and 4) SWE from the Western US snow reanalysis (Section 2.1). We recognize that climate 327 

change signals (Figure 2a) and model disparities (Figure 2b) calculated using the NOS statistic 328 

are not independent of each other. Instead, these statistics were used together to benchmark the 329 

behavior of snow projections in time, relative to the disparities across the full set of snow 330 
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projections. For example, elevations with model disparities (Figure 2b) that approached large 331 

NOS values represented SWE percent-changes that could not be easily differentiated between the 332 

different snow projections. If those same elevations also had climate change signals with low 333 

NOS values (e.g., Figure 2a), then the degree of change to SWE over time was large but in 334 

agreement across the different snow projection datasets. Here, by comparing these four data 335 

sources at each elevation band, we determined the volume of snow losses projected by each 336 

snow projection dataset, the SWE climate change signal relative to the disparity across models, 337 

and the amount of snow that historically existed in each elevation band. Together, these metrics 338 

were used to determine where coherence, or logical and consistent relationships across snow 339 

projections using disparate modeling approaches, and the portion of each domain’s snow that 340 

falls within regions where snow projections agree and disagree.     341 

4. Results 342 

4.1. SWE projection comparisons, and relationships with elevation 343 

    Median projected changes to end-of-century SWE are shown for each domain and projection 344 

dataset on 15 April and 15 May in Figure 3 and Figure S1, respectively. The most visible 345 

differences between the snow projections in each domain were 1) differences in 2016 – 2035 346 

snow extents (Figure 3, grid cells showing any projected change), and 2) disparities in the sign 347 

(positive/negative) and magnitude of projected changes to snow at the highest elevations of each 348 

domain. The Normalized Overlap Statistic (NOS, Equation 3) was able to highlight the 349 

similarities and differences in SWE projections, both within a given snow projection dataset over 350 

time (e.g., Figure 2a), and across multiple snow projection datasets (e.g., Figure 2b). For 351 

example, Figure 4 displays the 15 April NOS calculated across all grid cells in the WA Cascades 352 

domain. Contours in Figure 4 show the NOS values relative to the change in ensemble mean 353 
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SWE and SWE standard deviation between the early 21st century and end-of-century periods for 354 

each projection. Relative to the NEX6-M, NEX6-C, and MACA5 projections which projected 355 

both decreases and increases to end-of-century mean SWE, the BCSD5 and DBCCA6 models 356 

were dominated by grid cells with decreases to mean SWE and increases to the standard 357 

deviation of SWE across the GCMs. Despite this, the NOS exhibited similar patterns with 358 

changes to the mean and spread of SWE for each of the snow projection datasets (Figure 4, all-359 

model average), with the smallest degree of overlap between early 21st century and end-of-360 

century SWE (smallest NOS) occurring for grid cells with mean SWE decreases of 50 mm or 361 

more, and changes to SWE standard deviation between -50 mm and +100 mm. 362 

 363 
Figure 3. Spatial plots of median percent changes to 15 April SWE between an early 21st century 364 

(2016 – 2035) and end-of-century (2076 – 2095) period for five montane domains (rows) and six 365 

snow projection datasets (columns). 366 
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 367 
Figure 4. NOS (Equation 3) calculated between the early 21st century and end-of-century 15 368 

April periods in the WA Cascades. Each subplot (projection dataset) is contoured based on the 369 

NOS values, ensemble mean SWE difference (x-axis), and ensemble SWE standard deviation 370 

difference (y-axis).  371 

    Projected percent-changes to 15 April SWE and the NOS statistic exhibited similar trajectories 372 

with increases in elevation in each domain (Figure 5, Figures S2 – S10). NEX6-C simulations 373 

commonly had the largest (in percent-difference) projected decreases to end-of-century snow at 374 

the lowest elevations of each domain, with median SWE changes between -87% and -100%, on 375 

average. Although the modeling approaches for the NEX6-M and NEX6-C projections were 376 

similar (Section 2.2), NEX6-M projected changes to SWE were among the most optimistic snow 377 

projections, with projected changes to SWE between -64% and -91% for the same low-elevation 378 

regions. At higher elevations, NEX6-M and NEX6-C simulations both exhibited steep gradients 379 

in SWE projections with changes in elevation. For example, in the WA Cascades domain, 380 

decreases to end-of-century SWE for both the NEX6-M and NEX6-C datasets decreased by 381 

approximately 12% for every 100 m increase in elevation between approximately 1350 and 382 

1750m (Figure 5a). This gradient appeared in every domain for the NEX6-M and NEX6-C 383 

projections, varying in slope from approximately 8% (MT Rockies) to 17% (WY Rockies) per 384 

every 100 m in elevation. At elevations above these sharp gradients, NEX6-M and NEX6-C 385 

ensemble-medians projected either little-to-no change or increases to 15 April end-of-century 386 

SWE. Although the elevation at which median SWE first projected increases to 15 April SWE 387 
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differed between the NEX6-M and NEX6-C projections, projected changes to SWE at the 388 

highest elevations of each domain typically agreed to within 5%. 389 

 390 
Figure 5. 15 April snow projections for the WA Cascades domain aggregated across 100 m 391 

elevation bands (y-axis). Subplots show the GCM median and interquartile spread of SWE 392 

percent-change from the native-resolution snow projection datasets (a), and the same statistics 393 

for the snow projection datasets disaggregated to 0.01° (b). The remaining subplots show the 394 

distribution and median of the NOS climate change and projection disparity signals (c), and the 395 

distribution of SWE from the snow reanalysis (d). 396 
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    As opposed to the NEX6-M and NEX6-C projections, end-of-century 15 April SWE 397 

projections changed more gradually with increases in elevation for the LOCA5, BCSD5, 398 

MACA5, and DBCCA6 projections (Figure 5a, Figures S2 – S10, Table S1). At the lowest 399 

elevations of each domain, these projections typically estimated 15 April SWE decreases that fell 400 

near or within the bounds estimated from the NEX6-M and NEX6-C projections. Then, with 401 

every 100 m increase in elevation, 15 April SWE decreases changed between 2% and 4%, on 402 

average, for the LOCA5, BCSD5, and MACA5 projections. 15 April SWE for these datasets 403 

were either projected to decrease, or had smaller projected increases to SWE than the NEX6-M 404 

and NEX6-C projections at the higest elevations of each domain. Here, the DBCCA6 snow 405 

projections were consistently more pessimistic than the other projection datasets (Figure 5). In 406 

fact, in no domain did the DBCCA6 dataset project increases to 15 April SWE across any 407 

elevation band, and at the highest-elevations, DBCCA6 projected SWE losses ranging from -408 

21% (CO Rockies) to -48% (WY Rockies).  409 

   As compared to the 15 April date, the SWE percent-difference on 15 May had larger projected 410 

decreases. This was expected since SWE projections on 15 May were influenced by both winter 411 

SWE change signals, like transitions from snowfall to rainfall and earlier snowmelt onset, in 412 

addition to increased rates of spring snowmelt driven by end-of-century increases in spring 413 

snowmelt energy and thinner snowpacks that melted more readily. The relationships between the 414 

SWE percent change and elevation discussed above exhibited similar patterns on both 15 April 415 

and 15 May. However, these patterns were shifted up in elevation with spring snowmelt. This 416 

caused nearly-linear relationships between the 15 April and 15 May SWE projections at common 417 

elevation bands (Figure 6), the slope of which was driven in large part by the 15 April SWE 418 

projections. For example, for the NEX6-M and NEX6-C projections, each domain exhibited 419 
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decreases to end-of-century SWE that were 40% or greater at the lowest elevations, and little-to-420 

no (-10 to +10%) changes to SWE at the highest elevations (e.g., Figure 3 and Figure 5). 421 

Between 15 April and 15 May, the pattern of 15 April SWE changes were shifted up in elevation 422 

by approximately 500 m (Figure S2), causing: 1) 15 May snow disappearance at elevations with 423 

15 April projected SWE losses exceeding approximately 20%, 2) changes to 15 May SWE 424 

between -25% and -100% for many mid-elevation grid cells that experienced little-to-no 425 

decreases in 15 April SWE, and 3) little-to-no change in 15 May SWE at the highest-elevation 426 

grid cells in each domain (Figure 6). Put simply, datasets that exhibited sharper gradients in 15 427 

April SWE changes with elevation resulted in larger changes between 15 April and 15 May SWE 428 

projections as these patterns were propagated up in elevation. This was also the case for the 429 

LOCA5, BCSD5, and MACA5 projections in the WY Rockies domain (Figure 6d), which had 430 

shaper gradients in SWE projections at elevations between 1500 and 2500 m (Figure S7 and 431 

Table S1). However, in all other domains, these projections exhibited more gradual changes to 432 

SWE projections with elevation (Figure 5, Figure S3, Figure S5, and Figure S9), resulting in a 433 

smaller change to SWE percent-difference between 15 April and 15 May as the climate change 434 

signal was propagated up in elevation. These results demonstrate hysteresis between snow 435 

projections on 15 April and 15 May, showing that the coherence between different snow 436 

projections in the snowmelt season is dependent on the coherence between models at the end-of-437 

winter period. This is discussed more in Section 5. 438 



 23 

 439 
Figure 6. Projected changes to SWE for each dataset (colors) and domain (subplots) on 15 April 440 

(x-axis) and 15 May (y-axis). The median and interquartile range of projections over 100 m 441 

elevation bands are shown by the scatter points and whiskers, respectively. Plotted data only 442 

includes elevation bands where 15 May median SWE was greater than zero. 443 

    Disaggregating each projection’s grid cells into a 0.01° grid resulted in smoother gradients to 444 

SWE percent-changes with elevation (e.g., Figure 5b). This approach also extrapolated SWE 445 

percent-change estimates to higher elevations that were sometimes unable to be represented by 446 

the coarser-scale snow projections. Overall, this extrapolation to higher elevations resulted in 447 

coarser-scale projections that increased in similarity with finer-scale snow projections. For 448 

example, in the ID Rockies domain, BCSD5 projections (1/8°) were unable to resolve grid cells 449 

at elevations of 2200 m or higher. At its highest native-resolution elevation band (2050 – 450 

2150m), the BCSD5 dataset projected a 38% decrease to 15 May SWE, on average (Figure S4a). 451 
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However, preferentially sampling only those BCSD5 pixels that overlapped the highest elevation 452 

band captured by the 0.01° digital elevation model (2250 – 2350 m) only had a 27% decrease in 453 

15 May SWE at the end-of-century period (Figure S4b). This SWE projection agreed closer with 454 

the LOCA5 (22% decrease) and MACA5 (20% decrease) estimates at the same elevations. 455 

4.2. Snow classes with coherent snow projection patterns 456 

    As noted in Section 4.1, projected changes to end-of-century SWE exhibited similar patterns 457 

between the different snow projection datasets. While these patterns occurred at different 458 

elevations across each domain, these relationships could be used to identify regions with similar 459 

climate impacts and systematic differences across the projections. Using the NOS statistic as a 460 

metric for both climate change signals (Figure 2a) and the disparity across models (Figure 2b), 461 

six unique snow signals were classified. Of these six classes, five appeared in every domain, and 462 

appeared in the same sequence with increases in elevation. These snow classes, listed from 463 

lowest to highest elevations, included the following: 464 

Class 1 (C1).  Ephemeral snow cover: Different snow projections disagreed on the occurrence 465 

of 15 April snow in the first 20-year period (2016 – 2035), but end-of-century projections 466 

agreed that snow disappeared. This snow class covered the lowest-elevation portions of each 467 

domain. 468 

C2. Seasonal snow line: This class included low-elevation and thin snowpack, but contained 469 

enough snow volume to calculate the overlap in SWE distributions between the early 21st 470 

century and end-of-century periods (Figure 2a), and the overlap between SWE projections 471 

across the different datasets (Figure 2b). 472 

C3. SWE decreases > model disparity: This snow class had little overlap between SWE 473 

distributions rom the early 21st century and end-of-century periods. On average, differences in 474 
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SWE between the early 21st century and end-of-century periods exceeded the disparities 475 

across the SWE projections. In other words, the NOS for the climate change signal (Figure 476 

2a) was smaller than the NOS for the model disparity (Figure 2b). 477 

C4. Model disparity > changes to SWE: In this snow class, the differences across different 478 

snow projections were greater, on average, than the difference in SWE distributions between 479 

the early 21st century and end-of-century periods. These grid cells often had disagreements 480 

about the direction (positive or negative) of projected changes to SWE. 481 

C5: SWE increases > model disparity: This class had projected increases to SWE with 482 

differences between the early 21st century and end-of-century SWE distributions that were 483 

larger, on average, than the difference in SWE projections across the different datasets. 484 

C6: Elevations smoothed by coarser resolutions: The capability to resolve the highest peaks 485 

was limited by the spatial resolution of the projection datasets. This class represented 486 

elevation bands (calculated at 0.01° resolution) that couldn’t be resolved by all snow 487 

projection datasets. 488 

    The grid cells that fell within each of the classes listed above were based on the climate 489 

change signals and model disparities calculated from the NOS statistic. In the WA Cascades 490 

domain (Figure 5c), elevations spanning 250 – 650 m had ephemeral snow and disagreements in 491 

snow extents between the projection datasets in the early 21st century (snow class C1). 15 April 492 

snow cover was more common for elevations between 650 – 1050 m, which had large projected 493 

decreases to end-of-century SWE, resulting in NOS statistics that could begin to resolve the 494 

disparity between models and the climate change signal (C2). At elevations just above this (1050 495 

– 1550 m), SWE was projected to decrease by approximately 52%, on average, with relatively 496 

small variability across the snow projection datasets. This caused the early 21st century and end-497 



 26 

of-century SWE distributions to separate to a degree that was larger than the disparity in SWE 498 

projections across different projection datasets (C3). Finally, the large spread and differing 499 

directions (positive/negative) of projected changes to SWE at elevations greater than 1550 m 500 

caused the disparity across models to exceed the average projected changes to SWE (C4). This 501 

included the highest-elevation grid cells (2150 m and higher) that were unable to be resolved by 502 

the coarser-resolution snow projections (C6). 503 

    Repeating the classifications from above in other domains (Figure S2 – S10), we could see 504 

that the snow classes appeared in each domain, but were shifted in elevation (Figure 7). For 505 

example, the snow classes in the nearby ID Rockies domain spanned elevation bands that were 506 

almost identical to those from the WA Cascades domain discussed above. However, the location 507 

of these snow classes was shifted up in elevation by approximately 400 m in the MT Rockies, 508 

750 m in the WY Rockies, and 1550 m in the CO Rockies. Relative to 15 April, the 15 May 509 

snow line advanced up in elevation as snow extents were reduced from spring snowmelt in each 510 

domain, causing a growth in the elevations representing the first three snow classes (C1, C2, and 511 

C3), and a reduction to the elevations where the difference between snow projections exceeded 512 

the difference in SWE distributions between the early 21st century and end-of-century periods 513 

(C4) (Figure 7). 514 
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 515 
Figure 7. The elevations (x-axis) spanned by each snow class within each domain (y-axis) on 15 516 

April (hollow) and 15 May (hatched). 517 

    Of the five domains investigated here, the SWE climate change signals in the WY Rockies 518 

domain were the most unique (Figure1, Figure S7, Figure S8, and Table 1). Notably, 15 April 519 

model disparities exceeded the SWE change signal (C4) for grid cells between approximately 520 

2050 – 3550 m elevation, a span of elevations approximately 2.5 times larger than the C4 snow 521 

class in the other domains (Figure 7). This was likely driven by the winter climate in the interior 522 

WY Rockies, which was the coldest domain simulated here, and thereby had the smallest 523 

projected changes to 15 April end-of-century SWE on 15 April (Figure S7). However, the 524 

DBCCA6 data projected decreases to 15 April SWE that were as high as 52% across mid and 525 

high elevation grid cells (Figure 3). This is discussed more in Section 5. Despite the outlying 526 

projections from the DBCCA6 dataset, the WY Rockies domain was also the only domain to 527 

project SWE increases that were larger, on average, than the disparity across the models (Figure 528 

7, C5). These grid cells were concentrated at elevations of 3550 – 3750m, although ensemble-529 

median increases to 15 April SWE occurred at elevations as low as 2450 m for the NEX6-M 530 

projection dataset. 531 
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    On 15 April, more than 90% of each domain’s snow volume (e.g., Figure 5d) fell within 532 

classes where either the size of projected SWE decreases exceeded model disparities (C3) or 533 

model disparities exceeded projected changes to SWE (C4) (Figure 8a). Across the five domains, 534 

only in the ID Rockies domain did a majority (59%) of the domain’s 15 April historical snow 535 

volume fall in regions where model disparities were smaller than the SWE climate change signal 536 

(C3). Despite containing a large portion of each domain’s snow volume, the C4 snow class 537 

covered relatively small areal extents, covering only 22%, 9%, 10%, and 18% of the WA 538 

Cascades, ID Rockies, MT Rockies, and CO Rockies domains, respectively. As noted above, 539 

projections in the WY Rockies domain behaved differently, with 66% of the domain area and 540 

93% of the domain’s SWE volume exhibiting model disparities that were greater than the climate 541 

change signal. The proportion of the area and SWE volume that fell within each snow class on 542 

15 April were largely flipped on 15 May (Figure S11), with a majority of snow volume (58 – 543 

94%) existing in elevations where the climate change signal exceeded the model disparity. 544 

Again, the WY Rockies domain exhibited different patterns with 40% of the snow volume 545 

existing in the C3 class, and 58% existing in the C4 class, despite the C4 class only covering 546 

approximately 18% of the domain area. 547 

 548 
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Figure 8. Bars show a) 15 April domain area (hatched) and SWE volume (filled) within each of 549 

the snow classes in each domain (x-axis). b) boxplots depict the distribution of all projected 550 

changes to 15 April SWE in each domain and snow class. 551 

5. Discussion 552 

    The results in Section 4 compared 124 snow projections, including climate projections from 553 

two CMIP phases (CMIP5 and CMIP6), 58 GCMs, and six modeling approaches employing 554 

different downscaling approaches, downscaling reference datasets, spatial resolutions, and land 555 

surface models. Despite these differences, the snow projection datasets exhibited relationships 556 

with one another that had consistencies across each of the domains. For example, NEX6-M and 557 

NEX6-C snow projections had large changes in end-of-century SWE projections (approximately 558 

-13% per every 100 m decrease in elevation, on average) across 300 – 600 m spans in elevation. 559 

While this study does not investigate or attribute the sources of differences between snow 560 

projections, we hypothesize these sharp gradients in the SWE percent change signals were driven 561 

by the delta-method approach used by the NEX6-M and NEX6-C projections, which applied the 562 

same spatial maps of montly climate-change perturbations (Section 2.2), resulting in climate 563 

impacts on SWE projections that were far more localized in space than the other projection 564 

datasets. Despite this, NEX6-C projected larger decreases to end-of-century SWE than NEX6-M 565 

projections in each domain. This was driven by the low snow years (e.g., water years 1998, 2001, 566 

2004, 2005, and 2009 in the WA Cascades) which had shallower low-elevation snow on 15 567 

April, and increased sensitivity to increases in air temperature and melt energy. 568 

    SWE projections from the DBCCA6 dataset estimated significantly larger decreases to end-of-569 

century 15 April SWE in each domain. This was particularly the case in the WY Rockies 570 

domain, where median SWE decreases exceeded 50% across all elevations, but a majority of the 571 

domain’s snow volume resided in elevations where other snow projections estimated little-to-no 572 

change (-10% to +10%) (Figure S7). These outlying projections may have been driven by the 573 
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downscaling procedure using the Daymet meteorological dataset (Thornton et al., 2021), which 574 

is relatively warmer than other reference meteorological datasets (Oyler et al., 2015). The 575 

DBCCA6 dataset also projected earlier dates of peak SWE, resulting in larger proportions of 576 

SWE melt prior to 15 April than the other projection datasets (Figure S12). 577 

   The relationship between elevation and 15 April projected changes to SWE were propagated 578 

into the 15 May snow projections in each domain and projection dataset (Figure 6). In fact, the 579 

elevational pattern of 15 May projected changes to SWE could be reconstructed by 1) shifting 580 

the 15 April SWE projections up in elevation, and 2) adding increases to spring snowmelt, which 581 

were larger at lower elevations, but decreased with elevation. On average, across the five 582 

domains, the spatial Pearson Correlation Coefficient between 15 April and 15 May SWE 583 

projections (Figure 6) was 0.82 for the NEX6-M projections (on average, across the 5 domains), 584 

0.96 for the NEX6-C projections, 0.92 for the LOCA5 projections, 0.96 for the BCSD5 585 

projections, 0.97 for the MACA5 projections, and 0.88 for the DBCCA6 projections. As 586 

discussed in Section 4.1, the slope of the relationship between the 15 April and 15 May SWE 587 

projections was most influenced by the elevational pattern of 15 April SWE projections. For 588 

example, 15 April SWE projections in the WY Rockies domain exhibited sharper gradients with 589 

elevation (Figure S7). When this SWE projection pattern was shifted up in elevation on 15 May 590 

(Figure S8), many grid cells with little-to-no 15 April SWE losses exhibited losses of 25% or 591 

greater on 15 May, causing a more dramatic slope in the relationship between 15 April and 15 592 

May SWE projections in this domain, relative to other domains (Figure 6). 593 

    The consistent patterns between the different snow projections, and the hysteresis in these 594 

patterns over time, suggested that the coherent relationships between the snow projections can be 595 

used to identify classes where and when 1) disparate approaches converge to common 596 
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projections of future change, and 2) improvements in systematic projection disparities could 597 

provide the greatest improvement in projections of future snow water resources. In Section 4, we 598 

chose to classify these snow classes using the NOS statistic (Equation 3), which benchmarked 599 

the disparities across snow projection datasets versus the underlying climate change signals. To 600 

our knowledge, this type of approach has not been used in other studies. However, we found that 601 

the NOS statistic had multiple benefits. First, this approach relied on U-values from the Mann-602 

Whitney non-parametric ranked sum test, which standardized the overlap between two datasets 603 

by the number of samples in each (Equations 1 and 2, 𝑛1 and 𝑛2). Relative to more common 604 

measurements (e.g., percentiles of overlap and ANOVA analyses) NOS provided a continuous 605 

normalized statistic ranging between 0.0 and 0.5 that was less-sensitive to comparisons between 606 

projections with different numbers of GCMs. Additionally, SWE projections across 100 m 607 

elevation bands did not consistently conform to any theoretical distribution (e.g, normal, 608 

lognormal, chi, etc.), indicating that a statistic based on a non-parametric test, such as the Mann-609 

Whitney U, would perform best.  610 

    Much like the projected changes to end-of-century SWE, the distribution of the NOS statistic 611 

for 15 April climate change signals (Figure 2a) and model disparities (Figure 2b) followed 612 

similar patterns with increases in elevation across the modeling domains (Figure 5c, Figure S3c, 613 

Figure S5c, Figure S7c, Figure S9c). This resulted in the similar, but elevation-shifted 614 

distribution of snow classes (C1 – C6) shown in Figure 7. Overall, the climate change signal 615 

varied with elevation more than the projection disparity. For example, in the WA Cascades 616 

domain on 15 April (Figure 5c), the standard deviation of the NOS statistic for the climate 617 

change signal was 49% larger than the standard deviation of the NOS for model disparities. In 618 

this same domain, the distributions of NOS for the climate change and model disparity signals 619 
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were approximately equal at an elevation of 1550 m (Figure 5c). This inflection point 620 

represented the location where snow losses projected at lower elevations (C1 – C3, 250 – 1550 621 

m) were in agreement in sign (positive/negative) and of similar magnitudes, but the disparity 622 

across models exceeded the climate change signal at higher elevations (C4). For the 124 snow 623 

projections tested here, the median projected change to 15 April SWE at this inflection point was 624 

approximately -26% in the WA Cascades (Figure 8). For the other domains, these inflection 625 

points occurred at: 1650 m elevation and -48% projected changes to SWE in the ID Rockies, 626 

1950 m and -44% in the MT Rockies, 2250 m and -35% in the WY Rockies, and 2750 m and -627 

23% in the CO Rockies. 628 

    Based on the inflection points above, grid cells with 15 April ensemble-average projected 629 

decreases to SWE of 48% or greater (Figure 3) were among the highest-confidence climate 630 

change signals. Siirila-Woodburn et al. (2021) suggested that end-of-winter projected SWE 631 

losses of 48% or greater are likely for the vast majority of Western US by the end of the century. 632 

However, disproportionate amounts of annual Western US streamflow come from high-elevation 633 

montane regions which cover only small portions of the Western US land mass (Li et al., 2017), 634 

and are subject to some of the highest snow projection uncertainties. In this study, Figure 8a 635 

shows that snow classes with higher-confidence projected SWE decreases (snow classes C1 – 636 

C3) account for more than half of the area of the WA Cascades, ID Rockies, MT Rockies, and 637 

CO Rockies domains. Yet, these areas contain less than 63%, and as little as 6%, of each 638 

domain’s historical snow volume. In other words, while projections employing disparate 639 

modeling approaches agree across large spatial extents, the locations with disagreements contain 640 

disproportionate amounts of snow. This issue was particularly prevalent in the WY Rockies 641 
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domain where only 5% and 1% of the historical snow volume had higher-confidence SWE 642 

decreases (C1 – C3) and SWE increases (C5), respectively. 643 

    We found that 15 April model disparity measured using the NOS statistic (Figure 2b) was at 644 

it’s worst for elevations approximately 250 m higher than the inflection points. In these 645 

elevations, SWE projections from the NEX6-M and NEX6-C SWE datasets tended to diverge 646 

from the LOCA5, BCSD5, and MACA5 projections, approaching smaller end-of-century SWE 647 

change estimates. This was opposed to SWE projections for the DBCCA6 dataset, which 648 

estimated larger SWE losses than any other dataset for elevations both in this span of elevations, 649 

and at all higher elevations. Although limited in area, this 250 m elevation band contained 650 

significant amounts of SWE volume (Figure 9), accounting for 27% of the historical snow 651 

volume in the WA Cascades, 31% in the ID Rockies, 33% in the MT Rockies, 11% in the WY 652 

Rockies, and 26% in the CO Rockies.  653 

    Based on Figure 9, and the snow projection datasets compared in this study, we expect that the 654 

greatest improvements to the coherence of snow projections could come from investigating and 655 

attributing the sources of projection disparities in the 250 m elevation bands above the inflection 656 

points. However, we recognize that improving the coherence of snow projections in these 657 

regions is challenging. For example, for the domains investigated here, the average terrain slope 658 

in the 250 m elevation bands above the inflection point is approximately 14º. This means that for 659 

a conservative and steadily-inceasing slope, elevation increases approximately 249 m for every 660 

1000 m in horizontal distance. Assuming common air temperature lapse rates (e.g., Arsenault et 661 

al., 2018; Minder et al., 2010), air temperature within a 100 km GCM grid cell with these 662 

characteristics vary consistently by as much as 8º C, and often more. This highlights the 663 

challenges with modeling meteorological conditions at at scales significantly smaller than the 664 



 34 

spatial resolutions of GCMs, especially considering fine-scale processes like mountain pass air 665 

mixing and snow albedo feedbacks. Grid cells within these 250 m elevation bands are also often 666 

in inaccessible, hazardous, and unmonitored terrain. In fact, the 250 m elevation band of focus in 667 

the CO Rockies domain falls at approximately 3250 – 3500 m in elevation, which is higher than 668 

approximately 95% of Snow Telemetry (SNOTEL) stations in the Western United States, 669 

making it difficult to validate GCMs and reference downscaling datasets. Fortunately, since 670 

disparities across snow projections demonstrated repeatable, but elevation-shifted patterns in 671 

each domain, we hypothesize that improvements to projection disparities in one domain may 672 

translate to improvements in other domains. In other words, while the cause of disparities 673 

between models may be difficult to diagnose in this high elevation region in the CO Rockies, the 674 

pattern of disparities between projections in this regions was similar to the pattern of disparities 675 

at more-accessible and observed elevations between 1550 and 1800 m in the WA Cascades. This 676 

hypothesis is beyond the scope of this manuscript, and will be investigated by future research. 677 

 678 
Figure 9. Historical SWE distribution in each domain for all snow classes (gray), and snow 679 

classes with the most-coherent decreases to end-of-century SWE (green). The difference between 680 

the filled and hollow scatter points show the difference in SWE volume over a 250 m elevation 681 

band above the elevation at which model disparity first equals the climate change signal. 682 
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    Our results show that benchmarking ensembles of snow projection climate change signals 683 

using the disparity across models can provide a path forward for identifying coherence between 684 

projections, both in terms of identifying locations where disparate modeling methodologies 685 

approach common results, and identifying systematic and repeatable departures between snow 686 

projection datasets. We acknowledge that the results presented here were dependent on the six 687 

snow projections used, and the two analogous emissions scenarios (SSP 2-4.5 and RCP 4.5). 688 

Therefore, future research should continue on this approach, adding more snow projections 689 

including a range of climate forcing and modeling approaches. Given the continued development 690 

of state-of-the-art climate models, meteorological downscaling approaches, and land surface 691 

models, we expect large-ensemble approaches like the approaches used here to be valuable for 692 

identifying and communicating the high-confidence changes to future snow water resources and 693 

the resulting impacts on the land surface hydrology, and identifying the regions where our 694 

estimates of future snowpack may benefit most from further research and development. 695 

6. Conclusions 696 

    Differences in modeling approaches such as different land surface models, climate models, 697 

downscaling approaches, and spatial resolutions can cause cascading differences in model 698 

forcing and simulated snow evolution, making it difficult to determine the most accurate 699 

projections, and the causes of disparities between different projection datasets. This is 700 

particularly the case in mountainous terrain, where the sparsity of observations and fine-scale 701 

spatial variabilities in meteorological conditions make climate and snow projections challenging.  702 

    Here, we found that projected changes to end-of-century SWE, climate change signals, and 703 

model disparities showed relationships with terrain elevation in five Western US montane 704 

domains. Using these relationships, we were able to partition each domain into snow classes that 705 
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exhibited similar relationships, but were shifted in elevation (Figure 7). The lowest elevations of 706 

each domain exhibited high-confidence projected decreases to 15 April SWE that were larger in 707 

magnitude than the disparity across the models (Figure 3 and Figure 5). Across the five domains, 708 

15 April projections agreed in regions where median projected decreases to end-of-century SWE 709 

were 48% or larger. However, some regions like the Colorado Rockies and Washington 710 

Cascades had better coherence across the projections, resulting in decreases to end-of-century 711 

SWE with high levels of agreement between snow projections at grid cells experiencing more 712 

than 23% and 26% decreases, respectively. Grid cells with high-confidence SWE projections 713 

covered a majority of the domain area in the Washington Cascades, Idaho Rockies, Montana 714 

Rockies, and Colorado Rockies (Figure 8). Despite this, a majority of annual SWE volume 715 

existed in higher elevation regions where the disparities between snow projections exceeded the 716 

projected changes to SWE. This was particularly the case in the Wyoming Rockies domain, 717 

where colder climates resulted in significantly smaller projected changes to 15 April SWE 718 

(Figure 3). In fact, only this domain experienced grid cells with projected high-confidence 719 

increases to end-of-century SWE. However, this only occurred over a small span of elevations 720 

(3550 – 3750 m), accounting for approximately 1% of this domain’s total area, and less than 1% 721 

of the total SWE volume. In summary, we found that despite the widespread agreement in snow 722 

projections spatially, the greatest disagreements between projections occurred in the regions with 723 

the greatest snow volumes, emphasizing the need to improve snow projection coherence in high-724 

elevation terrain. 725 

    Results also found strong relationships (r ≥ 0.82) between 15 April and 15 May SWE 726 

projections for each snow projection dataset in each domain (Figure 6). In fact, 15 May SWE 727 

projections could be reproduced by shifting the 15 April SWE projections up in elevation, and 728 
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enhancing the snowmelt that occurred for thinner snowpacks in warmer future climates. This 729 

suggested that improvements to the spread and certainty of 15 April SWE projections would 730 

translate to improvements between the projections at later dates. These results suggest that future 731 

studies should consider the use of large-ensemble approaches, like the approach used here, with 732 

additional snow projection datasets and future emissions scenarios, as a basis for 1) identifying 733 

and communicating the highest-confidence changes to future snow water resources, and 2) the 734 

locations and periods where work should focus most on honing future projection datasets. 735 
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