References
BALZAROTTI, F., EILERS, Y., GWOSCH, K. C., GYNNA, A. H., WESTPHAL, V.,
STEFANI, F. D., ELF, J. & HELL, S. W. 2017. Nanometer resolution
imaging and tracking of fluorescent molecules with minimal photon
fluxes. Science, 355, 606-612.
BANAZ, N., MAKELA, J. & UPHOFF, S. 2019. Choosing the right label for
single-molecule tracking in live bacteria: side-by-side comparison of
photoactivatable fluorescent protein and Halo tag dyes. J Phys D
Appl Phys, 52, 064002.
BARLAG, B., BEUTEL, O., JANNING, D., CZARNIAK, F., RICHTER, C. P.,
KOMMNICK, C., GOSER, V., KURRE, R., FABIANI, F., ERHARDT, M., PIEHLER,
J. & HENSEL, M. 2016. Single molecule super-resolution imaging of
proteins in living Salmonella enterica using self-labelling enzymes.Sci Rep, 6, 31601.
BEER, T., HANSCH, S., PFEFFER, K., SMITS, S. H. J., WEIDTKAMP-PETERS, S.
& SCHMITT, L. 2022. Quantification and Surface Localization of the
Hemolysin A Type I Secretion System at the Endogenous Level and under
Conditions of Overexpression. Appl Environ Microbiol,88, e0189621.
BERGER, C., RAVELLI, R. B. G., LOPEZ-IGLESIAS, C., KUDRYASHEV, M.,
DIEPOLD, A. & PETERS, P. J. 2021. Structure of the Yersinia injectisome
in intracellular host cell phagosomes revealed by cryo FIB electron
tomography. J Struct Biol, 213, 107701.
BETZIG, E., PATTERSON, G. H., SOUGRAT, R., LINDWASSER, O. W., OLENYCH,
S., BONIFACINO, J. S., DAVIDSON, M. W., LIPPINCOTT-SCHWARTZ, J. & HESS,
H. F. 2006. Imaging intracellular fluorescent proteins at nanometer
resolution. Science, 313, 1642-5.
BOLOGNESI, B. & LEHNER, B. 2018. Reaching the limit. Elife, 7.
BUTTNER, M., LAGERHOLM, C. B., WAITHE, D., GALIANI, S., SCHLIEBS, W.,
ERDMANN, R., EGGELING, C. & REGLINSKI, K. 2021. Challenges of Using
Expansion Microscopy for Super-resolved Imaging of Cellular Organelles.Chembiochem, 22, 686-693.
CARSTEN, A., RUDOLPH, M., WEIHS, T., SCHMIDT, R., JANSEN, I., WURM, C.
A., DIEPOLD, A., FAILLA, A. V., WOLTERS, M. & AEPFELBACHER, M. 2022.
MINFLUX imaging of a bacterial molecular machine at nanometer
resolution. Methods Appl Fluoresc, 11.
CASSARO, C. J. & UPHOFF, S. 2022. Super-Resolution Microscopy and
Tracking of DNA-Binding Proteins in Bacterial Cells. Methods Mol
Biol, 2476, 191-208.
CHEN, F., TILLBERG, P. W. & BOYDEN, E. S. 2015. Optical imaging.
Expansion microscopy. Science, 347, 543-8.
DEANE, J. E., ROVERSI, P., CORDES, F. S., JOHNSON, S., KENJALE, R.,
DANIELL, S., BOOY, F., PICKING, W. D., PICKING, W. L., BLOCKER, A. J. &
LEA, S. M. 2006. Molecular model of a type III secretion system needle:
Implications for host-cell sensing. Proc Natl Acad Sci U S A,103, 12529-33.
DEGUCHI, T., IWANSKI, M. K., SCHENTARRA, E. M., HEIDEBRECHT, C.,
SCHMIDT, L., HECK, J., WEIHS, T., SCHNORRENBERG, S., HOESS, P., LIU, S.,
CHEVYREVA, V., NOH, K. M., KAPITEIN, L. C. & RIES, J. 2023. Direct
observation of motor protein stepping in living cells using MINFLUX.Science, 379, 1010-1015.
DIEPOLD, A., KUDRYASHEV, M., DELALEZ, N. J., BERRY, R. M. & ARMITAGE,
J. P. 2015. Composition, formation, and regulation of the cytosolic
c-ring, a dynamic component of the type III secretion injectisome.PLoS Biol, 13, e1002039.
DIEPOLD, A., SEZGIN, E., HUSEYIN, M., MORTIMER, T., EGGELING, C. &
ARMITAGE, J. P. 2017. A dynamic and adaptive network of cytosolic
interactions governs protein export by the T3SS injectisome. Nat
Commun, 8, 15940.
FERNANDEZ, N. L., CHEN, Z., FULLER, D. E. H., VAN GIJTENBEEK, L. A.,
NYE, T. M., BITEEN, J. S. & SIMMONS, L. A. 2023. DNA Methylation and
RNA-DNA Hybrids Regulate the Single-Molecule Localization of a DNA
Methyltransferase on the Bacterial Nucleoid. mBio, 14,e0318522.
FILLOUX, A. 2022. Bacterial protein secretion systems: Game of types.Microbiology (Reading), 168.
FRUH, S. M., MATTI, U., SPYCHER, P. R., RUBINI, M., LICKERT, S.,
SCHLICHTHAERLE, T., JUNGMANN, R., VOGEL, V., RIES, J. & SCHOEN, I.
2021. Site-Specifically-Labeled Antibodies for Super-Resolution
Microscopy Reveal In Situ Linkage Errors. ACS Nano, 15,12161-12170.
GALAN, J. E. 2009. Common themes in the design and function of bacterial
effectors. Cell Host Microbe, 5, 571-9.
GOSER, V., KOMMNICK, C., LISS, V. & HENSEL, M. 2019. Self-Labeling
Enzyme Tags for Analyses of Translocation of Type III Secretion System
Effector Proteins. mBio, 10.
GOSER, V., SANDER, N., SCHULTE, M., SCHARTE, F., FRANZKOCH, R., LISS,
V., PSATHAKI, O. E. & HENSEL, M. 2023. Single molecule analyses reveal
dynamics of Salmonella translocated effector proteins in host cell
endomembranes. Nat Commun, 14, 1240.
GOTZ, R., KUNZ, T. C., FINK, J., SOLGER, F., SCHLEGEL, J., SEIBEL, J.,
KOZJAK-PAVLOVIC, V., RUDEL, T. & SAUER, M. 2020. Nanoscale imaging of
bacterial infections by sphingolipid expansion microscopy. Nat
Commun, 11, 6173.
GUSTAFSSON, M. G. 2000. Surpassing the lateral resolution limit by a
factor of two using structured illumination microscopy. J
Microsc, 198, 82-7.
GUSTAFSSON, M. G., SHAO, L., CARLTON, P. M., WANG, C. J., GOLUBOVSKAYA,
I. N., CANDE, W. Z., AGARD, D. A. & SEDAT, J. W. 2008.
Three-dimensional resolution doubling in wide-field fluorescence
microscopy by structured illumination. Biophys J, 94,4957-70.
HELL, S. W. & WICHMANN, J. 1994. Breaking the diffraction resolution
limit by stimulated emission: stimulated-emission-depletion fluorescence
microscopy. Opt Lett, 19, 780-2.
HU, J., WORRALL, L. J., HONG, C., VUCKOVIC, M., ATKINSON, C. E.,
CAVENEY, N., YU, Z. & STRYNADKA, N. C. J. 2018. Cryo-EM analysis of the
T3S injectisome reveals the structure of the needle and open secretin.Nat Commun, 9, 3840.
JENKINS, J., WORRALL, L. J. & STRYNADKA, N. C. J. 2022. Recent
structural advances towards understanding of the bacterial type III
secretion injectisome. Trends Biochem Sci, 47, 795-809.
JEONG, D., KIM, M. J., PARK, Y., CHUNG, J., KWEON, H. S., KANG, N. G.,
HWANG, S. J., YOUN, S. H., HWANG, B. K. & KIM, D. 2022. Visualizing
extracellular vesicle biogenesis in gram-positive bacteria using
super-resolution microscopy. BMC Biol, 20, 270.
KHATEB, H., SORENSEN, R. S., CRAMER, K., EKLUND, A. S., KJEMS, J.,
MEYER, R. L., JUNGMANN, R. & SUTHERLAND, D. S. 2022. The Role of
Nanoscale Distribution of Fibronectin in the Adhesion of Staphylococcus
aureus Studied by Protein Patterning and DNA-PAINT. ACS Nano,16, 10392-10403.
KLAR, T. A. & HELL, S. W. 1999. Subdiffraction resolution in far-field
fluorescence microscopy. Opt Lett, 24, 954-6.
KUNZ, T. C., RUHLING, M., MOLDOVAN, A., PAPROTKA, K., KOZJAK-PAVLOVIC,
V., RUDEL, T. & FRAUNHOLZ, M. 2021. The Expandables: Cracking the
Staphylococcal Cell Wall for Expansion Microscopy. Front Cell
Infect Microbiol, 11, 644750.
LARA-TEJERO, M., KATO, J., WAGNER, S., LIU, X. & GALAN, J. E. 2011. A
sorting platform determines the order of protein secretion in bacterial
type III systems. Science, 331, 1188-91.
LE, N. H., PINEDO, V., LOPEZ, J., CAVA, F. & FELDMAN, M. F. 2021.
Killing of Gram-negative and Gram-positive bacteria by a bifunctional
cell wall-targeting T6SS effector. Proc Natl Acad Sci U S A, 118.
LIEW, A. T. F., FOO, Y. H., GAO, Y., ZANGOUI, P., SINGH, M. K., GULVADY,
R. & KENNEY, L. J. 2019. Single cell, super-resolution imaging reveals
an acid pH-dependent conformational switch in SsrB regulates SPI-2.Elife, 8.
LIN, L., CAPOZZOLI, R., FERRAND, A., PLUM, M., VETTIGER, A. & BASLER,
M. 2022. Subcellular localization of Type VI secretion system assembly
in response to cell-cell contact. EMBO J, 41, e108595.
LISS, V., BARLAG, B., NIETSCHKE, M. & HENSEL, M. 2015. Self-labelling
enzymes as universal tags for fluorescence microscopy, super-resolution
microscopy and electron microscopy. Sci Rep, 5, 17740.
LIU, S., HOESS, P. & RIES, J. 2022. Super-Resolution Microscopy for
Structural Cell Biology. Annu Rev Biophys, 51, 301-326.
LUND, V. A., GANGOTRA, H., ZHAO, Z., SUTTON, J. A. F., WACNIK, K.,
DEMEESTER, K., LIANG, H., SANTIAGO, C., LEIMKUHLER GRIMES, C., JONES, S.
& FOSTER, S. J. 2022. Coupling Novel Probes with Molecular Localization
Microscopy Reveals Cell Wall Homeostatic Mechanisms in Staphylococcus
aureus. ACS Chem Biol, 17, 3298-3305.
LUNELLI, M., KAMPRAD, A., BURGER, J., MIELKE, T., SPAHN, C. M. T. &
KOLBE, M. 2020. Cryo-EM structure of the Shigella type III needle
complex. PLoS Pathog, 16, e1008263.
MARLOVITS, T. C., KUBORI, T., SUKHAN, A., THOMAS, D. R., GALAN, J. E. &
UNGER, V. M. 2004. Structural insights into the assembly of the type III
secretion needle complex. Science, 306, 1040-2.
MARY, C., FOUILLEN, A., BESSETTE, B., NANCI, A. & BARON, C. 2018.
Interaction via the N terminus of the type IV secretion system (T4SS)
protein VirB6 with VirB10 is required for VirB2 and VirB5 incorporation
into T-pili and for T4SS function. J Biol Chem, 293,13415-13426.
MEZA-TORRES, J., LELEK, M., QUEREDA, J. J., SACHSE, M., MANINA, G.,
ERSHOV, D., TINEVEZ, J. Y., RADOSHEVICH, L., MAUDET, C., CHAZE, T., GIAI
GIANETTO, Q., MATONDO, M., LECUIT, M., MARTIN-VERSTRAETE, I., ZIMMER,
C., BIERNE, H., DUSSURGET, O., COSSART, P. & PIZARRO-CERDA, J. 2021.
Listeriolysin S: A bacteriocin from Listeria monocytogenes that induces
membrane permeabilization in a contact-dependent manner. Proc Natl
Acad Sci U S A, 118.
MIHAILA, T. S., BATE, C., OSTERSEHLT, L. M., PAPE, J. K.,
KELLER-FINDEISEN, J., SAHL, S. J. & HELL, S. W. 2022. Enhanced
incorporation of subnanometer tags into cellular proteins for
fluorescence nanoscopy via optimized genetic code expansion. Proc
Natl Acad Sci U S A, 119, e2201861119.
MILETIC, S., FAHRENKAMP, D., GOESSWEINER-MOHR, N., WALD, J., PANTEL, M.,
VESPER, O., KOTOV, V. & MARLOVITS, T. C. 2021. Substrate-engaged type
III secretion system structures reveal gating mechanism for unfolded
protein translocation. Nat Commun, 12, 1546.
MORRIS, M. A., VALLMITJANA, A., GREIN, F., SCHNEIDER, T., ARTS, M.,
JONES, C. R., NGUYEN, B. T., HASHEMIAN, M. H., MALEK, M., GRATTON, E. &
NOWICK, J. S. 2022. Visualizing the mode of action and supramolecular
assembly of teixobactin analogues in Bacillus subtilis. Chem Sci,13, 7747-7754.
NAUTH, T., HUSCHKA, F., SCHWEIZER, M., BOSSE, J. B., DIEPOLD, A.,
FAILLA, A. V., STEFFEN, A., STRADAL, T. E. B., WOLTERS, M. &
AEPFELBACHER, M. 2018. Visualization of translocons in Yersinia type III
protein secretion machines during host cell infection. PLoS
Pathog, 14, e1007527.
OSTERSEHLT, L. M., JANS, D. C., WITTEK, A., KELLER-FINDEISEN, J.,
INAMDAR, K., SAHL, S. J., HELL, S. W. & JAKOBS, S. 2022. DNA-PAINT
MINFLUX nanoscopy. Nat Methods, 19, 1072-1075.
PENDE, N., SOGUES, A., MEGRIAN, D., SARTORI-RUPP, A., ENGLAND, P.,
PALABIKYAN, H., RITTMANN, S. K. R., GRANA, M., WEHENKEL, A. M., ALZARI,
P. M. & GRIBALDO, S. 2021. SepF is the FtsZ anchor in archaea, with
features of an ancestral cell division system. Nat Commun,12, 3214.
PRINDLE, J. R., WANG, Y., ROCHA, J. M., DIEPOLD, A. & GAHLMANN, A.
2022. Distinct Cytosolic Complexes Containing the Type III Secretion
System ATPase Resolved by Three-Dimensional Single-Molecule Tracking in
Live Yersinia enterocolitica. Microbiol Spectr ,e0174422.
REMMEL, M., SCHEIDERER, L., BUTKEVICH, A. N., BOSSI, M. L. & HELL, S.
W. 2023. Accelerated MINFLUX Nanoscopy, through Spontaneously
Fast-Blinking Fluorophores. Small, 19, e2206026.
RIDEAU, F., VILLA, A., BELZANNE, P., VERDIER, E., HOSY, E. & ARFI, Y.
2022. Imaging Minimal Bacteria at the Nanoscale: a Reliable and
Versatile Process to Perform Single-Molecule Localization Microscopy in
Mycoplasmas. Microbiol Spectr, 10, e0064522.
RIES, J., KAPLAN, C., PLATONOVA, E., EGHLIDI, H. & EWERS, H. 2012. A
simple, versatile method for GFP-based super-resolution microscopy via
nanobodies. Nat Methods, 9, 582-4.
ROCHA, J. M., RICHARDSON, C. J., ZHANG, M., DARCH, C. M., CAI, E.,
DIEPOLD, A. & GAHLMANN, A. 2018. Single-molecule tracking in live
Yersinia enterocolitica reveals distinct cytosolic complexes of
injectisome subunits. Integr Biol (Camb), 10, 502-515.
RUDOLPH, M., CARSTEN, A., KULNIK, S., AEPFELBACHER, M. & WOLTERS, M.
2022. Live imaging of Yersinia translocon formation and immune
recognition in host cells. PLoS Pathog, 18, e1010251.
RUST, M. J., BATES, M. & ZHUANG, X. 2006. Sub-diffraction-limit imaging
by stochastic optical reconstruction microscopy (STORM). Nat
Methods, 3, 793-5.
SAHL, S. J., HELL, S. W. & JAKOBS, S. 2017. Fluorescence nanoscopy in
cell biology. Nat Rev Mol Cell Biol, 18, 685-701.
SCHMIDT, R., WEIHS, T., WURM, C. A., JANSEN, I., REHMAN, J., SAHL, S. J.
& HELL, S. W. 2021. MINFLUX nanometer-scale 3D imaging and
microsecond-range tracking on a common fluorescence microscope.Nat Commun, 12, 1478.
SCHNITZBAUER, J., STRAUSS, M. T., SCHLICHTHAERLE, T., SCHUEDER, F. &
JUNGMANN, R. 2017. Super-resolution microscopy with DNA-PAINT. Nat
Protoc, 12, 1198-1228.
SEINEN, A. B., SPAKMAN, D., VAN OIJEN, A. M. & DRIESSEN, A. J. M. 2021.
Cellular dynamics of the SecA ATPase at the single molecule level.Sci Rep, 11, 1433.
SICHEL, S. R., BRATTON, B. P. & SALAMA, N. R. 2022. Distinct regions of
H. pylori’s bactofilin CcmA regulate protein-protein interactions to
control helical cell shape. Elife, 11.
SINGH, M. K. & KENNEY, L. J. 2021. Super-resolution imaging of
bacterial pathogens and visualization of their secreted effectors.FEMS Microbiol Rev, 45.
SODERSTROM, B., RUDA, A., WIDMALM, G. & DALEY, D. O. 2020. An
OregonGreen488-labelled d-amino acid for visualizing peptidoglycan by
super-resolution STED nanoscopy. Microbiology (Reading),166, 1129-1135.
STOCKHAMMER, A. 2020. Appreciating the small things in life: STED
microscopy in living cells. Journal of Physics D: Applied
Physics, 54.
STRACY, M., LESTERLIN, C., GARZA DE LEON, F., UPHOFF, S., ZAWADZKI, P.
& KAPANIDIS, A. N. 2015. Live-cell superresolution microscopy reveals
the organization of RNA polymerase in the bacterial nucleoid. Proc
Natl Acad Sci U S A, 112, E4390-9.
TANK, R. K. G., LUND, V. A., KUMAR, S., TURNER, R. D., LAFAGE, L.,
PASQUINA LEMONCHE, L., BULLOUGH, P. A., CADBY, A., FOSTER, S. J. &
HOBBS, J. K. 2021. Correlative Super-Resolution Optical and Atomic Force
Microscopy Reveals Relationships Between Bacterial Cell Wall
Architecture and Synthesis in Bacillus subtilis. ACS Nano,15, 16011-16018.
THRALL, E. S., PIATT, S. C., CHANG, S. & LOPARO, J. J. 2022.
Replication stalling activates SSB for recruitment of DNA damage
tolerance factors. Proc Natl Acad Sci U S A, 119,e2208875119.
TROUVE, J., GLUSHONKOV, O. & MORLOT, C. 2021. Metabolic biorthogonal
labeling and dSTORM imaging of peptidoglycan synthesis in Streptococcus
pneumoniae. STAR Protoc, 2, 101006.
TRUCKENBRODT, S., MAIDORN, M., CRZAN, D., WILDHAGEN, H., KABATAS, S. &
RIZZOLI, S. O. 2018. X10 expansion microscopy enables 25-nm resolution
on conventional microscopes. EMBO Rep, 19.
UPHOFF, S., REYES-LAMOTHE, R., GARZA DE LEON, F., SHERRATT, D. J. &
KAPANIDIS, A. N. 2013. Single-molecule DNA repair in live bacteria.Proc Natl Acad Sci U S A, 110, 8063-8.
VEENENDAAL, A. K., HODGKINSON, J. L., SCHWARZER, L., STABAT, D., ZENK,
S. F. & BLOCKER, A. J. 2007. The type III secretion system needle tip
complex mediates host cell sensing and translocon insertion. Mol
Microbiol, 63, 1719-30.
VINCENT, M. S., COMAS HERVADA, C., SEBBAN-KREUZER, C., LE GUENNO, H.,
CHABALIER, M., KOSTA, A., GUERLESQUIN, F., MIGNOT, T., MCBRIDE, M. J.,
CASCALES, E. & DOAN, T. 2022. Dynamic proton-dependent motors power
type IX secretion and gliding motility in Flavobacterium. PLoS
Biol, 20, e3001443.
WAGNER, S., GRIN, I., MALMSHEIMER, S., SINGH, N., TORRES-VARGAS, C. E.
& WESTERHAUSEN, S. 2018. Bacterial type III secretion systems: a
complex device for the delivery of bacterial effector proteins into
eukaryotic host cells. FEMS Microbiol Lett, 365.
WANG, Y., FU, M., WU, B., HUANG, M., MA, T., ZANG, H., JIANG, H., ZHANG,
Y. & LI, C. 2022. Insight into biofilm-forming patterns:
biofilm-forming conditions and dynamic changes in extracellular polymer
substances. Environ Sci Pollut Res Int, 29, 89542-89556.
WIMMI, S., BALINOVIC, A., JECKEL, H., SELINGER, L., LAMPAKI, D.,
EISEMANN, E., MEUSKENS, I., LINKE, D., DRESCHER, K., ENDESFELDER, U. &
DIEPOLD, A. 2021. Dynamic relocalization of cytosolic type III secretion
system components prevents premature protein secretion at low external
pH. Nat Commun, 12, 1625.
WOLFF, J. O., SCHEIDERER, L., ENGELHARDT, T., ENGELHARDT, J., MATTHIAS,
J. & HELL, S. W. 2023. MINFLUX dissects the unimpeded walking of
kinesin-1. Science, 379, 1004-1010.
WORRALL, L. J., HONG, C., VUCKOVIC, M., DENG, W., BERGERON, J. R. C.,
MAJEWSKI, D. D., HUANG, R. K., SPRETER, T., FINLAY, B. B., YU, Z. &
STRYNADKA, N. C. J. 2016. Near-atomic-resolution cryo-EM analysis of the
Salmonella T3S injectisome basal body. Nature, 540,597-601.
ZHANG, Y., LARA-TEJERO, M., BEWERSDORF, J. & GALAN, J. E. 2017.
Visualization and characterization of individual type III protein
secretion machines in live bacteria. Proc Natl Acad Sci U S A,114, 6098-6103.
ZILKENAT, S., FRANZ-WACHTEL, M., STIERHOF, Y. D., GALAN, J. E., MACEK,
B. & WAGNER, S. 2016. Determination of the Stoichiometry of the
Complete Bacterial Type III Secretion Needle Complex Using a Combined
Quantitative Proteomic Approach. Mol Cell Proteomics,15, 1598-609.
Acknowledgements:
We thank Jost Enninga for helpful discussions and Antonio Virgilio
Failla for critical reading of the manuscript. The selected papers on
SRM/SMT and their applications in bacteria that we mention and cite in
this article do not claim to be complete. We apologize to all colleagues
whose papers we have not cited here due to space limitations or because
we simply did not discover them during our extensive literature
searches.
Funding:
This study was supported by a grant from the Joachim Herz Foundation to
Alexander Carsten and by the DFG-funded RTG 2771 Humans and Microbes.
Acquisition of the MINFLUX microscope was made possible through funding
from the European Regional Development Fund (ERDF) under the Operational
Programme Hamburg ERDF 2014-2020, REACT-EU, awarded by the Hamburgische
Investitions- und Förderbank (grant number 51164232).
Conflict of interest:
The authors declare no conflict of interest.