REFERENCES
Balasingham K. D., Walter R. P., Mandrak N. E., Heath D. D. J. M. E., 2018. Environmental DNA detection of rare and invasive fish species in two Great Lakes tributaries. 27, 112-127.
Barbour M. T., Gerritsen J., Snyder B., Stribling J. Rapid bioassessment protocols for use in streams and wadeable rivers. Washington, USA: USEPA, 1999.
Beng K. C., Corlett R. T., 2020. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodiversity and Conservation, 29, 2089-2121.
Bernos T. A., Yates M. C., Docker M. F., Fitzgerald A., Hanner R., Heath D., et al., 2023. Environmental DNA (eDNA) applications in freshwater fisheries management and conservation in Canada: overview of current challenges and opportunities. Canadian Journal of Fisheries and Aquatic Sciences, 80, 1170-1186.
Borcard D., Gillet F., Legendre P. Numerical ecology with R. New York, USA: Springer, 2011.
Bylemans J., Gleeson D. M., Duncan R. P., Hardy C. M., Furlan E. M., 2019. A performance evaluation of targeted eDNA and eDNA metabarcoding analyses for freshwater fishes. Environmental DNA, 1, 402-414.
Civade R., Dejean T., Valentini A., Roset N., Raymond J.-C., Bonin A., et al., 2016. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLOS ONE, 11, e0157366.
Doi H., Inui R., Akamatsu Y., Kanno K., Yamanaka H., Takahara T., et al., 2017. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshwater Biology, 62, 30-39.
Flotemersch J. E., Stribling J. B., Paul M. J. Concepts and Approaches for the Bioassessment of Non-wadeable Streams and Rivers. Cincinnati, Ohio, USA: Office of Research and Development, USEPA, 2006.
Garlapati D., Charankumar B., Ramu K., Madeswaran P., Ramana Murthy M. V., 2019. A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Reviews in Environmental Science and Bio/Technology, 18, 389-411.
Hauer F. R., Lamberti G. A. Methods in Stream Ecology. London, UK: Academic Press, 2007.
Kumar G., Reaume A. M., Farrell E., Gaither M. R., 2022. Comparing eDNA metabarcoding primers for assessing fish communities in a biodiverse estuary. PLoS One, 17, e0266720.
Lacoursière-Roussel A., Côté G., Leclerc V., Bernatchez L., 2016. Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. Journal of Applied Ecology, 53, 1148-1157.
Liu C., Cui Y., Li X., Yao M., 2021. microeco: an R package for data mining in microbial community ecology. FEMS Microbiology Ecology, 97, fiaa255.
Magoč T., Salzberg S. L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957-63.
Miya M., Sato Y., Fukunaga T., Sado T., Poulsen J. Y., Sato K., et al., 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science, 2.
Nguyen B. N., Shen E. W., Seemann J., Correa A. M. S., O’Donnell J. L., Altieri A. H., et al., 2020. Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape. Scientific Reports, 10, 6729.
Pont D., Rocle M., Valentini A., Civade R., Jean P., Maire A., et al., 2018. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Scientific Reports, 8, 10361.
Port J. A., O’Donnell J. L., Romero-Maraccini O. C., Leary P. R., Litvin S. Y., Nickols K. J., et al., 2016. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol Ecol, 25, 527-41.
Rognes T., Flouri T., Nichols B., Quince C., Mahé F., 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584.
Rourke M. L., Fowler A. M., Hughes J. M., Broadhurst M. K., DiBattista J. D., Fielder S., et al., 2022. Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. Environmental DNA, 4, 9-33.
Sakata M. K., Watanabe T., Maki N., Ikeda K., Kosuge T., Okada H., et al., 2020. Determining an effective sampling method for eDNA metabarcoding: a case study for fish biodiversity monitoring in a small, natural river. Limnology.
Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W. S., et al., 2011. Metagenomic biomarker discovery and explanation. Genome Biology, 12, 1-18.
Shu L., Ludwig A., Peng Z., 2021. Environmental DNA metabarcoding primers for freshwater fish detection and quantification: In silico and in tanks. Ecology and Evolution, 11, 8281-8294.
Stewart K. A., 2019. Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodiversity and Conservation, 28, 983-1001.
Stoeckle M. Y., Lyubov S., Zachary C. P., Hideyuki D., 2017. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. Plos One, 12, e0175186.
Wang S., Luo B.-K., Qin Y.-J., Zhao J.-G., Wang T.-T., Stewart S. D., et al., 2020a. Fish isotopic niches associated with environmental indicators and human disturbance along a disturbed large subtropical river in China. Science of The Total Environment, 750, 141667.
Wang S., Su L.-H., Luo B.-K., Qin Y.-J., Stewart S. D., Tang J.-P., et al., 2020b. Stable isotopes reveal effects of natural drivers and anthropogenic pressures on isotopic niches of invertebrate communities in a large subtropical river of China. Environmental Science and Pollution Research, 27, 36132-36146.
Wang S., Tang J.-P., Su L.-H., Fan J.-J., Chang H.-Y., Wang T.-T., et al., 2019a. Fish feeding groups, food selectivity, and diet shifts associated with environmental factors and prey availability along a large subtropical river, China. Aquatic Sciences, 81, 31.
Wang S., Wang L., Chang H.-Y., Li F., Tang J.-P., Zhou X.-A., et al., 2018a. Longitudinal variation in energy flow networks along a large subtropical river, China. Ecological Modelling, 387, 83-95.
Wang S., Wang L., Zheng Y., Chen Z.-B., Yang Y., Lin H.-J., et al., 2019b. Application of mass-balance modelling to assess the effects of ecological restoration on energy flows in a subtropical reservoir, China. Science of The Total Environment, 664, 780-792.
Wang S., Wang T.-T., Lin H.-J., Stewart S. D., Cheng G., Li W., et al., 2021a. Impacts of environmental factors on the food web structure, energy flows, and system attributes along a subtropical urban river in southern China. Science of The Total Environment, 794, 148673.
Wang S., Wang T.-T., Tang J.-P., Wang L., Yang Y., Lin H.-J., et al., 2018b. Longitudinal variation in fish prey utilization, trophic guilds, and indicator species along a large subtropical river, China. Ecology and Evolution, 8, 11467-11483.
Wang S., Wang T.-T., Xia W.-T., Chen Z.-B., Stewart S. D., Yang F.-J., et al., 2021b. Longitudinal pattern of resource utilization by aquatic consumers along a disturbed subtropical urban river: Estimating the relative contribution of resources with stable isotope analysis. Ecology and Evolution, 11, 16763-16775.
Wang T.-T., Wang X.-D., Wang D.-Y., Fan S.-D., Wang S., Chen Z.-B., et al., 2023. Aquatic invertebrate diversity profiling in heterogeneous wetland habitats by environmental DNA metabarcoding. Ecological Indicators, 150, 110126.
Yao M., Zhang S., Lu Q., Chen X., Zhang S. Y., Kong Y., et al., 2022. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Mol Ecol, 31, 5132-5164.
Zhang S., Lu Q., Wang Y., Wang X., Zhao J., Yao M., 2020. Assessment of fish communities using environmental DNA: Effect of spatial sampling design in lentic systems of different sizes. Molecular Ecology Resources, 20, 242-255.
Zou K., Chen J., Ruan H., Li Z., Guo W., Li M., et al., 2020. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Science of the Total Environment, 702, 134704.