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Abstract
In this paper, we study the Cauchy problem for the three-dimensional isentropic compressible Navier-
Stokes/Allen-Cahn system, which describes the phase transitions in two-component patterns interacting
with a compressible fluid. We establish the existence and space-time pointwise behaviors of global solu-
tions to this non-conserved system. In order to control the source term consisting of the phase variable, we
make use of the Green’s function and space-time weighted estimates to prove that the phase variable only
contains the diffusion wave whose amplitude decays exponentially in time, so as to show that the density
and momentum of the fluid obey the generalized Huygens’ principle.
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1 INTRODUCTION

In this paper, we investigate the isentropic compressible Navier-Stokes/Allen-Cahn (NSAC) system, which was proposed by
Blesgen1 to describe the interface phase transitions in a fluid mixture, given by

∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) + ∇P = div(2ν̃D(u) + η̃divuI3) – ϵdiv
(
∇χ⊗∇χ –

1
2

|∇χ|2I3

)
,

∂t(ρχ) + div(ρuχ) = –µ̃,

ρµ̃ =
ρ

ϵ
(χ3 – χ) – ϵ∆χ,

(1)

where (x, t) ∈ R3 × R+. The total density, the velocity, and the phase field of this diffusion interface model are denoted by
ρ = ρ(x, t), u = u(x, t) = (u1, u2, u3)(x, t) and χ = χ(x, t), respectively. The constant µ̃ represents the chemical potential, and
ϵ > 0 is the interface thickness between the phases. The fluid pressure P = P(ρ) is assumed to be a smooth function of ρ
satisfying for any ρ > 0 that P′(ρ) > 0, and Du = 1

2∇u + 1
2 (∇u)⊤ is the deformation tensor. The symbol I3 denotes the 3 × 3

unit matrix. The constant viscosity coefficients ν̃ and η̃ satisfy

ν̃ > 0, 2ν̃ + 3η̃ ≥ 0. (2)

We impose (1) with the following initial conditions

(ρ, u,χ)(x, 0) = (ρ0, u0,χ0)(x), (3)
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and the far-field states
lim

|x|→+∞
(ρ0, u0)(x) = (ρ̄, 0), lim

|x|→+∞
|χ0(x)| = 1, (4)

where ρ̄ > 0 is a positive constant.
Regarding the compressible NSAC system, there is significant progress on the global existence of solutions and related

topics, such as the dynamical behaviors of solutions. More precisely, considering the one-dimensional case, Ding-Li-Luo10

obtained the global solutions for the initial boundary value problem with positive density. Ding-Li-Tang11 established the global
existence of strong solutions to the NSAC system with free boundary. Chen et al.5,6 obtained the global strong solutions for
the non-isentropic NSAC system with degenerate heat-conductivity, and Yan-Ding-Li21 proved the global existence of strong
solutions when the phase variable is viscosity-dependent. As for the case that the initial density contains vacuum, Li et al.16

obtained the existence of global weak solutions, and Chen-Guo2 established the global existence of classical solutions. Chen-
Zhu4 stated the blow-up criterion and obtained the global existence of strong solutions to the initial boundary value problem.
Besides, Luo-Yin-Zhu19,20 investigated the nonlinear stability of the rarefaction wave and the composite wave consisting of two
rarefaction waves and a viscous contact wave to the Cauchy problem. When considering the multi-dimensional case, Feireisl
et al.14 first established the global existence of weak solutions in a bounded domain for the adiabatic exponent γ of pressure
satisfying γ > 6. Later, Chen-Wen-Zhu3 extended Feireisl’s result to γ > 2. Kotschote15 proved the local existence and
uniqueness of strong solutions to the non-isentropic NSAC system with general initial data in a bounded domain. On the other
hand, Zhao23 and Chen-Hong-Shi7 obtained the global well-posedness and time decay rates for Cauchy problem with different
far-field states of the phase variable, provided that the initial density is bounded and away from zero. Chen-Tang9 and Chen-
Li-Tang8 investigated the global existence and optimal time decay rates of the three-dimensional compressible NSAC system
for the isentropic and non-isentropic cases respectively. Moreover, Fei et al.13 considered the sharp interface limit of a matrix-
valued Allen-Cahn equation, and showed that the sharp interface system is a two-phase flow system where the interface evolves
according to the motion by mean curvature. However, as far as we know, only a few results are available for the space-time
pointwise behaviors of solutions to the immiscible two-phase flow.

The motivation of this paper is to obtain the global existence and space-time pointwise behaviors of classical solutions to the
isentropic compressible NSAC system so as to observe the influence of phase transition phenomena on the compressible fluid,
and understand the wave propagation of the immiscible two-phase flow. It should be pointed out that the phase field variable
χ is introduced to identify the two components of the mixture, and in this paper we consider the case that χ has the constant
equilibrium states χ = ±1, which describes the phenomenon of phase transition in the immiscible two-phase flow. Under this
assumption, we define a new variable φ = χ2 and rewrite the system (1)–(4) into the density-momentum formulation with
m = ρu below

∂tρ + divm = 0,

∂tm + div
(

m ⊗ m
ρ

)
+ ∇P = ν̃∆

(
m
ρ

)
+ (ν̃ + η̃)∇div

(
m
ρ

)
– ϵdiv

(
2∇φ⊗∇φ – |∇φ|2I3

8φ

)
,

∂tφ +
m · ∇φ
ρ

= –
2φ(φ – 1)

ρϵ
+
ϵ∆φ

ρ2 –
ϵ|∇φ|2

2ρ2φ
,

(5)

subjected to the initial data
(ρ, m,φ)(x, 0) = (ρ0, m0,φ0)(x) := (ρ0, ρ0u0,χ2

0), (6)

and the far-field states
lim

|x|→+∞
(ρ0, m0,φ0)(x) = (ρ̄, 0, 1). (7)

From now on, we mainly study the Cauchy problem (5)–(7), and establish the space-time pointwise behaviors of global
solutions to this problem as follows.

Theorem 1. Suppose that the initial data (ρ0, m0,φ0) satisfies

ρ0 – ρ̄ ∈ H4(R3) ∩ L1(R3), m0 ∈ H4(R3) ∩ L1(R3), φ0 – 1 ∈ H5(R3), (8)

and there exists a small positive constant ε0 > 0 such that

ε0 := ∥(ρ0 – ρ̄, m0)∥H4 + ∥φ0 – 1∥H5 . (9)
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Then the Cauchy problem (5)–(7) admits a unique global classical solution (ρ, m,φ) satisfying

∥(ρ – ρ̄, m)(t)∥H4 + ∥(φ – 1)(t)∥H5 ≤ Cε0, t > 0, (10)

and it holds for 0 ≤ |k| ≤ 4 that

∥Dk
x(ρ – ρ̄, m)(t)∥L2 ≤ C(1 + t)– 3

4 – |k|
2 , ∥(φ – 1)(t)∥H5 ≤ Ce– t

ϵρ̄ , t > 0. (11)

If the initial data (ρ0, m0,φ0) further satisfies

|Dα(ρ0 – ρ̄, m0)(x)| ≤ ε0(1 + |x|2)–r1 , r1 >
21
10

,

|Dβ(φ0 – 1)(x)| ≤ ε0(1 + |x|2)–r2 , r2 >
3
2

,
(12)

for |α| ≤ 1, |β| ≤ 2, then the solution (ρ, m,φ) has the space-time pointwise behaviors

|Dα
x (ρ – ρ̄)(x, t)| ≤ Cε0(1 + t)– 4+|α|

2

{(
1 +

(|x| – c0t)2

1 + t

)– 3
2

+
(

1 +
|x|2

1 + t

)– 3
2
}

,

|Dα
x m(x, t)| ≤ Cε0(1 + t)– 3+|α|

2

{
(1 + t)– 1

2

(
1 +

(|x| – c0t)2

1 + t

)– 3
2

+
(

1 +
|x|2

1 + t

)– 3
2
}

,

|Dβ
x (φ – 1)(x, t)| ≤ Cε0e– 2t

ϵρ̄

(
1 +

|x|2

1 + t

)– 3
2

, (x, t) ∈ R3 × R+,

(13)

where c0 =
√

P′(ρ̄) and C > 0 is a positive constant independent of (x, t).

In addition, we can derive the following detailed descriptions of the global solution (ρ, m,φ) and its Lp (p > 1) time decay
rates.

Corollary 1. Let (ρ̄, m̄, φ̄)(x, t) be the solution to the linearized system of (5). Under the assumptions in Theorem 1, there exists
a positive constant C > 0 independent of time such that

∥(ρ – ρ̄, m – m̄)(t)∥L2 ≤ C(1 + t)– 5
4 , ∥(φ – φ̄)(t)∥L2 ≤ Ce– t

ϵρ̄ . (14)

Furthermore, the following Lp-norm estimates hold

∥(ρ – ρ̄)(t)∥Lp ≤ C(1 + t)–(2– 5
2p ), 1 < p ≤ +∞, (15)

∥m(t)∥Lp ≤

{
C(1 + t)–(2– 5

2p ), 1 < p < 2,

C(1 + t)– 3
2 (1– 1

p ), 2 ≤ p ≤ +∞,
(16)

∥(φ – 1)(t)∥Lp ≤ Ce– t
ϵρ̄ , 1 < p ≤ +∞. (17)

Remark 1. It should be noted that the estimate (13) in Theorem 1 implies that the density and momentum of the compressible
NSAC system have the same space-time pointwise behaviors as the compressible Navier-Stokes system in17,18. Thanks to the
damping structure of the phase variable derived from the constant equilibrium states, we are able to obtain the exponential time
decay rates of the phase variable, which will not impact the generalized Huygens’ principle of the mixture fluid. Moreover, the
estimate (13) shows that the phase variable contains the diffusion wave only.

Remark 2. We mention that the global existence and optimal L2-norm time decay rates of classical solutions have been proved
by Chen-Tang in9 and here we only restate the results (10)–(11) in terms of the density-momentum formulation. Indeed, we
extend the L2-norm time decay rates obtained in8,9 to the Lp-norm (1 < p ≤ +∞) time decay rates (15)–(17) of the global
solution.

Throughout this paper, we denote by C a general positive constant that may vary at different formulas. We use the standard
notations Lp and Wk,p to denote the usual Lebesgue and Sobolev space on R3, with the norm ∥ · ∥Lp and ∥ · ∥Wk,p respectively. In
particular, when p = 2, we denote Wk,2 by Hk with the norm ∥ · ∥Hk .
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The rest of this paper is organized as follows. In Section 2, we reformulate the system (5) and then obtain the pointwise
estimates of Green’s function for the reformulated system. In Section 3, we establish the space-time decay rates of solutions to
the Cauchy problem (5)–(7), and finally give the proof of main theorem.

2 POINTWISE ESTIMATES OF GREEN’S FUNCTION

In this section, motivated by9,18,22, we first define

ν =
ν̃

ρ̄
, η =

η̃

ρ̄
, a =

2
ϵρ̄

, b =
ϵ

ρ̄2 , c0 =
√

P′(ρ̄), (18)

and introduce the new variables
n =

ρ – ρ̄
ρ̄

, w =
m

c0ρ̄
, ϕ = φ – 1. (19)

Then the system (5) can be rewritten as 
∂tn + c0divw = 0,

∂tw + c0∇n = ν∆w + (ν + η)∇divw + F1,

∂tϕ + aϕ = b∆ϕ + F2,

(20)

with the following initial data

(n, w,ϕ)(x, 0) = (n0, w0,ϕ0)(x) :=
(
ρ0 – ρ̄
ρ̄

,
m0

c0ρ̄
,φ0 – 1

)
, (21)

and the nonlinear term Fi (i = 1, 2) satisfies

F1 = – c0div
(

w ⊗ w
1 + n

)
+ c0∇n –

∇P(ρ̄(1 + n))
c0ρ̄

– ν∆
( nw

1 + n

)
– (ν + η)∇div

( nw
1 + n

)
–

ϵ

c0ρ̄
div
(

2∇ϕ⊗∇ϕ – |∇ϕ|2I3

8(1 + ϕ)

)
,

F2 = –
c0w · ∇ϕ

1 + n
+

aϕ(n – ϕ)
1 + n

–
bn(n + 2)∆ϕ

(1 + n)2 –
b|∇ϕ|2

2(1 + n)2(1 + ϕ)
.

(22)

Set U = (n, w,ϕ)⊤, U0 = (n0, w0,ϕ0)⊤, F = (0, F1, F2)⊤ and

L =

 0 –c0div 0
–c0∇ ν∆ + (ν + η)∇div 0

0 0 –a + b∆

 , (23)

the Cauchy problem (20)–(22) can be reformulated into the vector form{
∂tU – LU = F,

U|t=0 = U0.
(24)

Let us introduce a semigroup generated by L. For U ∈ L2, we set

S(t)U = F–1
(

etL̂(ξ)Û(ξ, t)
)

= G(·, t) ∗ U(·, t), (25)

where F–1 represents the inverse Fourier transform, L̂(ξ) is a linear operator satisfying

L̂(ξ) =

 0 –ic0ξ 0
–ic0ξ

⊤ –ν |ξ|2I3 – (ν + η)ξ⊤ξ 0
0 0 –a – b|ξ|2


5×5

, (26)
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and the Green’s function G(x, t) is defined by

G(x, t) = F–1
(

etL̂(ξ)
)

(x, t). (27)

After a direct calculation, we have the following expressions of the Green’s function.

Lemma 1. (i) The set of eigenvalues for L̂(ξ) consists of λj(ξ) (j = 1, 2, 3, 4), where

λ1(ξ) = –ν |ξ|2 (double),

λ2(ξ) = –
µ

2
|ξ|2 +

1
2

√
µ2|ξ|4 – 4c2

0|ξ|2, µ := 2ν + η,

λ3(ξ) = –
µ

2
|ξ|2 –

1
2

√
µ2|ξ|4 – 4c2

0|ξ|2,

λ4(ξ) = –a – b|ξ|2.

(28)

(ii) etL̂(ξ) has the spectral resolution

etL̂(ξ) =
4∑

j=1

eλj(ξ)tPj(ξ). (29)

Here Pj(ξ) (j = 1, 2, 3, 4) is the eigenprojection related to λj(ξ) satisfying

P1(ξ) =

 0 0 0
0 I3 – ξ⊤ξ

|ξ|2 0
0 0 0

 , P2(ξ) =

 – λ3
λ2–λ3

– ic0ξ
λ2–λ3

0

– ic0ξ
⊤

λ2–λ3

λ2
λ2–λ3

ξ⊤ξ
|ξ|2 0

0 0 0

 ,

P3(ξ) =


λ2

λ2–λ3

ic0ξ
λ2–λ3

0
icξ⊤

λ2–λ3
– λ3
λ2–λ3

ξ⊤ξ
|ξ|2 0

0 0 0

 , P4(ξ) =

 0 0 0
0 0 0
0 0 1

 ,

(30)

which implies for j, k = 1, 2, 3 that

Ĝ(ξ, t) = etL̂(ξ) =

 Ĝ00 Ĝ0k 0
Ĝj0 Ĝjk 0
0 0 Ĝ44

 , (31)

where

Ĝ00(ξ, t) =
λ2eλ3t – λ3eλ2t

λ2 – λ3
,

Ĝj0(ξ, t) = Ĝ0j(ξ, t) = –
eλ2t – eλ3t

λ2 – λ3
ic0ξj,

Ĝjk(ξ, t) = e–ν |ξ|2tδjk +
(
λ2eλ2t – λ3eλ3t

λ2 – λ3
– e–ν |ξ|2t

)
ξjξk

|ξ|2
,

Ĝ44(ξ, t) = e–(a+b|ξ|2)t.

(32)

To verify the spectrum structure, it is necessary to study the asymptotic behaviors of eigenvalues. Hence, we present the
following lemma, which can be easily deduced by Taylor’s expansion.

Lemma 2. Assume that the constant r > 0 is sufficiently small, then the eigenvalues satisfy
(i) for low frequency part |ξ| ≤ r ≪ 1,

λ1(ξ) = –ν |ξ|2 (double), λ2(ξ) = ic0|ξ| –
µ

2
|ξ|2 + O(|ξ|3),

λ3(ξ) = –ic0|ξ| –
µ

2
|ξ|2 + O(|ξ|3), λ4(ξ) = –a – b|ξ|2.

(33)



6 CHEN, TANG AND ZHANG

(ii) for high frequency part |ξ| ≥ 1
r ≫ 1,

λ1(ξ) = –ν |ξ|2 (double), λ2(ξ) = –
c2

0

µ
+ O(|ξ|–2),

λ3(ξ) = –µ|ξ|2 +
c2

0

µ
+ O(|ξ|–2), λ4(ξ) = –b|ξ|2 – a,

(34)

and there exists a positive constant R1 = min
{

ν
r2 , c2

0
µ , a

}
such that

Reλj ≤ –R1, j = 1, 2, 3, 4. (35)

(iii) for medium frequency part r < |ξ| < 1
r , there exists a constant R2 = min{νr2, c2

0
µ , a} > 0 such that

Reλj ≤ –R2, j = 1, 2, 3, 4. (36)

Here µ = 2ν + η and the constants ν, η, a, b, c0 are given by (18).

We conclude from Lemma 2 that the semigroup has different characters in different frequency parts and thus we decompose
Ĝ(ξ, t) into three parts as

Ĝ(ξ, t) = Ĝℓ(ξ, t) + Ĝm(ξ, t) + Ĝh(ξ, t)

:= χℓ(ξ)Ĝ(ξ, t) + χm(ξ)Ĝ(ξ, t) + χh(ξ)Ĝ(ξ, t),
(37)

where χℓ, χm and χh are smooth cut-off functions satisfying

χℓ(ξ) =
{

1, |ξ| < r/2,
0, |ξ| > r,

χh(ξ) =
{

1, |ξ| > 1/r + 1,
0, |ξ| < 1/r,

χm(ξ) = 1 – χℓ(ξ) – χh(ξ). (38)

The pointwise estimates of Green’s function are stated as follows.

Proposition 1. Let G(x, t) be the Green’s function to (24) and α be a multi-index, then the Green’s function can be decomposed
into

Dα
x G(x, t) = Dα

x

[
g(x, t) + Gα

S (x, t)
]

+ Gα
R (x, t), (39)

where g(x, t) = (gjk)(x, t) (j, k = 0, 1, ..., 4) and Gα
S (x, t) are the leading long waves and short waves, respectively. Each

component gjk has the following estimates for j, k = 1, 2, 3 that∣∣Dαg00(x, t)
∣∣ ≤ Ct– 3+|α|

2 (1 + t)– 1
2 e– (|x|–c0 t)2

Ct ,∣∣Dα(gj0, g0j)(x, t)
∣∣ ≤ Ct– 3+|α|

2 (1 + t)– 1
2 e– (|x|–c0 t)2

Ct ,∣∣Dαgjk(x, t)
∣∣ ≤ Ct– 3+|α|

2

(
e– |x|2

Ct + (1 + t)– 1
2 e– (|x|–c0 t)2

Ct + χ{|x|≤c0t}

(
1 +

|x|2

t

)– 3+|α|
2
)

,

∣∣Dαg44(x, t)
∣∣ ≤ Ct– 3+|α|

2 e–ate– |x|2
Ct .

(40)

The leading short waves term Gα
S (x, t) holds

Gα
S (x, t) = e–

c2
0
µ t

 1 0 0
0 0 0
0 0 0

 δ(x) + S(x, t), (41)

where S(x, t) satisfies for some generic constants ζ > 0 and R > 0 that

∣∣S(x, t)
∣∣ ≤ e–ζtS(x) with S(x) ∈ L1(R3), and S(x) =

{
C|x|–2, |x| ≤ R,
C(N)|x|–N , |x| > R,

(42)

for any given positive integer N > 0.
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The remainder Gα
R (x, t) holds the following estimates∣∣Gα

R (x, t)
∣∣ ≤ C

(
(1 + t)– 3+|α|

2 (1 + t)–1e– (|x|–c0 t)2

Ct + e– |x|+t
C

)
. (43)

Proof. We divide the domain into two parts: the finite Mach number region {|x| ≤ Mc0t} and outside finite Mach number
region {|x| > Mc0t} with suitable positive constant M > 0. Inside the finite Mach number region, the decomposition of long and
short waves and the complex analysis is fully applied as used in12,17,18. It should be pointed out that the extra term of Green’s
function corresponding to the phase variable can be expressed as

G44(x, t) = g44(x, t) = F–1
(

e–(a+b|ξ|2)t
)

= e–ath(x, bt), (44)

with h(x, t) = (4πt)– 3
2 e– |x|2

4t the heat kernel. Hence, there exists a positive constant C > 0 such that∣∣Dαg44(x, t)
∣∣ ≤ Ct– 3+|α|

2 e–ate– |x|2
Ct , (45)

and then we conclude (40)–(42). Furthermore, it holds∣∣Dα
x

(
Gℓ – g

)
(x, t)

∣∣ ≤ C(1 + t)– 3+|α|
2 (1 + t)–1e– (|x|–c0 t)2

Ct ,∣∣Dα
x Gm(x, t)

∣∣ ≤ C(1 + t)– 3+|α|
2 e– t

C ,∣∣Dα
x

(
Gh – Gα

S

)
(x, t)

∣∣ ≤ C
(

t– 3+|α|
2 e– t

C + e– t
C

)
.

(46)

As for outside finite Mach number region, we consider the initial value problem (IVP) below
∂tn + c0divw = 0,

∂tw + c0∇n – ν∆w – (ν + η)∇divw = 0,

∂tϕ + aϕ – b∆ϕ = 0,

(n, w,ϕ)(x, 0) = (n0, w0,ϕ0)(x).

(47)

Multiplying e|x|–Mc0t by
(
n(47)1 + w · (47)2 + ϕ(47)3

)
and then integrating by parts over R3, we get

1
2

d
dt

∫
R3

e|x|–Mc0t (n2 + |w|2 + ϕ2) dx

= –
Mc0

2

∫
R3

e|x|–Mc0t (n2 + |w|2 + ϕ2) dx –
∫
R3

e|x|–Mc0tdiv(c0nw)dx

+
∫
R3

e|x|–Mc0t (ν∆w · w + (ν + η)∇divw · w) dx –
∫
R3

e|x|–Mc0tϕ (aϕ – b∆ϕ) dx

= –
Mc0

2

∫
R3

e|x|–Mc0t (n2 + |w|2 + ϕ2) dx + c0

∫
R3

e|x|–Mc0tnw · x
|x|

dx

–
∫
R3

e|x|–Mc0t (ν |∇w|2 + (ν + η)|divw|2
)

dx –
∫
R3

e|x|–Mc0t (νw · ∇w + (ν + η)wdivw) · x
|x|

dx

– a
∫
R3

e|x|–Mc0tϕ2dx – b
∫
R3

e|x|–Mc0t
(

|∇ϕ|2 + ϕ∇ϕ · x
|x|

)
dx,

(48)

which, by applying the Schwarz inequality, yields

1
2

d
dt

∫
R3

e|x|–Mc0t (n2 + |w|2 + ϕ2) dx

≤ –
1
2

(Mc0 – c0)
∫
R3

e|x|–Mc0tn2dx –
1
2

(Mc0 – c0 – µ)
∫
R3

e|x|–Mc0t |w|2dx –
1
2

(Mc0 – 2a – b)
∫
R3

e|x|–Mc0tϕ2dx

–
1
2

∫
R3

e|x|–Mc0t (ν |∇w|2 + (ν + η)|divw|2
)

dx –
b
2

∫
R3

e|x|–Mc0t |∇ϕ|2dx.

(49)
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Here we take M > 0 sufficiently large satisfies {
Mc0 – c0 – µ > 0,

Mc0 – 2a – b > 0,
(50)

and so the weighted L2-norm of (n, w,ϕ) is non-increasing in time, which implies there exists a positive constant C > 0
depending only on (n0, w0,ϕ0) such that ∫

R3
e|x|–Mc0t (n2 + |w|2 + ϕ2) dx ≤ C. (51)

We can apply the same method as above for Dα
x (n, w,ϕ)(x, t) with |α| > 0. Due to the Sobolev embedding theorem, we

conclude that
sup

(x,t)∈R3×R+

e
1
2 (|x|–Mc0t)

∣∣(n, w,ϕ)(x, t)
∣∣ ≤ C. (52)

Note that for |x| > (2M + 1)c0t,

|x| – Mc0t >
|x|
2

+
(

|x|
2

– Mc0t
)

>
|x|
2

+
c0t
2

, (53)

which, together with (46), gives rise to (43).
Thus, we complete the proof of Proposition 1.

3 POINTWISE ESTIMATES OF NONLINEAR SYSTEM

In this section, we will study the initial value problem (24). By Duhamel’s principle, the solution can be expressed as

Dα
x U(x, t) = Dα

∫
R3

G(x – y, t)U0(y)dy + Dα

∫ t

0

∫
R3

G(x – y, t – s)F(y, s)dyds

≜ Iα(x, t) + Nα(x, t).
(54)

We notice that the nonlinear term F1 contains the derivative of U and is therefore separated as

F1 = div
(

–c0

(
w ⊗ w
1 + n

)
– ν∇

( nw
1 + n

)
–

ϵ

c0ρ̄

(
2∇ϕ⊗∇ϕ – |∇ϕ|2I3

8(1 + ϕ)

))
+ ∇

(
c0n –

P(ρ̄(1 + n))
c0ρ̄

– (ν + η)div
( nw

1 + n

))
≜ divf1 + ∇f2,

F2 = –
c0w · ∇ϕ

1 + n
+

aϕ(n – ϕ)
1 + n

–
bn(n + 2)∆ϕ

(1 + n)2 –
b|∇ϕ|2

2(1 + n)2(1 + ϕ)
.

(55)

It is easy to obtain that each component of the nonlinear terms F1 and F2 satisfies

f1 = O(1)
(

|w|2 + |n||Dw| + |∇n||w| + |n||Dn||w| + |Dϕ|2
)

,

f2 = O(1)
(

|n|2 + |n||Dw| + |Dn||w| + |n||Dn||w|
)

,

F1 = O(1)
(

|w||Dw| + |Dn||w|2 + |n||Dn| + |D2n||w| + |n||D2w| + |Dn||Dw|

+ |Dn|2|w| + |n||Dn||Dw| + |n||D2n||w| + |Dϕ|3 + |Dϕ||D2ϕ|
)

,

F2 = O(1)
(

|w||Dϕ| + |n||ϕ| + |ϕ|2 + |n||D2ϕ| + |n|2|D2ϕ| + |Dϕ|2
)

.

(56)

3.1 Initial propagation

We first study the propagation of the initial data Iα(x, t). Denote (n̄, w̄, ϕ̄) as the solution to the linearized system of (20), from
(31) and (54), we have for any multi-index β that

Dβ
x ϕ̄(x, t) = Dβ

∫
R3

G44(x – y, t)ϕ0(y)dy =
∫
R3

Dβg44(x – y, t)ϕ0(y)dy. (57)
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Due to (40) and the assumption (12), it holds for |β| ≤ 2 that∣∣Dβ
x ϕ̄(x, t)

∣∣ ≤ Cε0(1 + t)– 3+|β|
2 e–at

∫
R3

e– |x–y|2

Ct (1 + |y|2)–r2 dy

≤ Cε0(1 + t)– 3+|β|
2 e–at

(∫
|y|≥ |x|

2

+
∫

|y|≤ |x|
2

)
e– |x–y|2

Ct (1 + |y|2)–r2 dy

≤ Cε0(1 + t)– 3+|β|
2 e–at(1 + t)

3
2

(
1 +

|x|2

1 + t

)– 3
2

+ Cε0(1 + t)– 3+|β|
2 e–ate– |x|2

Ct

≤ Cε0(1 + t)– |β|
2 e–at

(
1 +

|x|2

1 + t

)– 3
2

,

(58)

where we used the fact that |y| ≤ |x|
2 ⇒ |x – y| ≥ |x|

2 .
Similarly, we also obtain the estimates of

∣∣Dα
x n̄
∣∣ and

∣∣Dα
x w̄
∣∣ for |α| ≤ 1. Here we omit the details and one can refer to17. As

a result, we have the following pointwise estimates for the linearized system.

Proposition 2. For 0 ≤ |α| ≤ 1, 0 ≤ |β| ≤ 2, it holds

∣∣Dα
x n̄(x, t)

∣∣ ≤ Cε0(1 + t)– |α|
2

{
(1 + t)–2

(
1 +

(|x| – c0t)2

1 + t

)– 3
2

+ (1 + t)–2
(

1 +
|x|2

1 + t

)– 3
2
}

,

∣∣Dα
x w̄(x, t)

∣∣ ≤ Cε0(1 + t)– |α|
2

{
(1 + t)–2

(
1 +

(|x| – c0t)2

1 + t

)– 3
2

+ (1 + t)– 3
2

(
1 +

|x|2

1 + t

)– 3
2
}

,

∣∣Dβ
x ϕ̄(x, t)

∣∣ ≤ Cε0e–at(1 + t)– |β|
2

(
1 +

|x|2

1 + t

)– 3
2

.

(59)

3.2 Nonlinear coupling

Let T > 0, based on Proposition 2, we introduce the following ansatz

M(T) = sup
0≤t≤T

{
∥nψ–1

1 ∥L∞ + ∥wψ–1
2 ∥L∞ + (1 + t)

1
2 ∥Dnψ–1

1 ∥L∞ + (1 + t)
1
2 ∥Dwψ–1

2 ∥L∞

+
2∑

|β|=0

∥Dβϕψ–1
3 ∥L∞ + (1 + t)

5
2 ∥D2(n, w)∥L∞

}
,

(60)

where ψi (i = 1, 2, 3) satisfies the following expression of waves

ψ1(x, t) = (1 + t)–2
(

1 +
(|x| – c0t)2

1 + t

)– 3
2

+ (1 + t)–2
(

1 +
|x|2

1 + t

)– 3
2

,

ψ2(x, t) = (1 + t)–2
(

1 +
(|x| – c0t)2

1 + t

)– 3
2

+ (1 + t)– 3
2

(
1 +

|x|2

1 + t

)– 3
2

,

ψ3(x, t) = e–at
(

1 +
|x|2

1 + t

)– 3
2

.

(61)

In what follows, we mainly prove that M(T) ≤ C. When the initial data (n0, w0,ϕ0) satisfies (8)–(9), by (11) and Sobolev in-
equality, we know the ansatz on D2(n, w) is reasonable. Thus, we focus on the pointwise estimates for the low-order derivatives
of solution in ansatz (60).

For the nonlinear term Nα(x, t), we have

Nα(x, t) = (Nα
j ,Nα

4 )(x, t), j = 0, 1, 2, 3, (62)
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where
Nα

j (x, t) = Dα
x

∫ t

0

∫
R3

Gjk(x – y, t – s)Fk(y, s)dyds

=
∫ t

0

∫
R3

Dαgjk(x – y, t – s)Fk(y, s)dyds +
∫ t

0

∫
R3

DαGα
S (x – y, t – s)Fk(y, s)dyds

+
∫ t

0

∫
R3

Gα
R (x – y, t – s)Fk(y, s)dyds

≜ Lα
j + Sα

j + Rα
j ,

(63)

and
Nα

4 (x, t) = Dα
x

∫ t

0

∫
R3

G44(x – y, t – s)F2(y, s)dyds

=
∫ t

0

∫
R3

Dαg44(x – y, t – s)F2(y, s)dyds.
(64)

Here g, GS and GR are defined in Proposition 1, and Fk denotes the k-th term of F. First, from the ansatz we have

|n| ≤ M(T)ψ1, |w| ≤ M(T)ψ2, |ϕ| ≤ M(T)ψ3,

|Dn| ≤ M(T)(1 + t)– 1
2ψ1, |Dw| ≤ M(T)(1 + t)– 1

2ψ2, |Dϕ| ≤ M(T)ψ3,

|D2(n, w)| ≤ M(T)(1 + t)– 5
2 , |D2ϕ| ≤ M(T)ψ3,

(65)

which together with (56) gives rise to∣∣f1 + f2
∣∣ ≤ CM2(T)

(
ψ2

1 + ψ2
2 + (1 + t)– 1

2ψ1ψ2 + ψ2
3

)
,∣∣F1

∣∣ ≤ CM2(T)
(

(1 + t)– 1
2

(
ψ2

1 + ψ2
2 + (1 + t)– 1

2ψ1ψ2

)
+ (1 + t)– 5

2 (ψ1 + ψ2) + ψ2
3

)
,∣∣F2

∣∣ ≤ CM2(T) (ψ1 + ψ2 + ψ3)ψ3.

(66)

Since the Green function contains the Huygens’ wave of the form t– 3+|α|
2 (1 + t)– 1

2 e– (|x|–c0 t)2

Ct , the diffusion wave of the form

t– 3+|α|
2 e– |x|2

Ct , and the Riesz wave of the form t– 3+|α|
2 χ{|x|≤c0t}

(
1 + |x|2

t

)– 3+|α|
2

, to estimate the interaction of these different waves, we
should divide both the time t and the space x into several parts. In particular, we define

X1 =
{

|x|2 ≤ 1 + t
}

, X2 =
{

(|x| – c0t)2 ≤ 1 + t
}

, X3 =
{

|x| ≥ c0t +
√

1 + t
}

,

X4 =
{√

1 + t ≤ |x| ≤ c0t
2

}
, X5 =

{c0t
2

≤ |x| ≤ c0t –
√

1 + t
}

,
(67)

and set

t0 =


max

{
t
2

, t –

√
1 + t
4

}
, (x, t) ∈ X1 ∪ X2 ∪ X3,

t – min
{

c0t – |x|
4c0

,
|x|
4c0

}
, (x, t) ∈ X4 ∪ X5.

(68)

Moreover, for any multi-index α, we denote

Hα(x, t) = t– 3+|α|
2 (1 + t)– 1

2 e– (|x|–c0 t)2

Ct , hα(x, t) = (1 + t)–|α|
(

1 +
(|x| – c0t)2

1 + t

)– 3
2

,

Dα(x, t) = t– 3+|α|
2 e– |x|2

Ct , dα(x, t) = (1 + t)–|α|
(

1 +
|x|2

1 + t

)– 3
2

,

Rα(x, t) = t– 3+|α|
2 χ{|x|≤c0t}

(
1 +

|x|2

t

)– 3+|α|
2

,

(69)

and give the following lemmas.
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Lemma 3. (refer to12) For 0 ≤ |α| ≤ 1, there exists a positive constant C > 0 independent of (x, t) such that

(1)Iα1 =
∫ t0

0
H1+α(x – y, t – s)h2

2(y, s)dyds ≤ C(1 + t)– 4+|α|
2 (h0 + d0) ,

(2)Iα2 =
∫ t0

0
H1+α(x – y, t – s)d2

3
2
(y, s)dyds ≤ C(1 + t)– 4+|α|

2 (h0 + d0) ,

(3)Iα3 =
∫ t0

0
D1+α(x – y, t – s)h2

2(y, s)dyds ≤ C(1 + t)– 4+|α|
2 (h0 + d0) ,

(4)Iα4 =
∫ t0

0
D1+α(x – y, t – s)d2

3
2
(y, s)dyds ≤ C(1 + t)– 4+|α|

2 d0,

(5)Iα5 =
∫ t0

0
R1+α(x – y, t – s)h2

2(y, s)dyds ≤ C(1 + t)– 4+|α|
2 (h0 + d0) ,

(6)Iα6 =
∫ t0

0
R1+α(x – y, t – s)d2

3
2
(y, s)dyds ≤ C(1 + t)– 4+|α|

2 d0.

Lemma 4. (refer to17) For 0 ≤ |α| ≤ 1, there exists a positive constant C > 0 independent of (x, t) such that

(1)Jα1 =
∫ t

t0
H1(x – y, t – s)(1 + s)– 4+|α|

2 h2(y, s)dyds ≤ C(1 + t)– 6+|α|
2 (h0 + d0) ,

(2)Jα2 =
∫ t

t0
H1(x – y, t – s)(1 + s)– 3+|α|

2 d 3
2
(y, s)dyds ≤ C(1 + t)– 4+|α|

2

(
(1 + t)– 1

2 h0 + d0

)
,

(3)Jα3 =
∫ t

t0
D1(x – y, t – s)(1 + s)– 4+|α|

2 h2(y, s)dyds ≤ C(1 + t)– 6+|α|
2 (h0 + d0) ,

(4)Jα4 =
∫ t

t0
D1(x – y, t – s)(1 + s)– 3+|α|

2 d 3
2
(y, s)dyds ≤ C(1 + t)– 5+|α|

2 d0,

(5)Jα5 =
∫ t

t0
R1(x – y, t – s)(1 + s)– 4+|α|

2 h2(y, s)dyds ≤ C(1 + t)– 6+|α|
2 (h0 + d0) ,

(6)Jα6 =
∫ t

t0
R1(x – y, t – s)(1 + s)– 3+|α|

2 d 3
2
(y, s)dyds ≤ C(1 + t)– 5+|α|

2 d0.

To begin with, we devote to the estimates of Nα
j . It follows from (40), (63)–(66) that

∣∣Lα
j

∣∣ ≤ ∣∣∣∣∫ t0

0

∫
R3

(H1+α + D1+α + R1+α) (x – y, t – s)(f1 + f2)(y, s)dyds
∣∣∣∣

+
∣∣∣∣∫ t

t0

∫
R3

(H1 + D1 + R1) Dα(f1 + f2)(y, s)dyds
∣∣∣∣

≤ CM2(T)
6∑

k=1

(
Iαk + Jαk

)
,

(70)

which, together with Lemmas 3–4, gives rise to

∣∣Lα
j

∣∣ ≤ CM2(T)(1 + t)– 4+|α|
2

{(
1 +

(|x| – c0t)2

1 + t

)– 3
2

+
(

1 +
|x|2

1 + t

)– 3
2
}

. (71)

Next, we consider the convolution between the leading part in short wave Gα
S and F. In terms of (41), we have

∣∣Sα
j

∣∣ ≤ CM2(T)
∫ t

0

∫
R3

e–β(t–s)S(x – y)
(

(1 + s)– 1
2ψ2

2(y, s) + (1 + s)– 5
2ψ2(y, s)

)
dyds

≤ CM2(T)
(

(1 + t)– 1
2ψ2

2(x, t) + (1 + t)– 5
2ψ2(x, t)

)
≤ CM2(T)(1 + t)– 7

2

((
1 +

(|x| – c0t)2

1 + t

)– 3
2

+
(

1 +
|x|2

1 + t

)– 3
2
)

.

(72)
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Since the convolution between Gα
R and F can be estimated as those for Lα

j , here we omit the details and give the conclusion as
follows ∣∣Rα

j

∣∣ ≤ CM2(T)(1 + t)– 5+|α|
2

{(
1 +

(|x| – c0t)2

1 + t

)– 3
2

+
(

1 +
|x|2

1 + t

)– 3
2
}

. (73)

On the other hand, due to (40), (64) and (66), it holds for any multi-index β that

∣∣∣N β
4

∣∣∣ ≤ CM2(T)
∫ t

0

∫
R3

(t – s)– 3+|β|
2 e–a(t–s)e– |x–y|2

C(t–s) (1 + s)– 3
2 e–as

(
1 +

|y|2

1 + s

)– 3
2

dyds. (74)

We consider the following decomposition 
|y| ≥ |x|

2
,

|y| ≤ |x|
2

⇒ |x – y| ≥ |x| – |y| ≥ |x|
2

.
(75)

For the first part, we have ∫ t

0

∫
|y|≥ |x|

2

(t – s)– 3+|β|
2 e–a(t–s)e– |x–y|2

C(t–s) (1 + s)– 3
2 e–as

(
1 +

|y|2

1 + s

)– 3
2

dyds

≤ C
∫ t

0
(t – s)– 3+|β|

2 e–a(t–s)(1 + s)– 3
2 e–as

(
1 +

|x|2

1 + s

)– 3
2
∫

|y|≥ |x|
2

e– |x–y|2

C(t–s) dyds

≤ C
(

1 +
|x|2

1 + t

)– 3
2
∫ t

0
(t – s)– |β|

2 e–a(t–s)(1 + s)– 3
2 e–asds

≤ C(1 + t)– |β|
2 e–at

(
1 +

|x|2

1 + t

)– 3
2

,

(76)

and the second part can be treated in a similar manner∫ t

0

∫
|y|≤ |x|

2

(t – s)– 3+|β|
2 e–a(t–s)e– |x–y|2

C(t–s) (1 + s)– 3
2 e–as

(
1 +

|y|2

1 + s

)– 3
2

dyds

≤ Ce– |x|2
Ct

∫ t

0
(t – s)– 3+|β|

2 e–a(t–s)e–asds

≤ Ce–at
(

1 +
|x|2

1 + t

)– 3
2

.

(77)

Accordingly, we have the following estimates of nonlinear couplings.

Proposition 3. For multi-indexes α, β with |α| ≤ 1, |β| ≤ 2, it holds

|Nα
0 | ≤ CM2(T)(1 + t)– 4+|α|

2

{(
1 +

(|x| – c0t)2

1 + t

)– 3
2

+
(

1 +
|x|2

1 + t

)– 3
2
}

,

|Nα
j | ≤ CM2(T)(1 + t)– 4+|α|

2

{(
1 +

(|x| – c0t)2

1 + t

)– 3
2

+
(

1 +
|x|2

1 + t

)– 3
2
}

, j = 1, 2, 3,

|N β
4 | ≤ CM2(T)e–at

(
1 +

|x|2

1 + t

)– 3
2

,

(78)

where C > 0 is a positive constant independent of space and time.

So far, with the help of Propositions 2 and 3, we are ready to prove Theorem 1 below.

Proof of Theorem 1. It follows from (54), (59) and (78) that

M(T) ≤ C(ε0 + M2(T)), (79)
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which, combined with the smallness of ε0 and the continuity of M(T) leads to

M(T) ≤ Cε0. (80)

Thus, based on the definition of M(T) in (60), we conclude

|Dα
x n(x, t)| ≤ Cε0(1 + t)– 4+|α|

2

{(
1 +

(|x| – c0t)2

1 + t

)– 3
2

+
(

1 +
|x|2

1 + t

)– 3
2
}

,

|Dα
x w(x, t)| ≤ Cε0(1 + t)– 3+|α|

2

{
(1 + t)– 1

2

(
1 +

(|x| – c0t)2

1 + t

)– 3
2

+
(

1 +
|x|2

1 + t

)– 3
2
}

,

|Dβ
x ϕ(x, t)| ≤ Cε0e–at

(
1 +

|x|2

1 + t

)– 3
2

,

(81)

which, together with (19), gives rise to (13) and the proof is completed.

Proof of Corollary 1. In terms of (54), we are able to obtain for |α| ≤ 1 that

∥Dα(n – n̄)(t)∥L2 = ∥Nα
0 (t)∥L2

≤ Cε0(1 + t)– 4+|α|
2

{∫
R3

(
1 +

(|x| – c0t)2

1 + t

)–3

+
(

1 +
|x|2

1 + t

)–3

dx

} 1
2

≤ Cε0(1 + t)– 4+|α|
2

{∫
R3

(
1 + y2)–3

(1 + t)
3
2 dy
} 1

2

≤ Cε0(1 + t)– 5
4 – |α|

2 .

(82)

Similarly, it holds
∥Dα(w – w̄)(t)∥L2 ≤ Cε0(1 + t)– 5

4 – |α|
2 , (83)

and for |β| ≤ 2 that
∥Dβ(ϕ – ϕ̄)(t)∥L2 ≤ Cε0e– a

2 t. (84)

This, together with (19), completes the proof of Corollary 1.
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