Reference
Ackerly, D.D., Reich, P.B., 1999. Convergence and Correlations among
Leaf Size and Function in Seed Plants: A Comparative Test Using
Independent Contrasts. American Journal of Botany 86, 1272–1281.
https://doi.org/10.2307/2656775
Albert, C.H., Thuiller, W., Yoccoz, N.G., Douzet, R., Aubert, S.,
Lavorel, S., 2010a. A multi-trait approach reveals the structure and the
relative importance of intra- vs. interspecific variability in plant
traits: Intra- vs. interspecific variability in plant traits. Functional
Ecology 24, 1192–1201. https://doi.org/10.1111/j.1365-2435.2010.01727.x
Albert, C.H., Thuiller, W., Yoccoz, N.G., Soudant, A., Boucher, F.,
Saccone, P., Lavorel, S., 2010b. Intraspecific functional variability:
extent, structure and sources of variation. Journal of Ecology 98,
604–613. https://doi.org/10.1111/j.1365-2745.2010.01651.x
Alvarez-Flores, R., Winkel, T., Nguyen-Thi-Truc, A., Joffre, R., 2014.
Root foraging capacity depends on root system architecture and ontogeny
in seedlings of three Andean Chenopodium species. Plant Soil 380,
415–428. https://doi.org/10.1007/s11104-014-2105-x
Bergmann, J., Weigelt, A., van der Plas, F., Laughlin, D.C., Kuyper,
T.W., Guerrero-Ramirez, N., Valverde-Barrantes, O.J., Bruelheide, H.,
Freschet, G.T., Iversen, C.M., Kattge, J., McCormack, M.L., Meier, I.C.,
Rillig, M.C., Roumet, C., Semchenko, M., Sweeney, C.J., van Ruijven, J.,
York, L.M., Mommer, L., 2020. The fungal collaboration gradient
dominates the root economics space in plants. Sci. Adv. 6, eaba3756.
https://doi.org/10.1126/sciadv.aba3756
Blomberg, S.P., Garland, T., Ives, A.R., 2003. Testing for phylogenetic
signal in comparative data: behavioral traits are more labile. Evolution
57, 717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
Bouma, T.J., Nielsen, K.L., Van Hal, J., Koutstaal, B., 2001. Root
system topology and diameter distribution of species from habitats
differing in inundation frequency: Root systems in differing
inundation frequencies . Functional Ecology 15, 360–369.
https://doi.org/10.1046/j.1365-2435.2001.00523.x
Bu, W.S., Schmid, B., Liu, X.J., Li, Y., Härdtle, W., von Oheimb, G.,
Liang, Y., Sun, Z.K., Huang, Y.Y., Bruelheide, H., Ma, K.P., 2017.
Interspecific and intraspecific variation in specific root length drives
aboveground biodiversity effects in young experimental forest stands.
Journal of Plant Ecology 10, 158–169.
https://doi.org/10.1093/jpe/rtw096
Carmona, C.P., Bueno, C.G., Toussaint, A., Träger, S., Díaz, S., Moora,
M., Munson, A.D., Pärtel, M., Zobel, M., Tamme, R., 2021. Fine-root
traits in the global spectrum of plant form and function. Nature 597,
683–687. https://doi.org/10.1038/s41586-021-03871-y
Chapin, F.S., 1991. Integrated Responses of Plants to Stress. BioScience
41, 29–36. https://doi.org/10.2307/1311538
Cheng, X.J., Tan, D.Y., 2009. Bet hedging in heteromorphic achenes of
Heteracia Szovitsii (Asteraceae), a desert ephemeral. Chinese Journal of
Plant Ecology 33, 901–910.
https://doi.org/10.3773/j.issn.1005-264x.2009.05.009
Cheng, X.L., An, S.Q., Li, B., Chen, J.Q., Lin, G.H., Liu, Y.H., Luo,
Y.Q., Liu, S.R., 2006. Summer rain pulse size and rainwater uptake by
three dominant desert plants in a desertified grassland ecosystem in
northwestern China. Plant Ecol 184, 1–12.
https://doi.org/10.1007/s11258-005-9047-6
Dannowski, M., Block, A., 2005. Fractal geometry and root system
structures of heterogeneous plant communities. Plant Soil 272, 61–76.
https://doi.org/10.1007/s11104-004-3981-2
Defrenne, C.E., McCormack, M.L., Roach, W.J., Addo-Danso, S.D., Simard,
S.W., 2019. Intraspecific Fine-Root Trait-Environment Relationships
across Interior Douglas-Fir Forests of Western Canada. Plants 8, 199.
https://doi.org/10.3390/plants8070199
Diaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C.,
Jalili, A., Montserrat‐Martí, G., Grime, J.P., Zarrinkamar, F., Asri,
Y., Band, S.R., Basconcelo, S., Castro‐Díez, P., Funes, G., Hamzehee,
B., Khoshnevi, M., Pérez‐Harguindeguy, N., Pérez‐Rontomé, M.C.,
Shirvany, F.A., Vendramini, F., Yazdani, S., Abbas‐Azimi, R., Bogaard,
A., Boustani, S., Charles, M., Dehghan, M., Torres‐Espuny, L., Falczuk,
V., Guerrero‐Campo, J., Hynd, A., Jones, G., Kowsary, E., Kazemi‐Saeed,
F., Maestro‐Martínez, M., Romo‐Díez, A., Shaw, S., Siavash, B.,
Villar‐Salvador, P., Zak, M.R., 2004. The plant traits that drive
ecosystems: Evidence from three continents. Journal of Vegetation
Science 15, 295–304. https://doi.org/10.1111/j.1654-1103.2004.tb02266.x
Erktan, A., Roumet, C., Bouchet, D., Stokes, A., Pailler, F., Munoz, F.,
2018. Two dimensions define the variation of fine root traits across
plant communities under the joint influence of ecological succession and
annual mowing. J Ecol 106, 2031–2042.
https://doi.org/10.1111/1365-2745.12953
Felsenstein, J., 1985. Phylogenies and the Comparative Method. THE
AMERICAN NATURALIST 125, 1–15.
Freschet, G.T., Kichenin, E., Wardle, D.A., 2015a. Explaining
within-community variation in plant biomass allocation: a balance
between organ biomass and morphology above vs below ground? J Veg Sci
26, 431–440. https://doi.org/10.1111/jvs.12259
Freschet, G.T., Swart, E.M., Cornelissen, J.H.C., 2015b. Integrated
plant phenotypic responses to contrasting above‐ and below‐ground
resources: key roles of specific leaf area and root mass fraction. New
Phytol 206, 1247–1260. https://doi.org/10.1111/nph.13352
Freschet, G.T., Valverde‐Barrantes, O.J., Tucker, C.M., Craine, J.M.,
McCormack, M.L., Violle, C., Fort, F., Blackwood, C.B., Urban‐Mead,
K.R., Iversen, C.M., Bonis, A., Comas, L.H., Cornelissen, J.H.C., Dong,
M., Guo, D., Hobbie, S.E., Holdaway, R.J., Kembel, S.W., Makita, N.,
Onipchenko, V.G., Picon‐Cochard, C., Reich, P.B., Riva, E.G., Smith,
S.W., Soudzilovskaia, N.A., Tjoelker, M.G., Wardle, D.A., Roumet, C.,
2017. Climate, soil and plant functional types as drivers of global
fine‐root trait variation. J Ecol 105, 1182–1196.
https://doi.org/10.1111/1365-2745.12769
Freschet, G.T., Violle, C., Bourget, M.Y., Scherer-Lorenzen, M., Fort,
F., 2018. Allocation, morphology, physiology, architecture: the multiple
facets of plant above- and below-ground responses to resource stress.
New Phytol 219, 1338–1352. https://doi.org/10.1111/nph.15225
Grime, J.P., 2006. Trait convergence and trait divergence in herbaceous
plant communities: Mechanisms and consequences. Journal of Vegetation
Science 17, 255–260. https://doi.org/10.1111/j.1654-1103.2006.tb02444.x
Guo, D., Xia, M., Wei, X., Chang, W., Liu, Y., Wang, Z., 2008.
Anatomical traits associated with absorption and mycorrhizal
colonization are linked to root branch order in twenty‐three Chinese
temperate tree species. New Phytologist 180, 673–683.
https://doi.org/10.1111/j.1469-8137.2008.02573.x
Hajek, P., Hertel, D., Leuschner, C., 2013. Intraspecific variation in
root and leaf traits and leaf-root trait linkages in eight aspen demes
(Populus tremula and P. tremuloides). Front. Plant Sci. 4.
https://doi.org/10.3389/fpls.2013.00415
Hogan, J.A., Valverde-Barrantes, O.J., Ding, Q., Xu, H., Baraloto, C.,
2020. Morphological variation of fine root systems and leaves in primary
and secondary tropical forests of Hainan Island, China. Annals of Forest
Science 77, 79. https://doi.org/10.1007/s13595-020-00977-7
Isaac, M.E., Martin, A.R., de Melo Virginio Filho, E., Rapidel, B.,
Roupsard, O., Van den Meersche, K., 2017. Intraspecific Trait Variation
and Coordination: Root and Leaf Economics Spectra in Coffee across
Environmental Gradients. Front. Plant Sci. 8, 1196.
https://doi.org/10.3389/fpls.2017.01196
Jung, V., Albert, C.H., Violle, C., Kunstler, G., Loucougaray, G.,
Spiegelberger, T., 2014. Intraspecific trait variability mediates the
response of subalpine grassland communities to extreme drought events. J
Ecol 102, 45–53. https://doi.org/10.1111/1365-2745.12177
Kong, D.L., Ma, C.G., Zhang, Q., Li, L., Chen, X.Y., Zeng, H., Guo,
D.L., 2014. Leading dimensions in absorptive root trait variation across
96 subtropical forest species. New Phytol 203, 863–872.
https://doi.org/10.1111/nph.12842
Kraft, N.J.B., Valencia, R., Ackerly, D.D., 2010. Functional trait and
phylogenetic tests of community assembly across spatial scales in an
Amazonian forest. Ecological Monographs 80, 401–422.
https://doi.org/10.1890/09-1672.1
Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., Smissen, R.D.,
Richardson, S.J., Laughlin, D.C., 2016. Root traits are
multidimensional: specific root length is independent from root tissue
density and the plant economic spectrum. J Ecol 104, 1299–1310.
https://doi.org/10.1111/1365-2745.12562
Laboski, C.A.M., Dowdy, R.H., Allmaras, R.R., Lamb, J.A., 1998. Soil
strength and water content influences on corn root distribution in a
sandy soil. Plant and Soil 203, 239-247,.
Lan H.Y., Zhang F.C., 2008. Reviews on special mechanisms of
adaptability of early-spring ephemeral plants to desert habitats in
Xinjiang. Acta Botanica Boreali-Occidentalia Sinica 28, 1478–1475.
Liu, C., Xiang, W., Zou, L., Lei, P., Zeng, Y., Ouyang, S., Deng, X.,
Fang, X., Liu, Z., Peng, C., 2019. Variation in the functional traits of
fine roots is linked to phylogenetics in the common tree species of
Chinese subtropical forests. Plant Soil 436, 347–364.
https://doi.org/10.1007/s11104-019-03934-0
Lozano, Y.M., Aguilar‐Trigueros, C.A., Flaig, I.C., Rillig, M.C., 2020.
Root trait responses to drought are more heterogeneous than leaf trait
responses. Funct Ecol 34, 2224–2235.
https://doi.org/10.1111/1365-2435.13656
Lu, J.J., Tan, D.Y., Baskin, J.M., Baskin, C.C., 2015. Post-release
fates of seeds in dehiscent and indehiscent siliques of the diaspore
heteromorphic species Diptychocarpus strictus (Brassicaceae).
Perspectives in Plant Ecology, Evolution and Systematics 17, 255–262.
https://doi.org/10.1016/j.ppees.2015.04.001
Lynch, J., 1995. Root Architecture and Plant Productivity. Plant
Physiol. 109, 7–13. https://doi.org/10.1104/pp.109.1.7
Ma, X.M., Du, B.C.X., Cheng, Y.X., Wu, L., 2021. Analysis of vegetation
variation trend and correlative factors in Junggar Basin. Arid Zone
Research 38, 1401–1410. https://doi.org/10.13866/j.azr.2021.05.22
Ma, Z.Q., Guo, D.L., Xu, X.L., Lu, M., Bardgett, R.D., Eissenstat, D.M.,
McCormack, M.L., Hedin, L.O., 2018. Evolutionary history resolves global
organization of root functional traits. Nature 555, 94–97.
https://doi.org/10.1038/nature25783
Maherali, H., 2017. The evolutionary ecology of roots. New Phytol 215,
1295–1297. https://doi.org/10.1111/nph.14612
Mamut J., Cheng X.J., Tan D.Y., 2018. Heteromorphism of florets and
reproductive characteristics in Heteracia szovitsii (Asteraceae), a
desert ephemeral annual herb. Biodiversity Science 26, 498–509.
https://doi.org/10.17520/biods.2018046
Mamut, J., Tan, D.Y., Baskin, C.C., Baskin, J.M., 2019. Effects of water
stress and NaCl stress on different life cycle stages of the cold desert
annual Lachnoloma lehmannii in China. J. Arid Land 11, 774–784.
https://doi.org/10.1007/s40333-019-0015-8
Mao, Z.M., Zhang, D.M., 1994. The conspectus of Emphemeral flora in
northern Xinjiang. Arid Zone Research 1–26.
https://doi.org/10.13866/j.azr.1994.01.001
Markesteijn, L., Poorter, L., 2009. Seedling root morphology and biomass
allocation of 62 tropical tree species in relation to drought- and
shade-tolerance. Journal of Ecology 97, 311–325.
https://doi.org/10.1111/j.1365-2745.2008.01466.x
Martínez-Sánchez, J.J., Ferrandis, P., Trabaud, L., Galindo, R., Franco,
J.A., Herranz, J.M., 2003. Comparative Root System Structure of
Post-Fire Pinus halepensis Mill. and Cistus monspeliensis L Saplings.
Plant Ecology 168, 309–320.
Nicotra, A.B., Atkin, O.K., Bonser, S.P., Davidson, A.M., Finnegan,
E.J., Mathesius, U., Poot, P., Purugganan, M.D., Richards, C.L.,
Valladares, F., van Kleunen, M., 2010. Plant phenotypic plasticity in a
changing climate. Trends in Plant Science 15, 684–692.
https://doi.org/10.1016/j.tplants.2010.09.008
Oppelt, A.L., Kurth, W., Godbold, D.L., 2001. Topology, scaling
relations and Leonardo’s rule in root systems from African tree species.
Tree Physiology 21, 117–128.
https://doi.org/10.1093/treephys/21.2-3.117
Paradis, E., Schliep, K., 2019. ape 5.0: an environment for modern
phylogenetics and evolutionary analyses in R. Bioinformatics 35,
526–528. https://doi.org/10.1093/bioinformatics/bty633
Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P., Mommer,
L., 2012. Biomass allocation to leaves, stems and roots: meta‐analyses
of interspecific variation and environmental control. New Phytologist
193, 30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
Qiu J., Tan D.Y., Fan D.Y., 2007. Characteristics of photosynthesis and
biomass allocation of spring ephemerals in the Gunggar desert. Chinese
Journal of Plant Ecology 31, 883–891.
Shan L., Li Y., Dong Q.L., Geng D.M., 2012. Ecological adaptation of
Reaumuria Soongorica root system architecture to arid environment.
Jounal of Desert Research 32, 1283–1290.
Shi, Z.Y., Feng, G., Christie, P., Li, X.L., 2006. Arbuscular
mycorrhizal status of spring ephemerals in the desert ecosystem of
Junggar Basin, China. Mycorrhiza 16, 269–275.
https://doi.org/10.1007/s00572-006-0041-1
Siefert, A., Violle, C., Chalmandrier, L., Albert, C.H., Taudiere, A.,
Fajardo, A., Aarssen, L.W., Baraloto, C., Carlucci, M.B., Cianciaruso,
M.V., L. Dantas, V., Bello, F., Duarte, L.D.S., Fonseca, C.R., Freschet,
G.T., Gaucherand, S., Gross, N., Hikosaka, K., Jackson, B., Jung, V.,
Kamiyama, C., Katabuchi, M., Kembel, S.W., Kichenin, E., Kraft, N.J.B.,
Lagerström, A., Bagousse‐Pinguet, Y.L., Li, Y., Mason, N., Messier, J.,
Nakashizuka, T., Overton, J.McC., Peltzer, D.A., Pérez‐Ramos, I.M.,
Pillar, V.D., Prentice, H.C., Richardson, S., Sasaki, T., Schamp, B.S.,
Schöb, C., Shipley, B., Sundqvist, M., Sykes, M.T., Vandewalle, M.,
Wardle, D.A., 2015. A global meta‐analysis of the relative extent of
intraspecific trait variation in plant communities. Ecol Lett 18,
1406–1419. https://doi.org/10.1111/ele.12508
Spanos, I., Ganatsas, P., Raftoyannis, Y., 2008. The root system
architecture of young Greek fir ( Abies cephalonica Loudon)
trees. Plant Biosystems - An International Journal Dealing with all
Aspects of Plant Biology 142, 414–419.
https://doi.org/10.1080/11263500802151082
Tjoelker, M.G., Craine, J.M., Wedin, D., Reich, P.B., Tilman, D., 2005.
Linking leaf and root trait syndromes among 39 grassland and savannah
species. New Phytologist 167, 493–508.
https://doi.org/10.1111/j.1469-8137.2005.01428.x
Tracy, S.R., Black, C.R., Roberts, J.A., Dodd, I.C., Mooney, S.J., 2015.
Using X-ray Computed Tomography to explore the role of abscisic acid in
moderating the impact of soil compaction on root system architecture.
Environmental and Experimental Botany 110, 11–18.
https://doi.org/10.1016/j.envexpbot.2014.09.003
Tsakaldimi, M., Tsitsoni, T., Ganatsas, P., Zagas, T., 2009. A
comparison of root architecture and shoot morphology between naturally
regenerated and container-grown seedlings of Quercus ilex. Plant Soil
324, 103–113. https://doi.org/10.1007/s11104-009-9974-4
Valverde‐Barrantes, O.J., Freschet, G.T., Roumet, C., Blackwood, C.B.,
2017. A worldview of root traits: the influence of ancestry, growth
form, climate and mycorrhizal association on the functional trait
variation of fine‐root tissues in seed plants. New Phytol 215,
1562–1573. https://doi.org/10.1111/nph.14571
Valverde-Barrantes, O.J., Smemo, K.A., Blackwood, C.B., 2014. Fine root
morphology is phylogenetically structured, but nitrogen is related to
the plant economics spectrum in temperate trees. Functional Ecology 29,
796–807.
Violle, C., Enquist, B.J., McGill, B.J., Jiang, L., Albert, C.H.,
Hulshof, C., Jung, V., Messier, J., 2012. The return of the variance:
intraspecific variability in community ecology. Trends in Ecology &
Evolution 27, 244–252. https://doi.org/10.1016/j.tree.2011.11.014
Wake, D.B., 1991. Homoplasy: The Result of Natural Selection, or
Evidence of Design Limitations? The American Naturalist 138, 543–567.
https://doi.org/10.1086/285234
Wang A., Ma J., Gong H., Fan G., Wang M., Zhao H., Cheng J., 1 College
of Grassland and Environment Sciences, Xinjiang Agricultural University,
Urumqi 8300522 Xinjiang Key Laboratory of Soil and Plant Ecological
Processes, Xinjiang Agricultural University, Urumqi 830052, 2021.
Patterns and drivers of species richness of early spring annual
ephemeral plants in northern Xinjiang. Biodiversity Science 29,
735–745. https://doi.org/10.17520/biods.2020331
Wang, R., Wang, Q., Zhao, N., Xu, Z., Zhu, X., Jiao, C., Yu, G., He, N.,
2018. Different phylogenetic and environmental controls of first‐order
root morphological and nutrient traits: Evidence of multidimensional
root traits. Funct Ecol 32, 29–39.
https://doi.org/10.1111/1365-2435.12983
Wang X., Chen G.S., Cheng X.J., Chen T., Jiang Q., Chen Y.H., Fan A.L.,
Jia L.Q., Xiong D.C., Huang J.X., 2019. Variations in the first-order
root diameter in 89 woody species in a subtropical evergreen broadleaved
forest. Chinese Journal of Plant Ecology 43, 969–978.
https://doi.org/10.17521/cjpe.2019.0189
Wang Z.Y., Cheng L., Wang M.T., Sun J., Zhong Q.L., Li M., Cheng D.L.,
2018. Fine root traits of woody plants in deciduous forest of the Wuyi
Mountains. Acta Ecologica Sinica 38, 8088–8097. https://doi.org/10.5846
/ stxb201712262331
Weemstra, M., Freschet, G.T., Stokes, A., Roumet, C., 2021a. Patterns in
intraspecific variation in root traits are species‐specific along an
elevation gradient. Funct Ecol 35, 342–356.
https://doi.org/10.1111/1365-2435.13723
Weemstra, M., Mommer, L., Visser, E.J.W., Ruijven, J., Kuyper, T.W.,
Mohren, G.M.J., Sterck, F.J., 2016. Towards a multidimensional root
trait framework: a tree root review. New Phytol 211, 1159–1169.
https://doi.org/10.1111/nph.14003
Weemstra, M., Zambrano, J., Allen, D., Umaña, M.N., 2021b. Tree growth
increases through opposing above‐ground and below‐ground resource
strategies. Journal of Ecology 109, 3502–3512.
https://doi.org/10.1111/1365-2745.13729
Willaume, M., Pagès, L., 2011. Correlated responses of root growth and
sugar concentrations to various defoliation treatments and rhythmic
shoot growth in oak tree seedlings (Quercus pubescens). Annals of Botany
107, 653–662. https://doi.org/10.1093/aob/mcq270
Withington, J.M., Reich, P.B., Oleksyn, J., Eissenstat, D.M., 2006.
Comparisons of structure and life span in roots and leaves among
temperate trees. Ecological Monographs 76, 381–397.
https://doi.org/10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z.,
Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C.,
Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka,
K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas,
M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P.,
Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G.,
Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics
spectrum. Nature 428, 821–827. https://doi.org/10.1038/nature02403
Xiao Y., Tao Y., Zhang Y.M., 2014. Biomass allocation and leaf
stoichiometric characteristics in four desert herbaceous plants during
different growth periods in the Gurbantünggüt Desert, China. Chinese
Journal of Plant Ecology 38, 929–940.
https://doi.org/10.3724/SP.J.1258.2014.00087
Xu M.Q., Gao Y.J., Zhang Z.H., Zeng F.J., 2021.
Adaptation of the main functional trait of Alhagi
sparsifolia leaves and roots to soil water stress. Pratacultural Science
38, 1559–1569. https://doi.org/10.11829/j.issn.1001-0629.2021-0092
Yin, Q., Tian, T., Han, X., Xu, J., Chai, Y., Mo, J., Lei, M., Wang, L.,
Yue, M., 2019. The relationships between biomass allocation and plant
functional trait. Ecological Indicators 102, 302–308.
https://doi.org/10.1016/j.ecolind.2019.02.047
Zhang L., Zhang L.W., Liu H.L., Chen Y.F., 2020. Effects of increased
precipitation on growth of two ephemeral plants in the Gurbantunggut
Desert,China. Chinese Journal of Applied Ecology 31, 9–16.
https://doi.org/10.13287/j.1001-9332.202001.004
Zhou, M., Bai, W., Zhang, Y., Zhang, W.-H., 2018. Multi-dimensional
patterns of variation in root traits among coexisting herbaceous species
in temperate steppes. J Ecol 106, 2320–2331.
https://doi.org/10.1111/1365-2745.12977
Zhou, M., Wang, J., Bai, W., Zhang, Y., Zhang, W., 2019. The response of
root traits to precipitation change of herbaceous species in temperate
steppes. Funct Ecol 33, 2030–2041.
https://doi.org/10.1111/1365-2435.13420