Figure 4 (A) Fluorescence spectra of TGC, CDs, CDs with TGC; (B) Fluorescence spectra of CDs with different concentrations of tigecycline; (C) Linear relationship between the fluorescence intensity of CDs and concentrations of tigecycline; (D) Effect of various coexisting ions and compounds on the fluorescence intensity of CDs; (E) Fluorescence intensity of CDs by introducing other antibiotics; (F) UV-vis spectrum of TGC and fluorescence spectra of CDs; (G) UV-vis spectra of CDs, TGC and CDs with TGC; (H) Fluorescence lifetime decays of CDs without or with TGC; (I) FTIR pattern of TGC and CDs with TGC.
4. Conclusions
In summary, the long-emission CDs with the yellow fluorescence were originated synthesized. To be specific, the fluorescence intensity of CDs gradually decreased with pH decreasing in the acidic range, which was owing to the changed surface state of CDs, and thus these CDs showed the potential for pH sensing. Importantly, introducing tigecycline into the CDs obviously quenched their fluorescence based on the mechanism of the static quenching, thus an innovative method of detecting the tigecycline was successfully established. Moreover, the practicality of this assay was verified by examining the lake water samples supplemented with tigecycline. Consequently, the proposed strategy established here may broaden the ways for assaying tigecycline towards the multiple purposes.
Acknowledgement
This work was supported by Natural Science Foundation of Chongqing, China (cstc2021jcyj-msxmX0027), Talent and Innovation Project of Beibei District in Chongqing (2022-11), Performance Incentive and Guidance Special Project of Scientific Research Organization, Chongqing Science and Technology (cstc2021jxjl130024).
References
  1. Shi, X.; Hu, Y.; Meng, H.-M.; Yang, J.; Qu, L.; Zhang, X.-B.; Li, Z. Red Emissive Carbon Dots with Dual Targetability for Imaging Polarity in Living Cells. Sensors and Actuators B: Chemical.2020 , 306, 127582.
  2. Xu, Y.; Wang, C.; Jiang, T.; Ran, G.; Song, Q. Cadmium Induced Aggregation of Orange–Red Emissive Carbon Dots with Enhanced Fluorescence for Intracellular Imaging. Journal of Hazardous Materials. 2022, 427, 128092.
  3. Meng, Y.; Jiao, Y.; Zhang, Y.; Lu, W.; Wang, X.; Shuang, S.; Dong, C. Facile Synthesis of Orange Fluorescence Multifunctional Carbon Dots for Label-Free Detection of Vitamin B12 and Endogenous/Exogenous Peroxynitrite. Journal of Hazardous Materials. 2021, 408, 124422.
  4. Meng, Y.; Zhang, Z.; Zhao, H.; Jiao, Y.; Li, J.; Shuang, S.; Dong, C. Facile Synthesis of Multifunctional Carbon Dots with 54.4% Orange Emission for Label-Free Detection of Morin and Endogenous/Exogenous Hypochlorite. Journal of Hazardous Materials. 2022 ,424, 127289.
  5. Wang, J.; Li, Q.; Zhou, J.; Wang, Y.; Yu, L.; Peng, H.; Zhu, J. Synthesis, Characterization and Cells and Tissues Imaging of Carbon Quantum Dots. Optical Materials. 2017 , 72 , 15-19.
  6. Jana, P.; Dev, A. Carbon Quantum Dots: A Promising Nanocarrier for Bioimaging and Drug Delivery in Cancer. Materials Today Communications . 2022 , 32, 104068.
  7. Liu, J.; Li, D.; Zhang, K.; Yang, M.; Song, H.; Yang, B. One-Step Hydrothermal Synthesis of Nitrogen-Doped Conjugated Carbonized Polymer Dots with 31% Efficient Red Emission for in Vivo Imaging.Small. 2018, 14, 1703919.
  8. Yang, P.; Zhu, Z.; Zhang, T.; Zhang, W.; Chen, W.; Cao, Y.; Chen, M.; Zhou, X. Orange-Emissive Carbon Quantum Dots: Toward Application in Wound pH Monitoring based on Colorimetric and Fluorescent Changing.Small. 2019 , 15, 1902823.
  9. Chen, J.; Wei, J.-S.; Zhang, P.; Niu, X.-Q.; Zhao, W.; Zhu, Z.-Y.; Ding, H.; Xiong, H.-M. Red-Emissive Carbon Dots for Fingerprints Detection by Spray Method: Coffee Ring Effect and Unquenched Fluorescence in Drying Process. ACS Applied Materials & Interfaces. 2017 , 9, 18429-18433.
  10. Chen, J.; Yuan, N.; Jiang, D.; Lei, Q.; Liu, B.; Tang, W.; Row, K. H.; Qiu, H. Octadecylamine and Glucose-Coderived Hydrophobic Carbon Dots-Modified Porous Silica for Chromatographic Separation.Chinese Chemical Letters . 2021 , 32, 3398-3401.
  11. Guo, S.; Sun, Y.; Wu, Z.; Yang, R.; Qu, L.; Li, Z. Simultaneous Monitoring of Mitochondrial Viscosity and Membrane Potential based on Fluorescence Changing and Location Switching of Carbon Dots in Living Cells. Carbon. 2022 , 195, 112-122.
  12. Lv, A.; Chen, Q.; Zhao, C.; Li, S.; Sun, S.; Dong, J.; Li, Z.; Lin, H. Long-WaveLength (Red to Near-infrared) Emissive Carbon Dots: Key Factors for Synthesis, Fluorescence Mechanism, and Applications in Biosensing and Cancer Theranostics. Chinese Chemical Letters.2021 , 32 , 3653-3664.
  13. Lan, M.; Guo, L.; Zhao, S.; Zhang, Z.; Jia, Q.; Yan, L.; Xia, J.; Zhang, H.; Wang, P.; Zhang, W. Carbon Dots as Multifunctional Phototheranostic Agents for Photoacoustic/Fluorescence Imaging and Photothermal/Photodynamic Synergistic Cancer Therapy. Advanced Therapeutics . 2018 , 1 , 1800077.
  14. Lan, M.; Zhao, S.; Zhang, Z.; Yan, L.; Guo, L.; Niu, G.; Zhang, J.; Zhao, J.; Zhang, H.; Wang, P.; Zhu, G.; Lee, C.-S.; Zhang, W. Two-Photon-Excited near-Infrared Emissive Carbon Dots as Multifunctional Agents for Fluorescence Imaging and Photothermal Therapy. Nano Research. 2017 , 10 , 3113-3123.
  15. Chen, Y.; Zhao, C.; Wang, Y.; Rao, H.; Lu, Z.; Lu, C.; Shan, Z.; Ren, B.; Wu, W.; Wang, X. Green and High-Yield Synthesis of Carbon Dots for Ratiometric Fluorescent Determination of pH and Enzyme Reactions.Materials Science and Engineering: C. 2020 ,117, 111264.
  16. Wang, X.; Wang, Y.; Pan, W.; Wang, J.; Sun, X. Carbon-Dot-Based Probe Designed to Detect Intracellular pH in Fungal Cells for Building its Relationship with Intracellular Polysaccharide. ACS Sustainable Chemistry & Engineering. 2021, 9, 3718-3726.
  17. Tan, Z.; Gao, C.; Wang, Q.; Wang, X.; Yang, T.; Ge, J.; Zhou, X.; Xiao, H.; You, Y. A Multifunctional Fluorescence MOF Material: Triple-Channel pH Detection for Strong Acid and Strong Base, Recognition of Moxifloxacin and Tannic acid. Journal of Photochemistry and Photobiology A: Chemistry. 2023,441, 114708.
  18. Kong, L.; Du, X.; Ren, C.; Chen, W.; Yang, K.; Wang, X.; Chi, M.; Wang, Y.; Fang, H. Lab-in-Fibers: Single Optical Fiber with Three Channels for Simultaneous Detection of pH Value, Refractive Index and Temperature. Sensors and Actuators B: Chemical. 2023 ,385, 133727.
  19. Daghrir, R.; Drogui, P. Tetracycline Antibiotics in the Environment: A Review. Environmental Chemistry Letters. 2013 ,11, 209-227.
  20. Liu, X.; Zhang, G.; Liu, Y.; Lu, S.; Qin, P.; Guo, X.; Bi, B.; Wang, L.; Xi, B.; Wu, F.; Wang, W.; Zhang, T. Occurrence and Fate of Antibiotics and Antibiotic Resistance Genes in Typical Urban Water of Beijing, China. Environmental Pollution. 2019,246, 163-173.
  21. He, T.; Wang, R.; Liu, D.; Walsh Timothy, R.; Zhang, R.; Lv, Y.; Ke, Y.; Ji, Q.; Wei, R.; Liu, Z.; Shen, Y.; Wang, G.; Sun, L.; Lei, L.; Lv, Z.; Li, Y.; Pang, M.; Wang, L.; Sun, Q.; Fu, Y.; Song, H.; Hao, Y.; Shen, Z. Wang, S. Chen, G.; Wu, C.; Shen, J.; Wang, Y. Emergence of Plasmid-Mediated High-Level Tigecycline Resistance Genes in Animals and Humans. Nature Microbiology. 2019 , 4,1450-1456.
  22. Guo, P.; Zeng, W.; Tian, S.; Chen, H.; Liu, W.; Chen, C. Quantitative Detection of Nanomolar Drug Using Surface-Enhanced Raman Scattering Combined with Internal Standard Method and Two-Step Centrifugation Method. Microchemical Journal. 2020, 158,105202.
  23. Wu, Z.; Gao, M.; Wang, T.; Wan, X.; Zheng, L.; Huang, C. A General Quantitative pH Sensor Developed with Dicyandiamide N-doped High Quantum Yield Graphene Quantum Dots. Nanoscale. 2014 ,6, 3868-3874.
  24. Pasandideh-Nadamani, M.; Omrani, A.; Sadeghi-Maleki, M. R.; Samadi-Maybodi, A. Application of CdS Quantum Dots Modified Carbon Paste Electrode for Monitoring the Process of Acetaminophen Preparation. Analytical Biochemistry. 2016 ,502 , 36-42.
  25. Zhu, M.; Kim, S.; Mao, L.; Fujitsuka, M.; Zhang, J.; Wang, X.; Majima, T. Metal-Free Photocatalyst for H2 Evolution in Visible to Near-Infrared Region: Black Phosphorus/Graphitic Carbon Nitride. Journal of the American Chemical Society.2017 , 139, 13234-13242.
  26. Gong, X.; Zhang, Q.; Gao, Y.; Shuang, S.; Choi Martin, M. F.; Dong, C. Phosphorus and Nitrogen Dual-doped Hollow Carbon Dot as a Nanocarrier for Doxorubicin Delivery and Biological Imaging. ACS Applied Materials & Interfaces. 2016, 8, 11288-11297.
  27. Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Sun, Z. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization. Advanced materials. 2018, 30, 1704740.
  28. Long, P.; Feng, Y.; Cao, C.; Li, Y.; Han, J.; Li, S.; Peng, C.; Li, Z.; Feng, W. Self‐Protective Room‐Temperature Phosphorescence of Fluorine and Nitrogen Codoped Carbon Dots. Advanced Functional Materials. 2018, 28, 1800791.
  29. Qu, Y.; Xu, X.; Huang, R.; Qi, W.; Su, R.; He, Z. Enhanced Photocatalytic Degradation of Antibiotics in Water over Functionalized N, S-doped Carbon Quantum Dots Embedded ZnO Nanoflowers under Sunlight Irradiation. Chemical Engineering Journal. 2020 ,382 , 123016.
  30. Li, X.; Zheng, M.; Wang, H.; Meng, Y.; Wang, D.; Liu, L.; Zeng, Q.; Xu, X.; Zhou, D.; Sun, H. Synthesis of Carbon Dots with Strong Luminescence in both Dispersed and Aggregated States by Tailoring Sulfur Doping. Journal of Colloid and Interface Science.2022, 609, 54-64.
  31. Kang, J.-W.; Kang, D.-H. Effect of Amino Acid-Derived Nitrogen and/or Sulfur Doping on the Visible-Light-Driven Antimicrobial Activity of Carbon Quantum Dots: A Comparative Study. Chemical Engineering Journal. 2021 , 420, 129990.
  32. Zhao, J.-L.; Luo, Q.-Y.; Ruan, Q.; Chen, K.; Liu, C.; Redshaw, C.; Jin, Z. Red/Green Tunable-Emission Carbon Nanodots for Smart Visual Precision pH Sensing. Chemistry of Materials. 2021,33, 6091-6098.
  33. Sun, Z.; Zhou, W.; Luo, J.; Fan, J.; Wu, Z.-C.; Zhu, H.; Huang, J.; Zhang, X. High-Efficient and pH-Sensitive Orange Luminescence from Silicon-Doped Carbon Dots for Information Encryption and Bio-Imaging.Journal of Colloid and Interface Science. 2022,607, 16-23.
  34. Wang, L.; Jana, J.; Chung, J. S.; Hur, S. H. Glutathione Modified N-Doped Carbon Dots for Sensitive and Selective Dopamine Detection.Dyes and Pigments. 2021 , 186, 109028.
  35. Chu, X.; Ning, G.; Zhou, Z.-Q.; Liu, Y.; Xiao, Q.; Huang, S. Bright Mn-Doped Carbon Dots for the Determination of Permanganate and L-ascorbic Acid by a Fluorescence on-off-on Strategy.Microchimica Acta. 2020, 187, 1-11.