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Abstract: Vital signs such as heart rate (HR) and respiration rate (RR) are essential physiological parameters used to assess human health 

and bodily functions. These can be measured via methods that either require or do not require direct contact. A non-contact Doppler radar 

millimeter (mm)-wave sensing firmware utilizes a 76–81 GHz (W-band) electromagnetic wave over a short-range path to the human body. 

It then processes the reflected electromagnetic wave to filter and extract human heartbeat and breathing rhythm signals. The short-range 

sensor system proposed herein eliminates the need for electrodes, electric patches, photoelectric sensors, and conductive wires, as well as 

the requirement for direct contact with the human body when measuring physiological signals. The W-band Doppler mm-wave sensing 

firmware, paired with frequency-modulated continuous wave radar, enables continuous monitoring of HR and RR. Short-wavelength 

mm-waves are employed in short-range detection to deliver highly precise measurements of physiological signals with minimal noise 

interference. Consequently, experimental tests were conducted in a laboratory setting to measure the heartbeats and breathing rhythm 

signals of healthy young men. Their HR and RR were estimated through frequency- and time-domain analyses. The experimental results  

confirm the feasibility of the proposed mm-wave radar for continuous human vital sign detection. 
 

Indexing Term: Heart Rate, Respiration Rate, Doppler Radar Millimeter (mm)-Wave, Frequency Modulated Continuous Wave, Vital  

Signs Detection. 

 

1. Introduction 

 

Assessing the functionality and condition of a heart can provide 

valuable information pertinent to the early detection of human 

emotional states, heart diseases, and cardiovascular-related 

conditions. Traditional heart rate (HR) and cardiac activity 

monitoring can be achieved through electrocardiography (ECG). 

This method uses three leads (leads I, II, and III) to measure 

electrical activity signals from the atria to the ventricles in the 

heart. An ECG reading exhibits a waveform, inclusive of the P 

wave, QRS complex wave, and T wave, and can be used to 

identify arrhythmia, heart conduction disorders, coronary 

ischemia, myocardial infarction, and atrial fibrillation. Regular 

contraction and relaxation activities in the atria and ventricles 

drive blood flow from the heart through the circulatory systems, 

including pulmonary and systemic circulation. Each heartbeat 

triggers a blood pressure wave passing through the blood vessels, 

causing regular pulsation as they contract and expand. Thus, 

Photoplethysmography (PPG) can be used to detect physiological 

parameters such as oxygen saturation (SPO2), HR variability  

(HRV), and respiration rate (RR) [01–03]. 

ECG employs contact sensors that must be positioned on the 

human body, including the upper and lower limbs and chest. 

Electric patches or electrodes are attached to the skin to facilitate 

up to 12-lead measurements between any two attachments, 

enabling continuous monitoring of the heart's electrical activities. 

However, the quality of ECG measurements can be impacted by 

the setting environment and the dynamic state of the body, as 

subject movement may be restricted. PPG can operate in two 

modes: transmissive or reflective [02-03], using a photoemitter or 

photodetector. Photoemitters can measure visible green light (510 

nm), visible red light (659 nm), or near-infrared (IR) light 

(800–940 nm). Photodetectors can observe changes in emitted or 

reflected light. Transmissive measurements deal with light 

intensities that are 40–60 dB stronger than reflective models, but 

reflective measurements can be conducted anywhere on the 

human body, including the thumbs, fingers, or earlobes. Therefore, 

optical sensing methods are increasingly employed in wearable 

devices such as wrist-worn fitness trackers for continuous and 

long-term physiological monitoring. Light transmission varies 

with wavelength, and IR light bears a relatively broad sensitivity 

range and resolution for measuring physical alterations in blood 

vessels. Consequently, an appropriate wavelength range must be 

selected to enable the transmission capability and resolution 

required for observing these micro-structural variations. 

ECG signals result from ventricular contractions, whereas PPG 

pulses are generated by vasoconstriction. Each PPG pulse trails 

an ECG signal, and their combination yields information on pulse 

transit time and blood velocity. This information can be utilized to 

formulate a characteristic equation for estimating systolic and 

diastolic blood pressure and to continually monitor blood pressure 

[04-05]. It can estimate physiological parameters such as the 

stiffness index (SI) or reflection index (RI). This optical sensing 

technique is employed in noninvasive evaluations of 

arteriosclerosis or cardiovascular disease risk. The advantages and 

limitations of ECG and PPG measurements are described as 

follows: 

 ECG measurement: Commercial ECG firmware is utilized as a 

straightforward, first-line measurement tool for the early 

detection of heart disease. However, ECG signals (mV) are 

faint and do not surpass a few hundred Hz in frequency, 

rendering them susceptible to interference from the harmonics 

of a power source in a 50 Hz or 60 Hz range, which can be 

eliminated using a band-rejection filter. Consequently, ECG 

measurements necessitate skin contact, resulting in contact 

impedance from the skin. Mismatched impedance can result in 

increased measurement errors (artifacts). Furthermore, it needs 

to overcome contact noise and electromagnetic interference. In 

practical application, ECG measurement is a time-consuming 

method for monitoring in a hospital environment and requires  

  data interpretation by medical staff. 

 PPG measurement: Interference with optical measurements 

stems from noise caused by ambient light, sweat, and motion 

vibrations. Ambient light, such as from fluorescent bulbs, may 

contain noise with alternating current components. This 

interference can be reduced using digital filters. Wearable PPG 

sensors, when in use during dynamic activities, can generate 

interferences owing to the relative motion between the optical 

sensor and the skin, resulting in reduced signal sensitivity. 

Additionally, the frequency of motion vibrations can be 

misinterpreted as the RR and must be compensated for when 

recording measurements during dynamic activities. 

Contact measurements require the placement of electrodes or 

optical sensors on the skin and an external connection to a data 

processor with signal-conducting wires. Long-term monitoring 

with this setup can cause discomfort to patients and limit their
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Figure 1. Doppler millimeter (mm)-wave radar-based contactless measurement system. (a) Vital signs (HR and RR detection) continuous  

monitoring with a mm-wave sensing system; (b) detection of frequency displacements (fr) produced by a static object; and (c) detection of  

frequency displacements produced by a dynamic object 
 

 

Figure 2. Commercial mm-wave radar circuit boards and embedded modules 

 

movements. Non-contact measurements, on the other hand, do not 

cause discomfort or adverse biological reactions such as 

infections, skin irritations, or allergic reactions. Clinically, 

non-contact measurements are suited to special cases, such as 

burn patients, as they do not necessitate direct contact with the 

wound, thus reducing the risk of infection. Given the emergence 

of new infectious diseases over the past three years, such as 

SARS, MERS, and COVID-19 [09-10], patients may experience 

hypoxia, inflicting damage to blood vessels (endothelial 

dysfunction or arteriosclerosis), the heart, the autonomic nervous 

system (as indicated by HRV), and systemic inflammatory 

response or autoimmune disorder. These conditions are especially 

noticeable in patients with cardiovascular disease. Consequently, 

the development of non-contact measurement devices is essential 

to monitor physiological parameters and prevent human-to- 

human transmission of disease. Additionally, non-contact 

monitoring bypasses issues such as signal-conducting wires 

falling off and enables long-term, continuous monitoring. 

As depicted in Figure 1(a), this study applies the Doppler effect 

and frequency-modulated continuous wave (FMCW) radar 

technology [11] to vital signs detection (VSD), including HR and 

RR estimation [12–19]. The millimeter (mm)-wave bands of the 

radar can be segmented into the C-band (4 – 8 GHz), X-band (8 – 

12.5 GHz), K-band (12.5 – 40.0 GHz), V-band (40 – 75 GHz), and 

W-band (75 – 110 GHz). Among these mm-wave bands, the 3 – 30 

GHz mm-wave is commonly used in everyday life, with the 

X-band being a standard range for radar applications in various 

industries and healthcare. For instance, commercial mm-wave 

circuit boards (TRW-5.8G-B and HB100 Radar) [14] and 

embedded modules (SW-UWB-M-DEBUG-V2 and SW-UWB- 

M-A2x2), as seen in Figure 2, generally operate within specific 

bands in the 5.8 GHz, 6.5 – 8.1 GHz, or 10.525 GHz ranges. The 

commercial SW-UWB-M-A2x2 radar module, with a lower 

transmission frequency, offers a broad detection range of 0.5 – 3.0 

m. X-band mm-wave sensors are widely utilized in applications 

such as theft deterrence, traffic speed detection, automated 

controls, and VSD. However, owing to its common use, the 

X-band encounters more significant interferences. The K-band is 

primarily employed for highly discriminant validity 

measurements, but because of atmospheric attenuation, its 

detection range is relatively short, less than 1.0 m [14, 17-18, 20- 

21].  

Therefore, this study employs the Doppler effect and 

FMCW-based mm-wave sensing method is used to detect human 

hand tremor [14], pulse wave measurements, RR, and HR [17-21]. 

In this study, we utilize a W-band mm-wave (76 – 81 GHz) 

sensing firmware for VSD applications. This is because its radio 

frequency transmission circuit and microcontroller can integrate 

into an mm-wave embedded system (utilizing semiconductor 

processing technology). This system pre-processes sensing 

signals and then transmits them to a laptop for digital data 

analysis. Distance and direction can be estimated by analyzing 

frequency differences between the transmitted and reflected 

electromagnetic waves, as seen in Figures 1(b) and (c). This can 

be applied for the detection, tracking, and navigation of dynamic 

or static objects. We employ the Doppler radar to detect heartbeat 

and breathing rhythm signals in non-contact measurements and 

use digital filters to eliminate interferences such as micro- 

disturbances from the body, background noise, and DC offsets in 

the system. Additionally, in short-range detection, shorter 

wavelength radar can bypass the reception of unwanted signals, 

thereby reducing measurement errors in the intermodulation 

signals. These unwanted interference components can be 

mitigated or completely eliminated. Through digital signal 

processing methods on a laptop, unwanted low-frequency and 

high-frequency signals can be filtered with a band-pass filter to 

yield physiological parameters suitable for estimating HR and  

RR. 

In this study, we estimate HR and RR using the frequency- 

domain and time-domain methods. The frequency-domain 

method employs the fast Fourier transform (FFT) to extract 

characteristic frequencies from the post-processing signals. 

Typically, specific ranges of characteristic frequencies are 1.1 - 

1.3 Hz for heartbeat signals and between 0.00 Hz and 0.40 Hz 

(0.15 – 0.40 Hz) for breathing rhythm signals [22], which is less 

than 1.0 Hz. HR and RR can both be estimated using these 

specific characteristic frequencies, with a resting HR of 60 – 70 

beats per minute for an adult human and a resting RR of 12 – 20 



breaths per minute, both of which gradually increase during 

exercise. The time-domain method uses the peaks of the heartbeat 

signal as a benchmark to estimate the average HR with the 

average R-R interval [04]. 

We establish a Doppler mm-wave Radar, as depicted in Figure 

1(a), which employs non-contact and short-range measurement to 

capture heartbeat and breathing rhythm signals. This setup 

enables us to extract characteristic frequencies and parameters to 

determine HR and RR in both time and frequency domains, 

respectively. Through experimental tests, we use the results to 

verify that the data captured by the mm-wave radar can be 

utilized in real-time human vital signs monitoring, thereby 

demonstrating the accuracy of mm-wave radars in non-contact  

measurements. 

 

2. Methodology 

 

2.1. Principles of Contactless mm-Wave Radar Sensing 

 

As seen in Figure 1(a), the non-contact mm-wave radar used in 

this study is a 71–86 GHz mm-wave sensing firmware device 

(76–77 GHz: 14 dB; 77–81 GHz: 15 dB). This device consists of 

a radar mm-wave sensor (Joybien mm-wave IWR 1642 single 

chip), a Raspberry-Pi Hat Board (ARM Cortex-R4F-based radio 

control system), and Python application software [11]. Utilizing 

the Doppler effect, as depicted in Figure 1(a), an electromagnetic 

wave is emitted from the transmitter end, Tx, toward a static or 

dynamic object. This object then reflects the electromagnetic 

wave back to the receiving end, Rx. The digital signal processor 

captures and processes the reflected signal, facilitating the 

estimation of the object’s motion, distance, speed, and direction 

or angle based on frequency changes, as depicted in Figure 1(b) 

and 1(c), respectively. Currently, three dominant mm-wave radar 

technologies exist: (1) pulse modulation (PM); (2) continuous 

wave (CW); and (3) frequency modulation (FM) [12–15]. 

Unmodulated CW radars can detect Doppler frequency shifts 

caused by changes in object velocity. The object’s distance must 

be measured with FM, whereas PM can only detect the object’s 

distance. The FMCW method can simultaneously detect both an 

object’s distance and velocity [11, 16–18]. In this study, we 

employ a Doppler radar to perform continuous, non-contact, 

short-range measurement of human VSD by estimating HR and 

RR based on frequency differences between the Tx and Rx ends.  

Figure 1(b) depicts the incident electromagnetic wave striking 

a static object [16–18]. The reflected incident wave exhibits 

identical waveforms and frequencies. A time delay, tr, develops 

between both electromagnetic waves due to the distance, d0; the 

distance between the object and the radar can be represented as d0 

= c·tr / 2, with c representing the signal propagation velocity in 

the air and is given as c = 3 × 108 m/s. Let the object’s motion 

signal, x(t), as [14] 

  )2c o s ()( 00 tfAtx                                (01) 

where A0 is the amplitude and f0 is the frequency. Given fT and (t) 

as the transmitted frequency and phase noise, the reflected 

signal, R(t), can be represented as 
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where AR is the amplitude of the signal R(t); T = c / fT is the 

wavelength; and d0 is the fixed distance between the object and 

the stationary radar sensor. Suppose 0 = 4d0 /T be the phase 

shift and (t) = (t) - (t-2d0/c) be the residual phase noise, with 

the mixing process, we can obtain the normalized baseband 

signal, B(t), as follows [14] 
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Considering 0 as an odd multiple of /2 and x(t) << T, we can  

simplify the equation (03) as 
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Figure 1(c) shows that if the object is in motion, the 

Table 1. Specifications of the Doppler mm-wave radar [11] 
Hardware Specification 

FMCW based 
Transceiver 

 76- 81GHz Coverage With 4 GHz 

Continuous Bandwidth; 

 Four Receive Channels; 

 Two Transmit Channels; 

 Ultra-Accurate Chirp (Timing) Engine 

  Based on Fractional-N PLL 

 Rx Noise Figure: 14 dB (76 to 77 GHz) / 

15 dB (77 to 81 GHz) 

DSP 
(Digital Signal 

Processor) 
C674x DSP for FMCW Signal Processing 

MCU 
(Micro 

Controller Unit) 

 ARM Cortex-R4F Microcontroller for 

Application Control 

 I/O: SPI / CAN  1 

 Up to 2 UARTs I2C  1 

(Raspberry Pi Hat Board (ARM® Cortex® 

 -R4F-Based Radio Control System) 

Intend Purpose 

Vital Signs Detection (VSD) Firmware  

for Short-Distance (30 - 90cm Wireless  

and Contactless Detection for Heart Rate  
(HR) and Respiration Rate (RR) 

ONLY one of VSD; HAM 

(Pre-programmed within a Single mmWave 
 Module) 

Operating 

Temperature and 

Humidity 

 0° to 40° degree Celsius 

 10% - 85% Non-Condensing 

 
electromagnetic wave is reflected by a target moving relative to 

the radar, and then the reflected electromagnetic wave 

demonstrates a frequency shift fd; the frequency changes of 

processed signal can be expressed as “f1 = fr – fd”  and “f2 = fr + 

fD”, respectively. The distance between the radar and the object 

can be estimated as D = (c / (4 × fm × b)) × ((f2 + f1)/2), where fm 

indicates the modulation frequency, and b represents the 

maximum change in the modulation frequency. The relative 

velocity of the dynamic object is v = (c / (2 ×  fc)) × ((f2 – f1)/2), 

where fc denotes the center frequency of the incident 

electromagnetic wave [16–18], enabling the detection of the 

dynamic object’s distance and motion velocity. 

After receiving the processed signal, the measurement data are 

routed to a data acquisition system through a serial 

communication line for analog-to-digital conversion (ADC) and 

digital signal processing. Thus, x(t) in equation (04) can be  

expressed as follows [19]: 

  )()()()( tdtxtxtx bh                         (05) 

where xh(t) and xb(t) represent the distance variation caused by 

heartbeat and breathing rhythms, and d(t) denotes the residual 

signal. For the short-range measurement (< 1.0 m), the residual 

phase noise, (t), and the residual signal, d(t), can be neglected 

[19]. In digital signal processing, a digital filter, or band-pass filter, 

is employed to sift out unwanted high- and low-frequency 

components. This way, we can isolate the heartbeat and breathing 

rhythm signals, xh(t) and xb(t). Subsequently, FFT can be used to 

estimate the characteristic frequencies of signals, xh(t) and xb(t) [23, 

24]. Table 1 presents the specifications of the non-contact and 

short-range mm-wave sensor used in this study [11]. The proposed 

mm-wave radar eschews the need for contact sensors or 

signal-conducting wires and can continuously monitor human vital 

signs in real-time. This renders it especially useful for patients with 

severe infectious diseases (e.g., SARS, MERS, and COVID-19), 

serious and acute respiratory disorders, or burns. 

 

2.2. HR and RR Estimations 
 

Human heartbeats and breathing rhythms are not fixed and are 

primarily regulated by the human autonomic nervous system. 

These heartbeats and breathing rhythms can be analyzed using 

frequency-domain and time-domain methods to determine HR and 

RR. In both methods, fragmented rhythm signals (approximately 

10 rhythm signals, as observed in Figures 3(a) and 4(a)) are used to
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Figure 3. Time-domain and frequency-domain analysis for heartbeat signals. (a) Time-domain raw data for heartbeat signals, (b) Time-  

domain R-R interval analysis (HR = 72.78 bpm), and (c) frequency-domain HR analysis (fc1 = 1.24 Hz, HR = 74.4 bpm) 
 

 

Figure 4. Time-domain and frequency-domain RR analysis for breathing rhythm signals. (a) Time-domain raw data for breathing  

rhythm signals, (b) Frequency-domain analysis for RR estimation (fc2 = 0.30 Hz, RR = 18 breaths/min) 
 

 

Figure 5. Experimental setup and frequency- and time-domain analysis for HR estimation. (a) Experimental setup for VSD tests, (b) 

Frequency- and time-domain analysis for HR estimations with 10 heartbeats, (c) HR estimations with 20 heartbeats, (d) HR estimations  

with 30 heartbeats, (e) R-R interval estimations with 10, 20, and 30 heartbeats 
 

estimate the HR and RR, respectively. In frequency-domain 

analysis, rhythm signals are transformed into a spectrogram using 

the FFT method to identify the characteristic frequencies, as seen 

in Figures 3(c) and 4(b), respectively. The HR and RR can be  

estimated by using the following equations: 

 HR = 60  fc1 (beats / min)                           (06)                                     

 RR = 60  fc2 (breaths / min)                           (07) 

Here, fc1 represents the characteristic frequency of the fragmented 

heartbeat signals, and fc2 denotes the characteristic frequency of 

the fragmented breathing rhythm signals, respectively. For adults, 

the main frequency ranges within 1.1 – 1.3 Hz for heartbeat, and 

the main frequency for breathing rhythm signals ranges between 

0.15 and 0.40 Hz. Lower frequency ranges, 0.04 – 0.15 Hz, reflect 

regulatory responses by the sympathetic and the parasympathetic 

systems. 

  In time-domain analysis, the R peak detection in each heartbeat 

signal is the basis, as seen in Figure 3(a). Each R-R interval can be 

estimated between the R peak and the subsequent one, as 

displayed in Figure 3(b). The average R-R interval, denoted as 

R-Rave, provides the mean HR, as demonstrated in Equations (08)  

and (09). 

  



M

1m

ma v e R-R
M

1
R-R (sec)                       (08) 

  

a v eR-R

60
HR   (beats / min)                        (09) 

Thus, Equations (06)–(09) can be employed to estimate 

physiological parameters and indicators in real-time. Normal r 

anges for adults are 48 < HR < 120 (beats / min) and 6 < RR < 30 

(breaths / min), with slight variations based on factors such as age, 

sex, body weight, and health. These indices can assist in the early 

detection of life-threatening symptoms, such as coughing and 

shortness of breath, which are indicative of respiratory issues such 

as chronic obstructive pulmonary disease or acute respiratory  

distress syndrome (ARDS). 

 

3. Experimental Results and and Discussions 

 

3.1. Experimental Setup 

 

Experiments, tests, and validation of human VSD were conducted 

using the contactless sensor based on mm-wave radar depicted in 

Figure 1(a). The experimental setup employed a Doppler radar 

mm-wave sensing system [11], which included a 76 – 81GHz (W- 

band) Doppler radar millimeter-wave sensing firmware (Joybien 

mm-Wave) with a Tx electromagnetic wave transmitter and an Rx 

electromagnetic wave receiver, a Raspberry-Pi Hat Board (ARM 

Cortex-R4F), an ADC, a microcontroller unit, and a digital signal 

processor. This sensing system, utilizing the FMCW method, is 

designed for VSD over a short-range of 0.3 – 0.90 m. This system 

can link to the internet of medical things (IOMT) systems via 

built-in Wi-Fi or Bluetooth wireless communication [25] for 

transmitting physiological measurements. This can be achieved 

through 2.4 – 2.485 GHz or 5.0 – 6.0 GHz ISM (Industrial, 

S c i e n c e ,  a n d  me d i c a l ,  e x c l u d i n g  a p p l i c a t i o n s  i n 

telecommunications) radio bands standard (IEEE 802.11 Wireless 

Networking Protocol [27]).  The 5G (fifth-generation) 

communication system [26] facilitates the transmission of a  



Table 2. Comparison of millimeter-wave radar, ECG, and PPG detection. 

VSD Methods 
Millimeter (Mm)-wave 

Radar 
ECG Measurement PPG Measurement 

Principles (Technology) 
Doppler radar detection of 

millimeter waves 

Detection of physiological signals 

from the heart through electrodes 
on the skin 

Optical detection of pulse signals 

through direct contact with the skin 

Detection Signals 

76–81 GHz electromagnetic 

waves (incident and reflected 
electromagnetic waves) 

Heart nerve conduction signals 

(changes in cardiomyocyte 
depolarization voltages) 

Infrared light (650 nm) or 

near-infrared light (800–940 nm) 

Detection Approach Contactless Sensing Contact Sensing Contactless / Contact Sensing 

Detection Distance Short-range (30–90 cm) 
Active or passive detection through 

electrodes on skin 

Transmissive and reflective light 

sensors on the skin 

Wearable ?    

Sources of Interference and 
Noise 

Uses short-wavelength 
mm-wave and short-range 

measurement to avoid 

unnecessary environmental 
noise (slight) 

Power harmonic interference (50 
Hz/60 Hz), skin contact impedance 

interference, electromagnetic 

interference, interference caused by 
human vibrations 

Interference from ambient light 

(fluorescent lights and energy-saving 

lamps), sweat, and motion vibrations 

Filter Requirement ?    
Monitoring Type Continuous monitoring Continuous monitoring Continuous monitoring 

Movement Restrictions?    

Medical Purpose 
(Applications) 

HR and RR Estimation 

 HR and RR Estimation 

 Sympathetic nerve activity 
evaluation 

 Temperature regulation response 

evaluation 

 Peripheral cardiovascular tone and 

reflex evaluation 

 HR and RR Estimation 

 SPO2 Estimation 

 Blood Flow Velocity Estimation 

 Stiffness Index (SI) Estimation 

 Reflection Index (RI) Estimation 

 

 

Figure 6. Frequency-domain analysis for RR estimations with 10, 

20, and 30 breaths 

 

patient's data to remote hospitals or a clinician's smart phone and 

iPad, enabling hospitals, patients, and their families to monitor 

physiological parameters. This information can then be used in 

multiparty consultations and patient discussions. The Raspberry- 

Pi Hat Board provides an integrated development environment, 

namely “Geany”, for writing Python application programs. These 

programs are used to implement the mm-wave FMCW control, 

FFT operation, and time-domain analyses for processing the raw  

data and deriving the real-time HR and RR estimations. 

 

3.2. Experimental Tests and Discussion 

 

The contactless VSD experiments and tests for short-range (< 1.0 

m) were conducted in a laboratory, as portrayed in Figure 5(a). 

Participants were young adult males with an average age of 22 

years. Each participant underwent a static VSD test, recording 

heartbeats and breathing data for a one-minute interval for each 

test. For instance, fragmented raw data from 10 instances of 

heartbeats and breathing rhythms are portrayed in Figures 3(a) 

and 4(a), respectively. Using time-domain analysis to determine 

the R-R interval, Equations (08) and (09) were employed to 

calculate the mean HR. As demonstrated in Figure 3(b), the mean 

HR for the 10 heartbeats depicted in Figure 3(a) is 72.7800 bpm. 

Results from the frequency-domain analysis are displayed in 

Figure 3(c) and Figure 4(b), extracting the main characteristic 

frequencies, fc1 = 1.24 Hz and fc2 = 0.30 Hz, for 10 instances of 

heartbeats and breathing rhythms. Equations (06) and (07) reveal 

that HR = 74.4 beats/min and RR = 18 breaths/min, respectively. 

Figures 5(b), 5(c), and 5(d) present HRs based on 10, 20, and 

30 heartbeats, respectively, during static human VSD. The 

time-domain analysis resulted in average HRs of 71.66, 72.03, 

and 71.94 beats/min, and average R-R intervals of 0.8361 s, 

0.8336 s, and 0.8345 s. Figure 5(e) illustrates that the 

time-domain analysis yielded average HRs of 73.11, 74.06, and 

73.68 beats/min. All participants were healthy young men, with 

their average HRs falling within the normal range of 48 < HR < 

120 (beats/min). Figure 6 presents frequency-domain RR analysis 

based on 10, 20, and 30 breaths; the average RRs were observed 

to be 18.29, 18.26, and 18.31 breaths/min, respectively. These 

results are within the normal RR range of 6 < RR < 30 

(breaths/min). Subsequently, the experimental results from the 10 

participants for a 1 minute static VSD test were utilized to 

validate the feasibility of the mm-wave radar sensing system 

constructed in this study, which could perform contactless and 

short-range measurements for HR and RR estimations. A 

comparison of the mm-wave radar to ECG and PPG detection 

methods is presented in Table 2. 

ECG measurement captures a weak voltage signal through 

active or passive electrodes on the skin. The sensing circuit 

requires a high-gain and high-pass filter (cutoff frequency: 0.3 Hz) 

along with a low-pass filter (cutoff frequency: 37.0 Hz), and a 

signal gain of about 100, which can filter out additional high- and 

low-frequency noises. This contact sensing circuit can readily be 

integrated into a wearable device. Clinically, 12 leads can be used 

to measure ECG signals from limb and chest leads, but 

continuous monitoring of cardiac electrical activity signals can be 

hampered by the numerous signal conducted wires which restrict 

patient movement and affect measurement quality. PPG 

measurement uses single or dual-wavelength light sources to 

measure pulse signals and oxygen saturation in transmissive or 

reflective modes. Although reflective mode can be used on any 

part of the body, the signal must undergo further processing such 

as noise filtering, signal amplification, signal modulation, and 

signal digitization when the optical detector receives light flux 

changes. Optical detectors are compact and lightweight, with 

photoemitters, photoreceivers, and driver circuits easily integrated 

into embedded systems. Current commercial optical detector IC 

firmware can suppress ambient light, reduce power consumption, 

and extend monitoring time. 

ECG and PPG measurements can be utilized to detect 

peripheral arterial disease (PAD) by assessing a patient's 

arteriosclerosis risk level [03, 28] Specific pulse characteristic 

parameters can be derived and analyzed from the time-domain 

PPG waveforms, such as the time intervals between pulse waves 

and the peak height ratios of the pulse signals, to estimate the



 

Figure 7. ECG and PPG signals of vital signs: (a) millimeter-wave radar detection of ECG signals; (b) lead II detection of ECG signals; 

and (c) infrared photoreceiver detection of PPG signals 

 

SI (Stiffness Index) and RI (Reflection Index) indexes. For 

instance, RI = (H2 / H1) × 100%, as seen in Figure 7(c). The 76 – 

81 GHz mm-wave radar developed in this study offers several 

advantages compared to ECG and PPG measurements: 
 

• It enables contactless and short-range sensing. 

• It offers suitable directionality from the mm-wave antenna 

emitting electromagnetic waves, which aids in controlling the 

sensing range. 

• It bears a strong resistance to interference from environmental 

factors such as temperature, humidity, noise, airflow, dust, and 

light. 

• It exhibits a high level of resistance to radio frequency 

interference. 

• It produces low output power that is harmless to humans. 
 

Figures 7(a) and (b) depict the raw data from the mm-wave 

radar and a lead II ECG, respectively. Both time-domain 

waveforms exhibit periodic R peaks, which are used to estimate 

the R-R interval. From these, the average HR can be calculated 

using Equations (08) and (09). In this study, the 76 – 81 GHz 

mm-wave radar sensing firmware demonstrated the capability for 

contactless and short-range detection of heartbeat signals. 

Numerous ECG and PPG measurements were gathered and tested. 

In addition to VSD, these data can be used to evaluate peripheral 

arterial disease, cardiac arrhythmia, arteriosclerosis, sympathetic 

nervous activity, and temperature regulation responses. ECG has 

been used to detect arrhythmia types, heart conduction 

abnormalities, coronary ischemia, and atrial fibrillation based on 

the detected P wave, QRS complex wave, and T wave. Future 

research should aim to acquire extensive amounts of ECG signals 

from patients with cardiac arrhythmia to verify the applicability 

of the 76–81 GHz mm-wave radar for detecting cardiac 

arrhythmia. 

 

4. Conclusion 
 

IOMT systems enable the collection and exchange of 

measurement data between the user-end and the sensor-end. This 

can be actualized through the continuous collection of heartbeat 

and breathing signals, blood pressure, and other biochemical 

examination data. Physiological signals captured via VSD can be 

analyzed based on their frequency-domain and time-domain 

characteristic parameters to assist in detecting early symptoms of 

cardiopulmonary diseases. Contactless and short-range VSD was 

conducted on a group of healthy young men using a 76 – 81 GHz 

mm-wave radar within a 30–90 cm range. The promising HR and 

RR results obtained with this mm-wave radar device validate its 

feasibility for contactless detection. 

During the COVID-19 pandemic, which has caused 

persistently high disease levels worldwide over the past three 

years (2019 – 2023 years), VSD became a necessity in the 

quarantine and treatment of confirmed cases owing to concerns 

about human-to-human transmission and other infectious disease 

control issues. Future instrument designs must incorporate 

contactless, short-range detection, and online collaboration 

features. The 76 – 81 GHz mm-wave radar can assist with 

continuous vital sign monitoring, and integration with the internet 

and 5G communication technologies can facilitate the processing 

of the massive volume of data collected in IOMT systems. 

Moreover, this integration can enable data analysis and AI 

applications on user-end devices, such as machine learning (ML) 

and deep learning (DL) based diagnostic tools. 

The feasibility of the mm-wave radar in this study for 

contactless VSD has been verified, and this device may be 

applied in future clinical practices to monitor heartbeat signals 

related to atrial fibrillation, supraventricular tachycardia, 

ventricular tachycardia, and heart block. The further development 

of ML or DL based classifiers may enable the identification of 

different arrhythmia types. Consequently, the mm-wave radar 

with an AI-based classifier will be considered a Class II medical 

device, and its development requires evaluations of electrical 

safety, effectiveness, accuracy, and device risk (IEC60601 [29]), 

as well as clinical testing before integration into IOMT systems. 
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