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Key Points:12

• The representation of Arctic sea ice volume anomalies is significantly improved13

by assimilating year-round SIT observations from CryoSat-2.14

• Arctic summer sea ice prediction skill is generally improved when initial condi-15

tions are constrained by satellite SIT observations.16

• The Arctic summer sea ice in the 2010s decade is particularly hard to predict due17

to anomalously low correlation between volume and extent.18
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Abstract19

Because of a spring predictability barrier, the seasonal forecast skill of Arctic summer20

sea ice is limited by the availability of melt-season sea ice thickness (SIT) observations.21

The first year-round SIT observations, retrieved from CryoSat-2 from 2011–2020, are as-22

similated into the GFDL ocean–sea ice model. The model’s SIT anomaly field is brought23

into significantly better agreement with the observations, particularly in the Central Arc-24

tic. Although the short observational period makes forecast assessment challenging, we25

find that the addition of May–August SIT assimilation improves September local sea ice26

concentration (SIC) and extent forecasts similarly to the early addition of SIC assim-27

ilation. Although most regional forecasts are improved by SIT assimilation, the Chukchi28

Sea forecasts are degraded. This degradation is likely due to the introduction of nega-29

tive correlations between September SIC and earlier SIT introduced by SIT assimilation,30

contrary to the increased correlations found in other regions.31

Plain Language Summary32

The dramatic decline of Arctic sea ice, especially in summer, has received a lot of33

attention. The ability to better predict Arctic summer sea ice several months ahead of34

time will help decision making on protecting local communities and ecosystems and reg-35

ulating economic activities in the Arctic. Climate dynamical models have shown reason-36

able skill in predicting Arctic summer sea ice on seasonal timescales, but also contain37

considerable errors. Integrating observed sea ice thickness conditions into the model in38

the summer melt season has a large potential to reduce such errors. This study combines39

a new year-round satellite sea ice thickness observational product with the sea ice and40

ocean dynamical model at GFDL and examines its impact on the seasonal prediction41

of Arctic sea ice. We find that the prediction skill has been improved in general, although42

some uncertainties exist due to the limited temporal availability of the observations.43

1 Introduction44

As a key climate change indicator, Arctic sea ice has been declining rapidly in the45

past few decades, especially in summer (Stroeve & Notz, 2018). This raises concerns as46

it has broad impacts on both local and global climate, ecosystems, and human society47

(Meier et al., 2014). Arctic sea ice loss brings challenges to local communities whose lifestyle48

heavily relies on sea ice and also attracts new economic activity (e.g., oil extraction, min-49

ing, and shipping). Subseasonal-to-seasonal predictions of Arctic summer sea ice have50

therefore become critical for stakeholder planning and decision making. Studies have shown51

that the current climate forecast systems are able to produce skillful predictions of pan-52

Arctic sea ice extent (SIE) (Merryfield et al., 2013; Chevallier et al., 2013; Sigmond et53

al., 2013; Peterson et al., 2015) and regional SIE (Sigmond et al., 2016; Bushuk et al.,54

2017; Dirkson et al., 2019). The actual prediction skill, however, is considerably lower55

than the models’ potential predictability, which is partially due to the lack of knowledge56

of sea ice initial conditions (Bushuk et al., 2019).57

The anomaly persistence and re-emergence of sea ice concentration (SIC), volume58

(SIV), and upper ocean heat content are the major predictability sources of Arctic sea59

ice (Blanchard-Wrigglesworth et al., 2011). While sea surface temperature (SST) has been60

commonly assimilated into operational systems and proven to improve sea ice predic-61

tions (Bushuk et al., 2019; Kimmritz et al., 2019; Dai et al., 2020), the direct assimila-62

tion of sea ice observations is at its early stage. The most commonly assimilated obser-63

vation is satellite SIC because of its good spatial and temporal coverage. The assimila-64

tion of SIC has been shown to improve the modeled SIC significantly in different model65

systems (Lisæter et al., 2003; Lindsay & Zhang, 2006; Tietsche et al., 2013; Kimmritz66

et al., 2018; Zhang et al., 2018, 2021). The benefits of SIC DA on predictions of Arctic67

sea ice have been studied at sub-seasonal (Van Woert et al., 2004; Caya et al., 2010) and68
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seasonal (Massonnet et al., 2015; Kimmritz et al., 2019) time scales. Zhang et al. (2022)69

conducted a comprehensive evaluation of SIC DA and showed that the subseasonal-to-70

seasonal predictions of Arctic summer sea ice are improved at both regional and grid-71

cell levels.72

Compared to SIC, SIT satellite observations have more limited temporal coverage.73

Early SIT retrievals from IceSat-1 campaigns provided coverage in October-November74

and February-March over 2003–2008 (Kwok & Cunningham, 2008), whereas the more75

recent Soil Moisture and Ocean Salinity (SMOS; Tian-Kunze et al. (2014)) and CryoSat-76

2 (Laxon et al., 2013) satellites provide continuous winter SIT data from 2010–present,77

and the IceSat-2 satellite provides winter data from 2018–present (Petty et al., 2020).78

Several studies have shown that assimilating these winter satellite-retrieved SIT obser-79

vations leads to improvements in the simulation of both SIC and SIT (Yang et al., 2014;80

Xie et al., 2016; Chen et al., 2017; Mu et al., 2018; Fritzner et al., 2019). Blockley and81

Peterson (2018) was the first study to demonstrate that by assimilating winter satellite82

SIT observations, the September Arctic SIE predicted from May 1st intialized reforecast83

experiments could be significantly improved compared to an experiment with no SIT as-84

similation. However, their improvement is mostly from the reduced model bias and did85

not assess the benefits of the observed SIT anomalies. Due to the shortness of the data86

record, no studies have explored the potential benefits of SIT DA on improving predic-87

tions of SIE interannual variability.88

Dynamical and statistical prediction systems have been found to consistently dis-89

play an Arctic sea ice spring predictability barrier, in which forecasts initialized before90

June 1 have much lower skill than the forecasts initialized after (Bonan et al., 2019; Bushuk91

et al., 2020; Zeng et al., 2023). Therefore, the conventional satellite-retrieved winter SIT92

observations are likely sub-optimal for improving summer Arctic sea ice predictions. Landy93

et al. (2022) derived the first year-round Arctic SIT observations spanning 2011–202094

and showed a notable positive correlation between the observed pan-Arctic SIV in the95

melting season and summer SIE, which shows bright prospects for improving summer96

Arctic sea ice predictions.97

Motivated by these potential prediction improvements, we have developed a sea ice98

data assimilation framework with the GFDL sea ice–ocean model (MOM6/SIS2) and the99

Data Assimilation Research Testbed (DART). This study presents a methodology for100

joint assimilation of SIT and SIC in a multi-category sea ice modeL, and explore the ad-101

ditional benefit of SIT DA in Arctic sea ice summer predictions relative to a system that102

only assimilates SIC. We describe the data assimilation system and techniques in Sec-103

tion 2, present results in Section 3, and Discussion and Conclusions in Section 4.104

2 Materials and Methods105

2.1 The GFDL SPEAR Prediction System106

The Seamless System for Prediction and EArth System (SPEAR), the current sea-107

sonal to decadal prediction system at GFDL, is used in this study. SPEAR uses the lat-108

est version of the GFDL atmosphere, land, ocean and sea ice models (Delworth et al.,109

2020). The spatial resolution for ocean and sea ice models is 1 degree and has two op-110

tions for atmosphere and land: 1 degree (SPEAR LO) and 0.5 degree (SPEAR MED).111

SPEAR LO and SPEAR MED have similar skill in predicting regional Arctic sea ice (Bushuk112

et al., 2022), so we use SPEAR LO in this study considering the computational cost.113

2.2 Assimilated Observations114

We assimilate daily SIC retrievals from the Scanning Multichannel Microwave Ra-115

diometer (SMMR) on the Nimbus-7 satellite and the Special Sensor Microwave/Imager116
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(SSM/I) sensors on the Defense Meteorological Satellite Program’s (DMSP) satellites,117

processed by the National Snow and Ice Data Center (NSIDC) using the NASA Team118

algorithm (Cavalieri et al., 1996).119

We also assimilate year-round SIT observations retrieved from CryoSat-2 satellite120

measurements from Landy et al. (2022). They use a deep learning technique to discrim-121

inate melt ponds from open leads (Dawson et al., 2022), and retrieve freeboard from the122

radar altimetry observations of sea ice. The freeboard is then corrected for an electro-123

magnetic range bias in the CryoSat-2 radar data and converted to SIT using snow depth124

data from the Lagrangian Snow Evolution Model (Liston et al., 2020). The original data125

is biweekly and has a spatial resolution of 80 km. We regrid the data to the SPEAR nom-126

inal 1◦ sea ice and ocean resolution and perform piecewise interpolation to get daily data.127

For any given month, the first/second observation of a month is assigned to the first/second128

half of the month. For example, to generate the initial condition for the June 1st fore-129

cast, the DA process stops at May 31st, in which no future data is used. The SIT anoma-130

lies (SITA) for each day are obtained by removing the 10-year climatology from 2011 to131

2020. They are then added to the climatology from the SIC DA historical run to get the132

SIT data to be assimilated. The reason for assimilating SITA instead of SIT is stated133

in the next section.134

2.3 Data Assimilation Framework and Experiments135

Two data assimilation experiments using the GFDL MOM6/SIS2 model configured136

as in SPEAR LO and forced by the JRA55do atmospheric reanalysis (Tsujino et al., 2018)137

are conducted to generate initial conditions: SICDA IC assimilates SIC observations only138

and SITDA IC assimilates both SIC and SITA observations. Observations are assimi-139

lated every 5 days from 2011 to 2020. The DA frequency of every 5 days is chosen to match140

our earlier SIC DA study (Zhang et al., 2021), which considers the computational cost.141

The baseline experiment SSTrest IC does not assimilate any sea ice observations but oth-142

erwise shares the same configuration with the DA experiments. In all the initialization143

experiments, SST is nudged towards daily Optimum Interpolation Sea Surface Temper-144

ature (OISST; Reynolds et al. (2007)) where observed SIC is lower than 30% (Lu et al.,145

2020).146

The Ensemble Adjustment Kalman Filter (EAKF; Anderson (2001)) is applied to147

assimilate observations. We perturb sea ice model parameters to generate 30 ensemble148

members of MOM6/SIS2. In addition to the ice strength and albedo parameters that149

are perturbed in Zhang et al. (2021), the snow conductivity parameter is also perturbed,150

which increases the ensemble spread of SIT and was found to improve assimilation per-151

formance. The ice strength parameter P ∗ from Hibler (1979) follows a uniform distri-152

bution between 20000 and 50000 Nm−2 (the default value is 27500 Nm−2). The albedo153

parameters of snow Rsnw, ice Rice, and pond Rpnd from (Briegleb & Light, 2007) fol-154

low a random uniform distribution between -1.6 and 1.6 standard deviations (the default155

value is 0). The snow conductivity follows a uniform distribution between 0.2 and 0.5156

Wm−1K−1 (default value is 0.31 Wm−1K−1). The half-width of the localization radius157

is 0.03 radians (∼190km) for SIC DA and 0.1 radians (∼550km) for SIT DA, consider-158

ing their different correlation length scales (Blanchard-Wrigglesworth & Bitz, 2014; Pon-159

soni et al., 2020). The SIC observational error is 10%, constant temporally and spatially,160

and the SITA observational error varies seasonally based on the spatial-mean of the Landy161

et al. (2022) SIT uncertainty (Fig. S1). The state variables updated by SIT DA are the162

SIC and SIT of each ice thickness category (SICN and SITN , respectively). SICN is163

the only variable that is updated by SIC DA due to the erroneous updates on SITN from164

SIC DA in some locations. An example is shown in Fig. S2, where some ensemble mem-165

bers have ice in the 5th category (> 1.1m) and their SIT5 is above 1.1m, while other en-166

semble members do not have ice in this category. This bounded and nonlinear feature167

of SITN leads to a skewed relationship between the observed SIC and the state variable168
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SIT5 and causes unrealistic updates on SITN . Updating SITN by SIC DA is also not169

recommended by previous studies (Kimmritz et al., 2018; Zhang et al., 2018, 2021) for170

similar reasons.171

Three suites of reforecast experiments, SSTrest, SICDA and SITDA, using the SPEAR172

seasonal prediction system, are initialized on the first day of May, June, July, August,173

and September and run as 15-member one-year ensemble forecasts. The experiments share174

the same initial conditions in the atmosphere, land and ocean components, which are175

taken from the standard SPEAR LO prediction system (Lu et al., 2020). SSTrest uses176

sea ice initial condition from SSTrest IC, SICDA from SICDA IC, and SITDA from SITDA IC.177

More detailed information about the SPEAR reforecast configurations can be found in178

Zhang et al. (2022).179

We decide to assimilate SITA instead of SIT mainly for two reasons. First, the model180

has a very different climatology from CryoSat-2 (Figs. S3a and c). We find that directly181

assimilating SIT reduces modeled SIT in the first few DA cycles in some grid cells and182

triggers thickness-based ice albedo feedback that further melts sea ice in those locations183

(figure not shown). Second, there is a large decrease in SIT from June to July in the ob-184

servational data (Fig. S3c), which is caused by a sudden reduction in snow depth there-185

fore unrealistically rapid unloading of snow load from the ice. However, the high anomaly186

correlation between SIV in the melting season and September SIE (Landy et al., 2022)187

suggests that the SITA observations contain valuable information for seasonal predic-188

tion.189

2.4 Evaluation Metrics190

We use the anomaly correlation coefficient (ACC) with observations to evaluate the191

model performance. Since there is no obvious trend in sea ice over our experiment time192

period (2011–2020), the full ACC is used. To test if two ACC values, ACC1 and ACC2,193

are significantly different, we apply a bootstrap procedure to get 1000 random samples194

(with replacement) of their ACC difference. If ACC1 is greater than ACC2, and the lower195

bound (5%) of the bootstrapped distribution of their difference is greater than zero, then196

we say ACC1 is significantly greater than ACC2, and vice versa. To compute an aver-197

age ACC over time or space, we apply the Fisher-z transform to each correlation coef-198

ficient to get their z values, average the z values, and then apply an inverse transform199

to obtain the averaged correlation coefficient.200

3 Results201

3.1 Assimilation of SIT anomaly observations202

We first analyze the time series of pan-Arctic SIV from SICDA IC and SITDA IC203

and compare it with CryoSat-2 (Fig. 1a). SICDA IC can generally capture the sign of204

the SIV anomalies but fails to capture the interannual and seasonal variability, while SITDA IC205

does a much better job at tracking the observed anomalies. The ACC of pan-Arctic SIV206

is increased from 0.46 to 0.89 due to the assimilation of SITA. The slight shift of SIV207

anomalies in SITDA IC as compared to CryoSat-2 is mostly due to the 5-day DA cy-208

cle. The shift is largely reduced in an experiment with daily DA frequency (plot not shown).209

Looking at the ACC of SIV at grid-cell level, Fig. 1b shows that SICDA IC simulates210

the SIV variability along the sea ice edges well, where the SIC component dominates the211

SIV variability. Conversely, SICDA IC has zero or negative correlation with CryoSat-212

2 in the ice-covered Central Arctic, where SITDA IC shows much higher ACC (Fig. 1c).213

The correlation difference map (Fig. 1d) confirms that SITDA IC has similar ACC val-214

ues to SICDA IC in the marginal ice zones, and its major improvement is found in the215

Central Arctic. SSTrest IC shows very similar SIV variability to SIC IC (r=0.46; not shown),216
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which is expected since SIC DA has little impact on pan-Arctic SIV anomalies as stated217

in (Zhang et al., 2021).218

3.2 Impact of SIT on seasonal predictions219

We first evaluate the ACC of grid-cell SIC and SIE averaged over the Arctic for220

the target month of September from the three suites of reforecast experiments (Fig. 2).221

The evolution of skill as a function of forecasting days from different experiments fol-222

lows a similar pattern in both metrics (Figs. 2a and c). SICDA and SITDA have an ini-223

tial advantage over SSTrest (dashed lines) in the first month. SICDA (thin solid lines)224

has higher ACC than SITDA (thick solid lines) in the first ∼10 days in most experiments225

and gradually loses to SITDA as the forecasting day increases. To focus on the September-226

targeted forecast, SITDA is better than SICDA in the May-to-August initialized fore-227

casts, but the improvement is only significant in the July and August initialized fore-228

casts (Figs. 2b and d). SICDA is significantly more skillful than SITDA for September229

1 initialized forecasts of SIC, and their skill is similar for local SIE. The mean skill of230

local SIC (SIE) averaged over all the initialization dates is 0.3(0.42) for SSTrest, 0.35(0.47)231

for SICDA, and 0.42(0.51) for SITDA. This suggests that the forecast skill of Septem-232

ber local SIC and SIE is gradually improved by adding each observation, and the im-233

provement from adding SIT DA is similar to the improvement from the early addition234

of SIC DA.235

Fig. 3 shows the spatial map of the reforecast skill of all experiments. The skill from236

SSTrest and SICDA is negligible in the May-initialized runs and starts to emerge along237

the sea ice edge in June. SICDA has significantly higher ACC than SSTrest, mostly along238

the sea ice edges, for the September-initialized forecast (also shown in Fig. 2b). SITDA239

overall shows more positive ACC values (Fig. 3c) across the whole Arctic than SSTrest240

and SICDA. The difference map between SITDA and SICDA (Fig. 3d) highlights the skill241

improvement from adding SIT DA, which is most prominent in the Central Arctic and242

Fram Strait from the May-to-August initialized forecasts. Degradation is seen around243

the Chukchi Sea and part of the Beaufort in those months. The skill differences in the244

September-initialized forecasts is minor across the Arctic but overall SICDA has better245

SIC skill than SITDA.246

To understand the differences in September SIC prediction skill across the refore-247

cast experiments, we analyze the correlation between observed September SIC and the248

earlier SIV in their initial conditions, as a diagnostic for potential SIV-based predictabil-249

ity (Fig. 4). SSTrest IC and SICDA IC have very similar SIV-SIC correlation on the first250

day of May, June and July, with SICDA IC showing slightly higher values than SSTrest IC,251

thereafter. We find that the correlation is mostly positive along the sea ice edge in SICDA IC252

and negative in the Central Arctic until September (Fig. 4b). The correlation in CryoSat-253

2 (Fig. 4d) has similar positive patterns near the ice edge but has more positive values254

in the Central Arctic, which leads to overall higher pan-Arctic averaged values (see text255

on each panel). SITDA IC has higher pan-Arctic averaged correlation than CryoSat-2256

for May, June, July, and August (Fig. 4c), indicating that it combines the advantages257

of the model and both observation types. Fig. 4e, which plots the correlation differences258

between SITDA IC and SICDA IC, shows notable improvements from SIT DA in the259

Central Arctic and GIN Seas. The differences are significant for all months. However,260

degradation is seen in the Chukchi Sea and part of the Beaufort Sea, where SICDA IC261

has neutral or slightly positive correlation but CryoSat-2 has negative correlation for May,262

June, and July. As a consequence, SITDA IC has negative correlation values around the263

Chukchi Sea for those initialization dates. This is important for seasonal sea ice predic-264

tion because the September SIE contour is typically located over this region of anticor-265

relation in the Chukchi Sea (Fig. 4e). The difference map of the SIV-SIC correlation shows266

a very similar pattern to the skill difference map between SITDA and SICDA (Fig. 3d),267

with prominent improvements seen in the Central Arctic and degradation around the268
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Chukchi and Beaufort Seas. Their pattern correlations for all months are significantly269

positive, and are above 0.5 for the months of May, June, and July. This suggests that270

improvement/degradation in prediction skill is more likely to appear in regions where271

the SIV-SIC correlation is improved/degraded, especially at long lead times.272

To assess if the negative SIV-SIC correlation is unique over the CryoSat-2 era 2011-273

2020, we first look at correlation maps computed over different decades from the SICDA IC274

experiment, which was run over a longer period of 1991-2020 due to observational avail-275

ability (Fig. S4). We find that the negative regions of SIV-SIC correlation are only present276

in some decades and are not present over the longer time period (30 years). For instance,277

Arctic-averaged correlation between June SIV and September SIC was 0.4 in the 2000s278

compared to 0.05 in the 2010s. We also performed a similar analysis using a large (30279

member) ensemble of SPEAR LO CMIP6 historical forcing simulations. Although the280

ensemble mean shows a homogenous positive SIV-SIC map, the correlation values vary281

greatly amongst members (Fig. S5). Regions of negative SIV-SIC correlation are seen282

in most ensemble members in varying spatial locations. We calculate the percentage of283

area that has negative SIV-SIC correlation values from different experiments (Table S1)284

and confirm that the SPEAR LO ensemble has a large range of negative area. All DA285

experiments are within this range, as well as the CryoSat-2 observations, which always286

have less negative area than SICDA IC. This indicates that the SIV-SIC correlation com-287

puted over a 10-year period has a large natural variability, and the negative values seen288

in CryoSat-2 are within this variability. According to the CryoSat-2 observations, the289

negative values for the 2010s are located around the Chukchi Sea. It is also possible that290

the CryoSat-2 observations have errors in this area. We decompose the SIV-SIC corre-291

lation from CryoSat-2 into the freeboard-SIC and snow depth-SIC correlations and find292

that negative values are found in both of the component correlations as well. Further293

investigations into the freeboard retrieval and snow depth estimates are necessary to un-294

derstand the cause of the negative SIV-SIC correlations but it is outside the scope of this295

study.296

We also evaluate the forecast skill of regional SIE and correspondingly examine the297

correlation between the observed September SIE and earlier SIV. SITDA shows better298

skill than SICDA in the Laptev and East Siberian Seas (Figs. S6a and b) and worse skill299

in the Chukchi Sea and Canadian Archipelago (Figs. S6c and e). The improvement/degradation300

in the overall forecast skill can mostly be explained by the improvement/degradation in301

their regional SIV-SIE correlations. SICDA IC matches well with the observations in the302

Laptev and Beaufort Seas (Figs. S6a and d) and performs poorly in the East Siberian303

Sea (Fig. S6b), where the SITDA IC shows the greatest advantage. The observed SIV-304

SIE correlation in the Chukchi Sea drops abruptly from August to July and is even neg-305

ative in June and earlier. This is also where the negative local SIV-SIC correlation ex-306

ists in Fig. 4c. As suggested in Fig. S4, this is likely unique to the 2010s, when the SIV-307

SIE/SIC correlation is disrupted by other factors, e.g., storms happening in the west-308

ern Arctic during the melting season (Parkinson & Comiso, 2013; Lukovich et al., 2021).309

This negative correlation does not appear in the Chukchi Sea in SICDA IC, except for310

the July lead (Fig. S4c) and hence assimilating CryoSat-2 actually reduces the SIV-SIE311

correlation significantly in this region (Fig. S6c). The results for the pan-Arctic SIE are312

more equivocal, in that although SITDA IC has higher SIV-SIE correlation values than313

SICDA IC on all intialization dates (compare solid red to solid blue lines), we only see314

significant improvements in the August and September-initialized forecasts and signif-315

icant degradation in the June-initialized forecast (compare red and blue dots).316

To better understand the June forecast skill in SITDA and SICDA, we compare317

the SIV-SIE and SIE-SIE correlations at pan-Arctic scale in their initial conditions (i.e.,318

SITDA IC and SICDA IC) from 2011 to 2020 (Figs. S7a and b) and find that the SIE-319

SIE correlation has a local maximum near mid-June after the initial drop, which is even320

greater than the SIV-SIE correlation. This feature is not seen in the longer time period321
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(Fig. S7c). The comparison between Figs. S7b and c suggests that the June SIV-SIE cor-322

relation is abnormally low and the June SIE-SIE correlation is abnormally high in the323

2010s compared to their values in the climatology. This feature may help explain why324

the pan-Arctic June SIV is not a strong predictor of the pan-Arctic September SIE in325

the 2010s.326

4 Conclusions and Discussion327

In this study, we assimilate the first year-round sea ice thickness (SIT) observations328

retrieved from the CryoSat-2 satellite radar altimeter into the GFDL ocean and sea ice329

model (MOM6/SIS2) through our sea ice data assimilation framework built upon DART330

and SIS2. Considering that our model has a very different SIT climatology from CryoSat-331

2, and the observations have an unrealistically fast mean thickness drop from June to332

July due to problems in the snow depth estimates, we assimilate the SIT anomalies (SITA)333

instead of the original SIT. To counteract the large uncertainty in SIT retrievals result-334

ing from snow depth uncertainty, we plan to directly assimilate freeboard retrievals from335

CryoSat-2 in the near future.336

Our DA results over the period 2011–2020 show that the pan-Arctic and regional337

sea ice volume anomalies are significantly improved when SIT is assimilated. The grid-338

cell scale evaluation show that the improvements occur mainly in the Central Arctic. We339

conduct three suites of reforecast experiments, SSTrest that has no direct sea ice DA in340

initialization, SICDA that includes assimilation of SIC, and SITDA that has joint as-341

similation of SIC and SIT. The evaluation of grid-cell SIC and SIE shows that SITDA342

has better skill in predicting September sea ice than SICDA in the May to August-initialized343

forecasts, although only the July and August-initialized forecasts have passed the 95%344

significance test. The skill improvement is mostly found in the Central Arctic and GIN345

Seas. Degradation is seen around the Chukchi Sea, part of the Beaufort and East Siberian346

Seas. The mean skill averaged over all initialization months for the three experiments347

suggest that the additional improvement on September sea ice forecast brought by SIT348

DA is comparable to the earlier addition of SIC DA.349

We hypothesize that the skill improvements from assimilating SIT is mainly due350

to the SIV-based predictability change. We analyze the correlation between September351

SIC and earlier SIV in the different initial conditions for diagnosis. The SIV-SIC cor-352

relation difference between SITDA and SICDA initial conditions closely mirrors the Septem-353

ber SIC prediction skill differences between these experiments. CryoSat-2 has a region354

of negative SIV-SIC correlation around the Chukchi Sea. As a result of assimilating CryoSat-355

2 SITA, SITDA IC has negative SIV-SIC correlation values around the same area, while356

it has higher SIV-SIC correlation values than SICDA IC almost everywhere else, espe-357

cially in the Central Arctic. We compute the SIV-SIC correlation in different decades358

using the SICDA initial conditions and find that the correlation is positive across the359

whole Arctic over a longer time period (30 years) but can have negative values in some360

decades. We also show this negative SIV-SIC correlation feature is seen in most ensem-361

ble members of SPEAR LO, at varying spatial locations, which suggests that the SIV-362

SIC correlation has a large natural variability and there is not an obvious single or set363

of regions where we can choose to discard the observations. On the other hand, it is also364

possible that the CryoSat-2 observations have errors around the Chukchi Sea, and as-365

similating these data causes lower September SIC forecast skill in the area. Further ob-366

servational studies are needed to assess and potentially improve the quality of the CryoSat-367

2 observations on a regional basis.368

The pan-Arctic SIE results are more complicated. Although the SIV-based predictabil-369

ity of September SIE is clearly improved in the initial condition of SITDA in all months,370

statistically significant improvement in the actual September sea ice skill is only seen in371

the August- and September-initialized forecasts. SITDA loses to SICDA significantly in372
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the June-initialized forecast, which is very likely due to the disrupted SIV-SIC correla-373

tion in the Chukchi and Beaufort area and to the enhanced impact (”bump”) of June374

SIC correlations in the 2010s.375

Our results are limited by the length of the available SIT data, and hence should376

be interpreted with caution. The September Arctic sea ice in the 2010s decade is found377

to be particularly hard to predict at longer lead times because it seems to have a weaker378

correlation with its dominant predictor: the SIV anomaly in the melt season. In SICDA379

experiments the SIV-SIC correlations are significantly weaker in the 2010s compared to380

the 2000s. Nevertheless, we find unique value of the CryoSat-2 SIT observations for im-381

proving the Arctic summer sea ice prediction at longer lead times. Our study therefore382

suggests that having a longer record of satellite-retrieved SIT observations is critical for383

the seasonal prediction of Arctic summer sea ice.384

5 Data Availability Statement385

Our model outputs including sea ice thickness and concentration from the data as-386

similation experiments and the reforecast experiments are shared at 10.6084/m9.figshare.23646360.387

The year-round CryoSat-2 sea ice thickness observations can be downloaded at https://data.bas.ac.uk/full-388

record.php?id=GB/NERC/BAS/PDC/01613. The NSIDC NASA Team sea ice concen-389

tration observations can be downloaded at https://nsidc.org/data/nsidc-0051/versions/2.390
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(a)

(b)

(c)

(d)

ACC of the simulated and observed SIV

Figure 1. Comparison between the two DA experiments. (a) The time series of sea ice volume

anomalies for SICDA IC (blue), SITDA IC (red), and observations (black). The spatial map of

the ACC of simulated and observed SIV for (b) SICDA IC, (c) SITDA IC, and (d) their differ-

ence (SITDA IC - SICDA IC). The black contours on (d) are the observed SIE climatology over

2011-2020.
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(a) (b)

(d)(c) ACC of local SIE averaged over the Arctic September-mean ACC of local SIE for pan Arctic

ACC of local SIC averaged over the Arctic September-mean ACC of local SIC for pan Arctic

0.30 0.35 0.42

0.42 0.47 0.51

Figure 2. Pan-Arctic averaged ACC of (a) local SIC and (c) local SIE as a function of fore-

cast days, and the September-mean ACC of (b) local SIC and (d) local SIE from each initializa-

tion month. Prediction skill is shown for the SSTrest (dashed lines), SICDA (thin solid lines),

and SITDA (thick solid lines) reforecast experiments. For each grid cell, the local SIE is one if

SIC >15% and zero if SIC <15%. ACC is calculated every day of the year using data from 2011-

2020. Only grid cells that have >10% SIC interannual variability are taken into average for each

day. The purple dots in (b) and (d) indicate that SICDA is significantly better than SSTrest, and

the red dots/circles that SITDA/SICDA is significantly better than SICDA/SITDA. The num-

bers in (b) and (d) indicate the mean ACC over all the initialization months for SSTrest (blue),

SICDA (purple), and SITDA (red).
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September-mean ACC of SIC from May to September-initialized Reforecasts
(a)

(b)

(c)

(d)

Figure 3. Correlation between the observed September SIC and the forecasted September SIC

initialized from May to September from (a) SSTrest, (b) SICDA, (c) SITDA, and (d) the differ-

ence between the two DA-initialized reforecast experiments (SITDA - SICDA). The number on

each plot is the pan-Arctic area-weighted average of SIC ACC excluding the grid cells where the

observed SIC interannual standard deviation is lower than 10% or there is no observation. The

numbers with asterisk on (d) indicate that the differences between SITDA and SICDA passed the

95% significance test.
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(a)

(b)

(c)

(d)

(e)

SIV correlation with observed September SIC

✱ ✱ ✱ ✱ ✱

Figure 4. Correlation between the observed September SIC and SIV from the 1st day of May,

June, July, August, and September for (a) SSTrest IC, (b) SICDA IC, (c) SITDA IC, and (d)

CryoSat-2, and (e) the difference between the two DA experiments (SITDA IC - SICDA IC).

The correlation is calculated for every day in September and is then averaged over 30 days. The

number on each map is the pan-Arctic area-weighted average correlation excluding the grid cells

where the observed SIC interannual standard deviation is lower than 10% or there is no ob-

servation. The numbers with asterisk on the maps in (e) indicate that the differences between

SITDA IC and SICDA IC passed the 95% significance test. The numbers above each map in (e)

are the pattern correlations between (e) and Fig. 3d and the asterisk indicates that the correla-

tion is 95% significantly positive.
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September-mean ACC of SIC from May to September-initialized Reforecasts
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SIV correlation with observed September SIC
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