References
[1] A.V. Everest-Dass, E.S.X. Moh, C. Ashwood, A.M.M. Shathili, N.H. Packer, Human disease glycomics: technology advances enabling protein glycosylation analysis - part 2, Expert review of proteomics, 15 (2018) 341-352.
[2] K. Yamada, K. Kakehi, Recent advances in the analysis of carbohydrates for biomedical use, Journal of pharmaceutical and biomedical analysis, 55 (2011) 702-727. [3] in: A. Varki, R.D. Cummings, J.D. Esko, P. Stanley, G.W. Hart, M. Aebi, D. Mohnen, T. Kinoshita, N.H. Packer, J.H. Prestegard, R.L. Schnaar, P.H. Seeberger (Eds.) Essentials of Glycobiology, Cold Spring Harbor Laboratory Press Copyright © 2022 by the Consortium of Glycobiology Editors, La Jolla, California. Published by Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. All rights reserved., Cold Spring Harbor (NY), 2022. [4] L. Oliveira-Ferrer, K. Legler, K. Milde-Langosch, Role of protein glycosylation in cancer metastasis, Seminars in cancer biology, 44 (2017) 141-152. [5] M. Pucci, N. Malagolini, F. Dall’Olio, Glycobiology of the Epithelial to Mesenchymal Transition, Biomedicines, 9 (2021). [6] K. Li, X. Liu, X. Zhang, Z. Liu, Y. Yu, J. Zhao, L. Wang, Y. Kong, M. Chen, Identification microbial glycans substructure associate with disease and species, Carbohydrate polymers, 273 (2021) 118595. [7] F. Rosati, A. Capone, C.D. Giovampaola, C. Brettoni, R. Focarelli, Sperm-egg interaction at fertilization: glycans as recognition signals, The International journal of developmental biology, 44 (2000) 609-618. [8] M. Gómez-Gaviria, A.P. Vargas-Macías, L.C. García-Carnero, I. Martínez-Duncker, H.M. Mora-Montes, Role of Protein Glycosylation in Interactions of Medically Relevant Fungi with the Host, Journal of fungi (Basel, Switzerland), 7 (2021). [9] T. Feizi, B. Mulloy, Carbohydrates and glycoconjugates. Glycomics: the new era of carbohydrate biology, Current opinion in structural biology, 13 (2003) 602-604. [10] T.W. Rademacher, R.B. Parekh, R.A. Dwek, Glycobiology, Annual review of biochemistry, 57 (1988) 785-838. [11] S. Hemmerich, Glycomics: coming of age across the globe, Drug discovery today, 10 (2005) 307-309. [12] E. Adua, A. Russell, P. Roberts, Y. Wang, M. Song, W. Wang, Innovation Analysis on Postgenomic Biomarkers: Glycomics for Chronic Diseases, Omics : a journal of integrative biology, 21 (2017) 183-196. [13] A.J. Parodi, Reglucosylation of glycoproteins and quality control of glycoprotein folding in the endoplasmic reticulum of yeast cells, Biochimica et biophysica acta, 1426 (1999) 287-295. [14] J.N. Arnold, M.R. Wormald, R.B. Sim, P.M. Rudd, R.A. Dwek, The impact of glycosylation on the biological function and structure of human immunoglobulins, Annual review of immunology, 25 (2007) 21-50. [15] P. Hossler, Protein glycosylation control in mammalian cell culture: past precedents and contemporary prospects, Advances in biochemical engineering/biotechnology, 127 (2012) 187-219. [16] W. Wang, Glycomics Research in China: The Current State of the Art, Omics : a journal of integrative biology, 23 (2019) 601-602. [17] H. Nie, H. Ju, J. Fan, X. Shi, Y. Cheng, X. Cang, Z. Zheng, X. Duan, W. Yi, O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth, Nature communications, 11 (2020) 36. [18] C. Huang, Y. Harada, A. Hosomi, Y. Masahara-Negishi, J. Seino, H. Fujihira, Y. Funakoshi, T. Suzuki, N. Dohmae, T. Suzuki, Endo-β-N-acetylglucosaminidase forms N-GlcNAc protein aggregates during ER-associated degradation in Ngly1-defective cells, Proceedings of the National Academy of Sciences of the United States of America, 112 (2015) 1398-1403. [19] J. Hofsteenge, D.R. Müller, T. de Beer, A. Löffler, W.J. Richter, J.F. Vliegenthart, New type of linkage between a carbohydrate and a protein: C-glycosylation of a specific tryptophan residue in human RNase Us, Biochemistry, 33 (1994) 13524-13530. [20] F. Turroni, C. Milani, S. Duranti, J. Mahony, D. van Sinderen, M. Ventura, Glycan Utilization and Cross-Feeding Activities by Bifidobacteria, Trends in microbiology, 26 (2018) 339-350. [21] L.C. McDermott, J.A. Freel, A.P. West, P.J. Bjorkman, M.W. Kennedy, Zn-alpha2-glycoprotein, an MHC class I-related glycoprotein regulator of adipose tissues: modification or abrogation of ligand binding by site-directed mutagenesis, Biochemistry, 45 (2006) 2035-2041. [22] M.P. Winters, Z. Sui, M. Wall, Y. Wang, J. Gunnet, J. Leonard, H. Hua, W. Yan, A. Suckow, A. Bell, W. Clapper, C. Jenkinson, P. Haug, T. Koudriakova, N. Huebert, W.V. Murray, Discovery of N-arylpyrroles as agonists of GPR120 for the treatment of type II diabetes, Bioorganic & medicinal chemistry letters, 28 (2018) 841-846. [23] L. Shao, Y. Luo, D.J. Moloney, R. Haltiwanger, O-glycosylation of EGF repeats: identification and initial characterization of a UDP-glucose: protein O-glucosyltransferase, Glycobiology, 12 (2002) 763-770. [24] S.S. Zhou, J. Xu, C.K. Tsang, K.M. Yip, W.P. Yeung, Z.Z. Zhao, S. Zhu, H. Fushimi, H.Y. Chang, H.B. Chen, Comprehensive quality evaluation and comparison of Angelica sinensis radix and Angelica acutiloba radix by integrated metabolomics and glycomics, Journal of food and drug analysis, 26 (2018) 1122-1137. [25] K.M. Yip, J. Xu, S.S. Zhou, Y.M. Lau, Q.L. Chen, Y.C. Tang, Z.J. Yang, Z.P. Yao, P. Ding, H.B. Chen, Z.Z. Zhao, Characterization of Chemical Component Variations in Different Growth Years and Tissues of Morindae Officinalis Radix by Integrating Metabolomics and Glycomics, Journal of agricultural and food chemistry, 67 (2019) 7304-7314. [26] S.A. Priola, V.A. Lawson, Glycosylation influences cross-species formation of protease-resistant prion protein, The EMBO journal, 20 (2001) 6692-6699. [27] G. Thanabalasingham, J.E. Huffman, J.J. Kattla, M. Novokmet, I. Rudan, A.L. Gloyn, C. Hayward, B. Adamczyk, R.M. Reynolds, A. Muzinic, N. Hassanali, M. Pucic, A.J. Bennett, A. Essafi, O. Polasek, S.A. Mughal, I. Redzic, D. Primorac, L. Zgaga, I. Kolcic, T. Hansen, D. Gasperikova, E. Tjora, M.W. Strachan, T. Nielsen, J. Stanik, I. Klimes, O.B. Pedersen, P.R. Njølstad, S.H. Wild, U. Gyllensten, O. Gornik, J.F. Wilson, N.D. Hastie, H. Campbell, M.I. McCarthy, P.M. Rudd, K.R. Owen, G. Lauc, A.F. Wright, Mutations in HNF1A result in marked alterations of plasma glycan profile, Diabetes, 62 (2013) 1329-1337. [28] M. Tijardović, T. Štambuk, A. Juszczak, T. Keser, D. Gasperikova, M. Novokmet, E. Tjora, E. Pape Medvidović, J. Stanik, P. Rasmus Njølstad, G. Lauc, K.R. Owen, O. Gornik, Fucosylated AGP glycopeptides as biomarkers of HNF1A-Maturity onset diabetes of the young, Diabetes research and clinical practice, 185 (2022) 109226. [29] A.T. Sage, L.A. Walter, Y. Shi, M.I. Khan, H. Kaneto, A. Capretta, G.H. Werstuck, Hexosamine biosynthesis pathway flux promotes endoplasmic reticulum stress, lipid accumulation, and inflammatory gene expression in hepatic cells, American journal of physiology. Endocrinology and metabolism, 298 (2010) E499-511. [30] K. Sasai, Y. Ikeda, T. Fujii, T. Tsuda, N. Taniguchi, UDP-GlcNAc concentration is an important factor in the biosynthesis of beta1,6-branched oligosaccharides: regulation based on the kinetic properties of N-acetylglucosaminyltransferase V, Glycobiology, 12 (2002) 119-127. [31] J. Gu, Development of glycoscience in China, Glycoconjugate journal, 29 (2012) 239-240. [32] I.G. Lunde, J.M. Aronsen, H. Kvaløy, E. Qvigstad, I. Sjaastad, T. Tønnessen, G. Christensen, L.M. Grønning-Wang, C.R. Carlson, Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure, Physiological genomics, 44 (2012) 162-172. [33] P. Umapathi, O.O. Mesubi, P.S. Banerjee, N. Abrol, Q. Wang, E.D. Luczak, Y. Wu, J.M. Granger, A.C. Wei, O.E. Reyes Gaido, L. Florea, C.C. Talbot, Jr., G.W. Hart, N.E. Zachara, M.E. Anderson, Excessive O-GlcNAcylation Causes Heart Failure and Sudden Death, Circulation, 143 (2021) 1687-1703. [34] J.N. Wright, H.E. Collins, A.R. Wende, J.C. Chatham, O-GlcNAcylation and cardiovascular disease, Biochemical Society transactions, 45 (2017) 545-553. [35] R.V. Jensen, I. Andreadou, D.J. Hausenloy, H.E. Bøtker, The Role of O-GlcNAcylation for Protection against Ischemia-Reperfusion Injury, International journal of molecular sciences, 20 (2019). [36] L.J. Watson, H.T. Facundo, G.A. Ngoh, M. Ameen, R.E. Brainard, K.M. Lemma, B.W. Long, S.D. Prabhu, Y.T. Xuan, S.P. Jones, O-linked β-N-acetylglucosamine transferase is indispensable in the failing heart, Proceedings of the National Academy of Sciences of the United States of America, 107 (2010) 17797-17802. [37] R. Gélinas, F. Mailleux, J. Dontaine, L. Bultot, B. Demeulder, A. Ginion, E.P. Daskalopoulos, H. Esfahani, E. Dubois-Deruy, B. Lauzier, C. Gauthier, A.K. Olson, B. Bouchard, C. Des Rosiers, B. Viollet, K. Sakamoto, J.L. Balligand, J.L. Vanoverschelde, C. Beauloye, S. Horman, L. Bertrand, AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation, Nature communications, 9 (2018) 374. [38] H. Zhao, H. Yang, C. Geng, Y. Chen, J. Pang, T. Shu, M. Zhao, Y. Tang, Z. Li, B. Li, C. Hou, X. Song, A. Wu, X. Guo, S. Chen, B. Liu, C. Yan, J. Wang, Role of IgE-FcεR1 in Pathological Cardiac Remodeling and Dysfunction, Circulation, 143 (2021) 1014-1030. [39] P.S. Banerjee, J. Ma, G.W. Hart, Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria, Proceedings of the National Academy of Sciences of the United States of America, 112 (2015) 6050-6055. [40] E. Memarian, L.M. t Hart, R.C. Slieker, R.F.L. Lemmers, A.A. van der Heijden, F. Rutters, G. Nijpels, E. Schoep, A.G. Lieverse, E.J.G. Sijbrands, M. Wuhrer, M. van Hoek, V. Dotz, Plasma protein N-glycosylation is associated with cardiovascular disease, nephropathy, and retinopathy in type 2 diabetes, BMJ open diabetes research & care, 9 (2021). [41] S.S. Singh, R. Heijmans, C.K.E. Meulen, A.G. Lieverse, O. Gornik, E.J.G. Sijbrands, G. Lauc, M. van Hoek, Association of the IgG N-glycome with the course of kidney function in type 2 diabetes, BMJ open diabetes research & care, 8 (2020). [42] X. Meng, M. Song, M. Vilaj, J. Štambuk, M. Dolikun, J. Zhang, D. Liu, H. Wang, X. Zhang, J. Zhang, W. Cao, A. Momčilović, I. Trbojević-Akmačić, X. Li, D. Zheng, L. Wu, X. Guo, Y. Wang, G. Lauc, W. Wang, Glycosylation of IgG Associates with Hypertension and Type 2 Diabetes Mellitus Comorbidity in the Chinese Muslim Ethnic Minorities and the Han Chinese, Journal of personalized medicine, 11 (2021). [43] A. Sarrats, R. Saldova, E. Pla, E. Fort, D.J. Harvey, W.B. Struwe, R. de Llorens, P.M. Rudd, R. Peracaula, Glycosylation of liver acute-phase proteins in pancreatic cancer and chronic pancreatitis, Proteomics. Clinical applications, 4 (2010) 432-448. [44] K.R. Reiding, G.C.M. Vreeker, A. Bondt, M.R. Bladergroen, J.M.W. Hazes, Y.E.M. van der Burgt, M. Wuhrer, R. Dolhain, Serum Protein N-Glycosylation Changes with Rheumatoid Arthritis Disease Activity during and after Pregnancy, Frontiers in medicine, 4 (2017) 241. [45] M. Nikolac Perkovic, M. Pucic Bakovic, J. Kristic, M. Novokmet, J.E. Huffman, V. Vitart, C. Hayward, I. Rudan, J.F. Wilson, H. Campbell, O. Polasek, G. Lauc, N. Pivac, The association between galactosylation of immunoglobulin G and body mass index, Progress in neuro-psychopharmacology & biological psychiatry, 48 (2014) 20-25. [46] J. Krištić, F. Vučković, C. Menni, L. Klarić, T. Keser, I. Beceheli, M. Pučić-Baković, M. Novokmet, M. Mangino, K. Thaqi, P. Rudan, N. Novokmet, J. Sarac, S. Missoni, I. Kolčić, O. Polašek, I. Rudan, H. Campbell, C. Hayward, Y. Aulchenko, A. Valdes, J.F. Wilson, O. Gornik, D. Primorac, V. Zoldoš, T. Spector, G. Lauc, Glycans are a novel biomarker of chronological and biological ages, The journals of gerontology. Series A, Biological sciences and medical sciences, 69 (2014) 779-789. [47] K. Ihara, C. Fukano, T. Ayabe, M. Fukami, T. Ogata, T. Kawamura, T. Urakami, N. Kikuchi, I. Yokota, K. Takemoto, T. Mukai, A. Nishii, T. Kikuchi, T. Mori, N. Shimura, G. Sasaki, R. Kizu, N. Takubo, S. Soneda, T. Fujisawa, R. Takaya, Z. Kizaki, S. Kanzaki, K. Hanaki, N. Matsuura, Y. Kasahara, K. Kosaka, T. Takahashi, K. Minamitani, S. Matsuo, H. Mochizuki, K. Kobayashi, A. Koike, R. Horikawa, S. Teno, K. Tsubouchi, T. Mochizuki, Y. Igarashi, S. Amemiya, S. Sugihara, FUT2 non-secretor status is associated with Type 1 diabetes susceptibility in Japanese children, Diabetic medicine : a journal of the British Diabetic Association, 34 (2017) 586-589. [48] R.F.H. Lemmers, M. Vilaj, D. Urda, F. Agakov, M. Šimurina, L. Klaric, I. Rudan, H. Campbell, C. Hayward, J.F. Wilson, A.G. Lieverse, O. Gornik, E.J.G. Sijbrands, G. Lauc, M. van Hoek, IgG glycan patterns are associated with type 2 diabetes in independent European populations, Biochimica et biophysica acta. General subjects, 1861 (2017) 2240-2249. [49] Z. Wu, H. Li, D. Liu, L. Tao, J. Zhang, B. Liang, X. Liu, X. Wang, X. Li, Y. Wang, W. Wang, X. Guo, IgG Glycosylation Profile and the Glycan Score Are Associated with Type 2 Diabetes in Independent Chinese Populations: A Case-Control Study, Journal of diabetes research, 2020 (2020) 5041346. [50] E.E. Irons, J.T.Y. Lau, Systemic ST6Gal-1 Is a Pro-survival Factor for Murine Transitional B Cells, Frontiers in immunology, 9 (2018) 2150. [51] E. Lontchi-Yimagou, E. Sobngwi, T.E. Matsha, A.P. Kengne, Diabetes mellitus and inflammation, Current diabetes reports, 13 (2013) 435-444. [52] M.C. Calle, M.L. Fernandez, Inflammation and type 2 diabetes, Diabetes & metabolism, 38 (2012) 183-191. [53] J.T. Smilowitz, S.M. Totten, J. Huang, D. Grapov, H.A. Durham, C.J. Lammi-Keefe, C. Lebrilla, J.B. German, Human milk secretory immunoglobulin a and lactoferrin N-glycans are altered in women with gestational diabetes mellitus, The Journal of nutrition, 143 (2013) 1906-1912. [54] V. Vanhooren, W. Laroy, C. Libert, C. Chen, N-glycan profiling in the study of human aging, Biogerontology, 9 (2008) 351-356. [55] X.E. Liu, L. Desmyter, C.F. Gao, W. Laroy, S. Dewaele, V. Vanhooren, L. Wang, H. Zhuang, N. Callewaert, C. Libert, R. Contreras, C. Chen, N-glycomic changes in hepatocellular carcinoma patients with liver cirrhosis induced by hepatitis B virus, Hepatology (Baltimore, Md.), 46 (2007) 1426-1435. [56] E. Staudacher, F. Altmann, I.B. Wilson, L. März, Fucose in N-glycans: from plant to man, Biochimica et biophysica acta, 1473 (1999) 216-236. [57] N. Ding, H. Nie, X. Sun, W. Sun, Y. Qu, X. Liu, Y. Yao, X. Liang, C.C. Chen, Y. Li, Human serum N-glycan profiles are age and sex dependent, Age and ageing, 40 (2011) 568-575. [58] W.E. Naugler, T. Sakurai, S. Kim, S. Maeda, K. Kim, A.M. Elsharkawy, M. Karin, Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production, Science (New York, N.Y.), 317 (2007) 121-124. [59] F.X. Bosch, J. Ribes, M. Díaz, R. Cléries, Primary liver cancer: worldwide incidence and trends, Gastroenterology, 127 (2004) S5-s16. [60] Z. Meng, C. Li, G. Ding, W. Cao, X. Xu, Y. Heng, Y. Deng, Y. Li, X. Zhang, D. Li, W. Wang, Y. Wang, W. Xing, H. Hou, Glycomics: Immunoglobulin G N-Glycosylation Associated with Mammary Gland Hyperplasia in Women, Omics : a journal of integrative biology, 24 (2020) 551-558. [61] Y. Liang, P. Han, T. Wang, H. Ren, L. Gao, P. Shi, S. Zhang, A. Yang, Z. Li, M. Chen, Stage-associated differences in the serum N- and O-glycan profiles of patients with non-small cell lung cancer, Clinical proteomics, 16 (2019) 20. [62] Z. Kyselova, Y. Mechref, P. Kang, J.A. Goetz, L.E. Dobrolecki, G.W. Sledge, L. Schnaper, R.J. Hickey, L.H. Malkas, M.V. Novotny, Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles, Clinical chemistry, 54 (2008) 1166-1175. [63] M.N. Christiansen, J. Chik, L. Lee, M. Anugraham, J.L. Abrahams, N.H. Packer, Cell surface protein glycosylation in cancer, Proteomics, 14 (2014) 525-546. [64] J. Wu, X. Xie, S. Nie, R.J. Buckanovich, D.M. Lubman, Altered expression of sialylated glycoproteins in ovarian cancer sera using lectin-based ELISA assay and quantitative glycoproteomics analysis, Journal of proteome research, 12 (2013) 3342-3352. [65] J.H. Rho, J.J. Ladd, C.I. Li, J.D. Potter, Y. Zhang, D. Shelley, D. Shibata, D. Coppola, H. Yamada, H. Toyoda, T. Tada, T. Kumada, D.E. Brenner, S.M. Hanash, P.D. Lampe, Protein and glycomic plasma markers for early detection of adenoma and colon cancer, Gut, 67 (2018) 473-484. [66] Y. Wang, J.J. Zhang, Z.X. Wang, F. Cui, Q.N. Zhang, P.P. Song, B. Li, Z.S. Tang, F.D. Hu, X.F. Shi, Characterization of chemical composition variations in raw and processed Codonopsis Radix by integrating metabolomics and glycomics based on multiple chromatography-mass spectrometry technology, Journal of separation science, 45 (2022) 2375-2393. [67] L. Liu, H. Qin, M. Ye, [Recent advances in glycopeptide enrichment and mass spectrometry data interpretation approaches for glycoproteomics analyses], Se pu = Chinese journal of chromatography, 39 (2021) 1045-1054.