References
Amberg, D.C., Goldstein, A.L. & Cole, C.N. (1992). Isolation and
characterization of RAT1: an essential gene of Saccharomyces cerevisiae
required for the efficient nucleocytoplasmic trafficking of mRNA. Genes
& Development, 6, 1173–1189.
Bashkirov, V.I., Solinger, J.A. & Heyer, W.D. (1995). Identification of
functional domains in the Sep1 protein (= Kem1, Xrn1), which is required
for transition through meiotic prophase in Saccharomyces
cerevisiae . Chromosoma, 104 (3), 215-222. doi: 10.1007/BF00352186.
Basu, S., Mallik, S., Hait, S., & Kundu, S. (2021). Genome-scale
molecular principles of mRNA half-life regulation in yeast. The FEBS
Journal, 288 (11), 3428-3447. doi: 10.1111/febs.15670.
Benet, M., Miguel, A., Carrasco, F., Li, T., Planells, J., Alepuz, P.,
Tordera, V., & Pérez-Ortín, J.E. (2017). Modulation of protein
synthesis and degradation maintains proteostasis during yeast growth at
different temperatures. Biochimica et Biophysica Acta, Gene Regulatory
Mechanisms, 1860 (7), 794-802. doi: 10.1016/j.bbagrm.2017.04.003.
Blasco-Moreno, B., de Campos-Mata, L., Böttcher, R., García-Martínez,
J., Jungfleisch, J., Nedialkova, D.D., Chattopadhyay, S., Gas, M.E.,
Oliva, B., Pérez-Ortín, J.E., Leidel, S.A., Choder, M., & Díez, J.
(2019). The exonuclease Xrn1 activates transcription and translation of
mRNAs encoding membrane proteins. Nature Communications, 10 (1), 1298.
doi: 10.1038/s41467-019-09199-6.
Braun, J.E., Truffault, V., Boland, A., Huntzinger, E., Chang, C.T.,
Haas, G., Weichenrieder, O., Coles, M., & Izaurralde, E. (2012). A
direct interaction between DCP1 and XRN1 couples mRNA decapping to 5’
exonucleolytic degradation. Nature Structural & Molecular Biology, 19
(12), 1324-1331. doi: 10.1038/nsmb.2413.
Chang, J.H., Xiang, S. & Tong, L. (2011). 50-30 Exoribonucleases. In:
A. W. Nicholson (Ed.) Ribonucleases, Vol. 7. pp. 167–192, Heidelberg:
Springer.
Chang, J.H., Xiang, S., & Tong, L. (2012). Structures of 5’-3’
Exoribonucleases. Enzymes, 31, 15-29. doi:
10.1016/B978-0-12-404740-2.00006-9.
Chattopadhyay, S., García-Martínez, J., Haimovich, G., Fisher, J.,
Khwaja, A., Barkai, O.; Chuarzman, S.G., Schuldiner, M., Elran, R.,
Rosenberg, M., Urim, S., Desmukh, S., Bohnsack, K.E., Pérez-Ortín, J.E.,
& Choder, M. (2022). RNA-controlled nucleocytoplasmic shuttling of mRNA
decay factors regulates mRNA synthesis and a mRNA decay pathway. Nature
Communications, 13, 7184. doi: 10.1038/s41467-022-34417-z.
Choder, M. (2011). mRNA imprinting: Additional level in the regulation
of gene expression. Cell Logistics, 1 (1), 37-40. doi:
10.4161/cl.1.1.14465.
Currie S.L., Xing W., Muhlrad D., Decker C.J., Parker R., Rosen M.K.
(2020). Quantitative reconstitution of yeast RNA processing bodies. Proc
Natl Acad Sci U S A. 120 (14), e2214064120. doi:
10.1073/pnas.2214064120.
Fares, M.A., Keane, O.M., Toft, C., Carretero-Paulet, L., & Jones, G.W.
(2013). The roles of whole-genome and small-scale duplications in the
functional specialization of Saccharomyces cerevisiae genes. PLoS
Genetics, 9, e1003176.
Forés-Martos, J., Forte, A., García-Martínez, J., & Pérez-Ortín, J.E.
(2021). A trans-omics comparison reveals common gene expression
strategies in four model organisms and exposes similarities and
differences between them. Cells, 10 (2), 334. doi:
10.3390/cells10020334.
García-Martínez, J., Aranda, A., & Pérez-Ortı́n, J.E. (2004). Genomic
Run-On evaluates transcription rates for all yeast genes and identifies
gene regulatory mechanisms. Molecular Cell, 15, 303–313.
García-Martínez, J., Delgado-Ramos, L., Ayala, G., Pelechano, V.,
Medina, D.A., Carrasco, F., González, R., Andrés-León, E., Steinmetz,
L., Warringer, J., Chavez, S., & Pérez-Ortín, J.E. (2016). The cellular
growth rate controls overall mRNA turnover, and modulates either
transcription or degradation rates of particular gene regulons. Nucleic
Acids Research, 44, 3643–3658.
Gietz, R.D. & Schiestl, R.H. (2007). High-efficiency yeast
transformation using the LiAc/SS carrier DNA/PEG method. Nature
Protocols, 2 (1), 31-34. doi: 10.1038/nprot.2007.13.
Haimovich, G., Medina, D.A., Causse, S.Z., Garber, M., Millán-Zambrano,
G., Barkai, O., Chávez, S., Pérez-Ortín, J.E., Darzacq, X., & Choder,
M. (2013). Gene expression is circular: factors for mRNA degradation
also foster mRNA synthesis. Cell, 153 (5), 1000-1011. doi:
10.1016/j.cell.2013.05.012.
Han, W.Y., Hou, B.H., Lee, W.C., Chan, T.C., Lin, T.H., & Chen, H.M.
(2023). Arabidopsis mRNA decay landscape shaped by XRN 5’-3’
exoribonucleases. Plant Journal, 114, 895-913. doi: 10.1111/tpj.16181.
Heyer, W.D., Johnson, A.W., Reinhart, U. & Kolodner, R.D. (1995).
Regulation and intracellular localization of Saccharomyces cerevisiae
strand exchange protein 1 (Sep1/Xrn1/Kem1), a multifunctional
exonuclease. Molecular and Cellular Biology, 15, 2728–2736.
Huch, S., Nersisyan, L., Ropat, M., Barret, D., Wu, M., Wang, J.,
Valeriano, V.D., Vardazaryan, N., Huertas-Cepas, J., Wei, W., Steinmetz,
L., Engstrand, L., & Pelechano, V. (2023). Atlas of mRNA translation
and decay for bacteria. Nature Microbiology, 8, 1123-1136.
doi:10.1038/s41564-023-01393-z.
Ishikawa, M., Díez, J., Restrepo-Hartwig, M., & Ahlquist P. (1997).
Yeast mutations in multiple complementation groups inhibit brome mosaic
virus RNA replication and transcription and perturb regulated expression
of the viral polymerase-like gene. Proceedings of the National Academy
of Sciences USA, 94 (25), 13810-13815. doi: 10.1073/pnas.94.25.13810.
Johnson, A.W. (1997). Rat1p and Xrn1p are functionally interchangeable
exoribonucleases that are restricted to and required in the nucleus and
cytoplasm, respectively. Molecular and Cell Biology, 17 (10), 6122-6130.
doi: 10.1128/MCB.17.10.6122.
Johnson, A.W., & Kolodner, R.D. (1995). Synthetic lethality of sep1
(xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is
independent of killer virus and suggests a general role for these genes
in translation control. Molecular and Cell Biology, 15 (5), 2719-2727.
doi: 10.1128/MCB.15.5.2719.
Kenna, M., Stevens, A., McCammon, M., & Douglas, M.G. (1993). An
essential yeast gene with homology to the exonuclease-encoding XRN1/KEM1
gene also encodes a protein with exoribonuclease activity. Molecular and
Cell Biology, 13 (1), 341-350. doi: 10.1128/mcb.13.1.341-350.1993.
Kim, M., Krogan, N.J., Vasiljeva, L., Rando, O.J., Nedea, E.,
Greenblatt, J.F., and Buratowski,S. (2004). The yeast Rat1 exonuclease
promotes transcription termination by RNA polymerase II. Nature, 432
(7016), 517-522. doi: 10.1038/nature03041.
Langeberg, C.J., Welch, W.R.W., McGuire, J.V., Ashby, A., Jackson, A.D.,
& Chapman, E.G. (2020). Biochemical Characterization of Yeast Xrn1.
Biochemistry, 59, 1493-1507. doi: 10.1021/acs.biochem.9b01035.
Larimer, F.W., & Stevens, A. (1990). Disruption of the gene XRN1,
coding for a 5’—-3’ exoribonuclease, restricts yeast cell
growth. Gene, 95 (1), 85-90. doi: 10.1016/0378-1119(90)90417-p.
Larimer, F.W., Hsu, C.L., Maupin, M.K., & Stevens A. (1992).
Characterization of the XRN1 gene encoding a 5’–>3’
exoribonuclease: sequence data and analysis of disparate protein and
mRNA levels of gene-disrupted yeast cells. Gene, 120 (1), 51-57. doi:
10.1016/0378-1119(92)90008-d.
Medina, D.A., Jordán-Pla, A., Millán-Zambrano, G., Chávez, S., Choder,
M., & Pérez-Ortín, J.E. (2014). Cytoplasmic 5’-3’ exonuclease Xrn1p is
also a genome-wide transcription factor in yeast. Frontiers in Genetics,
5, 1. doi: 10.3389/fgene.2014.00001.
Nagarajan, V.K., Jones, I., Newbury, S.F., & Green, P.J. (2013). XRN
5’→3’ exoribonucleases: structure, mechanisms and functions. Biochimica
et Biophysica Acta, Gene Regulatory Mechanisms, 1829, 590-603. doi:
10.1016/j.bbagrm.2013.03.005.
Nersisyan, L., Ropat, M., & Pelechano,V. (2020). Improved computational
analysis of ribosome dynamics from 5’P degradome data using fivepseq.
NAR Genomics and Bioinformatics, 2 (4), lqaa099. doi:
10.1093/nargab/lqaa099.
Oliete-Calvo, P., Serrano-Quílez, J., Nuño-Cabanes, C., Pérez-Martínez,
M.E., Soares, L.M., Dichtl,B ., Buratowski, S., Pérez-Ortín, J.E., &
Rodríguez-Navarro, S. (2018). A role for Mog1 in H2Bub1 and H3K4me3
regulation affecting RNAPII transcription and mRNA export. EMBO Reports,
19 (11), e45992. doi: 10.15252/embr.201845992.
Page, A.M., Davis, K., Molineux, C., Kolodner, R.D., & Johnson, A.W.
(1998). Mutational analysis of exoribonuclease I fromSaccharomyces cerevisiae . Nucleic Acids Research, 26 (16),
3707-3716. doi: 10.1093/nar/26.16.3707.
Parker, R., & Song, H. (2004). The enzymes and control of eukaryotic
mRNA turnover. Nature Structural and Molecular Biology, 11 (2), 121-127.
doi: 10.1038/nsmb724.
Parker, R. (2012). RNA degradation in Saccharomyces cerevisiae .
Genetics, 191 (3), 671-702. doi: 10.1534/genetics.111.137265.
Pelechano, V., & Pérez-Ortín, J.E. (2008). The transcriptional
inhibitor thiolutin blocks mRNA degradation in yeast. Yeast, 25 (2),
85-92. doi: 10.1002/yea.1548.
Pelechano, V., Wei, W., & Steinmetz, L.M. (2015). Widespread
co-translational RNA decay reveals ribosome dynamics. Cell, 161,
1400–1412.
Pelechano, V., Wei, W., & Steinmetz, L.M. (2016). Genome-wide
quantification of 5’P-phosphorylated mRNA degradation intermediates for
analysis of ribosome dynamics. Nature Protocols, 11, 359–376.
Pérez-Ortín, J.E., & Chávez, S. (2022). Nucleo-cytoplasmic shuttling of
RNA-binding factors: mRNA buffering and beyond. Biochimica et Biophysica
Acta, Gene Regulatory Mechanisms, 1865, (5), 194849. doi:
10.1016/j.bbagrm.2022.194849.
Ramı́rez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F.,
Richter, A.S., Heyne, S., Dündar, F., & Manke, T. (2016). deepTools2: a
next generation web server for deep-sequencing data analysis. Nucleic
Acids Research, 44 (W1), W160–W165. doi: 10.1093/nar/gkw25.
Sharma, S., Yang, J., Grudzien-Nogalska, E., Shivas, J., Kwan, K.Y., &
Kiledjian, M. (2022). Xrn1 is a deNADding enzyme modulating
mitochondrial NAD-capped RNA. Nature Communications, 13 (1), 889. doi:
10.1038/s41467-022-28555-7.
Shen, L., Shao, N., Liu, X., &Nestler, E. (2014). ngs.plot: Quick
mining and visualization of next-generation sequencing data by
integrating genomic databases. BMC Genomics, 15, 284. doi:
10.1186/1471-2164-15-284.
Sun, M., Schwalb, B., Pirkl, N., Maier, K.C., Schenk, A., Failmezger,
H., Tresch, A., & Cramer, P. (2013). Global analysis of eukaryotic mRNA
degradation reveals Xrn1-dependent buffering of transcript levels.
Molecular Cell, 52, 52–62.
Tesina, P., Heckel, E., Cheng, J., Fromont-Racine, M., Buschauer, R.,
Kater, L., Beatrix, B., Berninghausen, O., Jacquier, A., Becker, T., &
Beckmann, R. (2019). Structure of the 80S ribosome-Xrn1 nuclease
complex. Nature Structural & Molecular Biology, 26 (4), 275-280. doi:
10.1038/s41594-019-0202-5.
Wolfe, K.H. (2015). Origin of the yeast whole-genome duplication. PLoS
Biology, 13 (8), e1002221. doi: 10.1371/journal.pbio.1002221.
Xu, Z., Wei, W., Gagneur, J., Perocchi, F., Clauder-Münster, S.,
Camblong, J., Guffanti, E., Stutz, F., Huber, W., & Steinmetz, L.M.
(2009). Bidirectional promoters generate pervasive transcription in
yeast. Nature, 457 (7232), 1033-1037. doi: 10.1038/nature07728.
Zhang, Y., & Pelechano, V. (2021). Application of high-throughput 5’P
sequencing for the study of co-translational mRNA decay. STAR Protocols,
2 (2), 100447. doi: 10.1016/j.xpro.2021.100447.