References

1. The Lancet Diabetes E. Spotlight on rare diseases. The lancet Diabetes & endocrinology. 2019;7(2):75.
2. Boycott KM, Rath A, Chong JX, Hartley T, Alkuraya FS, Baynam G, et al. International cooperation to enable the diagnosis of all rare genetic diseases. Am J Hum Genet. 2017;100(5):695-705.
3. Wang Q, Dhindsa RS, Carss K, Harper AR, Nag A, Tachmazidou I, et al. Rare variant contribution to human disease in 281,104 UK Biobank exomes. Nature. 2021;597(7877):527-32.
4. Velleuer E, Carlberg C. Impact of epigenetics on complications of Fanconi anemia: the role of vitamin D-modulated immunity. Nutrients. 2020;12(5).
5. Wu ZH. The concept and practice of Fanconi Anemia: from the clinical bedside to the laboratory bench. Transl Pediatr. 2013;2(3):112-9.
6. Akobeng AK. Principles of evidence based medicine. Arch Dis Child. 2005;90(8):837-40.
7. Wheatley R, Diaz Caballero J, Kapel N, de Winter FHR, Jangir P, Quinn A, et al. Rapid evolution and host immunity drive the rise and fall of carbapenem resistance during an acute Pseudomonas aeruginosa infection. Nature communications. 2021;12(1):2460.
8. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353-D61.
9. Pico AR, Kelder T, van Iersel MP, Hanspers K, Conklin BR, Evelo C. WikiPathways: pathway editing for the people. PLoS Biol. 2008;6:e184.
10. Himmelstein DS, Baranzini SE. Heterogeneous network edge prediction: a data integration approach to prioritize disease-associated genes. PLoS computational biology. 2015;11(7):e1004259.
11. Niarakis A, Helikar T. A practical guide to mechanistic systems modeling in biology using a logic-based approach. Briefings in bioinformatics. 2021;22(4).
12. Harris LA, Beik S, Ozawa PMM, Jimenez L, Weaver AM. Modeling heterogeneous tumor growth dynamics and cell-cell interactions at single-cell and cell-population resolution. Curr Opin Syst Biol. 2019;17:24-34.
13. Lobitz S, Velleuer E. Guido Fanconi (1892-1979): a jack of all trades. Nat Rev Cancer. 2006;6(11):893-8.
14. Fiesco-Roa MO, Giri N, McReynolds LJ, Best AF, Alter BP. Genotype-phenotype associations in Fanconi anemia: a literature review. Blood Rev. 2019;37:100589.
15. Alter BP. Inherited bone marrow failure syndromes: considerations pre- and posttransplant. Blood. 2017;130(21):2257-64.
16. Dufour C. How I manage patients with Fanconi anaemia. Br J Haematol. 2017;178(1):32-47.
17. Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica. 2018;103(1):30-9.
18. Kutler DI, Singh B, Satagopan J, Batish SD, Berwick M, Giampietro PF, et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood. 2003;101(4):1249-56.
19. Wang AT, Smogorzewska A. SnapShot: Fanconi anemia and associated proteins. Cell. 2015;160(1-2):354- e1.
20. Ameziane N, May P, Haitjema A, van de Vrugt HJ, van Rossum-Fikkert SE, Ristic D, et al. A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51. Nature communications. 2015;6:8829.
21. Meetei AR, Levitus M, Xue Y, Medhurst AL, Zwaan M, Ling C, et al. X-linked inheritance of Fanconi anemia complementation group B. Nat Genet. 2004;36(11):1219-24.
22. Ceccaldi R, Sarangi P, D’Andrea AD. The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol. 2016;17(6):337-49.
23. Tischkowitz MD, Hodgson SV. Fanconi anaemia. J Med Genet. 2003;40(1):1-10.
24. Gluckman E. Improving survival for Fanconi anemia patients. Blood. 2015;125(24):3676.
25. Bonfim C, Ribeiro L, Nichele S, Bitencourt M, Loth G, Koliski A, et al. Long-term survival, organ function, and malignancy after hematopoietic stem cell tansplantation for Fanconi Anemia. Biol Blood Marrow Transplant. 2016;22(7):1257-63.
26. Paustian L, Chao MM, Hanenberg H, Schindler D, Neitzel H, Kratz CP, et al. Androgen therapy in Fanconi anemia: A retrospective analysis of 30 years in Germany. Pediatr Hematol Oncol. 2016;33(1):5-12.
27. Calado RT, Cle DV. Treatment of inherited bone marrow failure syndromes beyond transplantation. Hematology Am Soc Hematol Educ Program. 2017;2017(1):96-101.
28. Rose SR, Kim MO, Korbee L, Wilson KA, Ris MD, Eyal O, et al. Oxandrolone for the treatment of bone marrow failure in Fanconi anemia. Pediatr Blood Cancer. 2014;61(1):11-9.
29. Scheckenbach K, Morgan M, Filger-Brillinger J, Sandmann M, Strimling B, Scheurlen W, et al. Treatment of the bone marrow failure in Fanconi anemia patients with danazol. Blood Cells Mol Dis. 2012;48(2):128-31.
30. Kutler DI, Patel KR, Auerbach AD, Kennedy J, Lach FP, Sanborn E, et al. Natural history and management of Fanconi anemia patients with head and neck cancer: A 10-year follow-up. Laryngoscope. 2016;126(4):870-9.
31. Lin J, Kutler DI. Why otolaryngologists need to be aware of Fanconi anemia. Otolaryngol Clin North Am. 2013;46(4):567-77.
32. Velleuer E, Dietrich R, Pomjanski N, de Santana Almeida Araujo IK, Silva de Araujo BE, Sroka I, et al. Diagnostic accuracy of brush biopsy-based cytology for the early detection of oral cancer and precursors in Fanconi anemia. Cancer Cytopathol. 2020.
33. Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die-Smulders C, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science. 2002;297(5581):606-9.
34. Del Valle J, Rofes P, Moreno-Cabrera JM, Lopez-Doriga A, Belhadj S, Vargas-Parra G, et al. Exploring the role of mutations in Fanconi anemia genes in hereditary cancer patients. Cancers. 2020;12(4).
35. Pouliot GP, Degar J, Hinze L, Kochupurakkal B, Vo CD, Burns MA, et al. Fanconi-BRCA pathway mutations in childhood T-cell acute lymphoblastic leukemia. PLoS ONE. 2019;14(11):e0221288.
36. Carlberg C, Velleuer E. Cancer biology: how science worls. Springer Textbook. 2021.
37. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70.
38. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Jr., Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546-58.
39. Webster ALH, Sanders MA, Patel K, Dietrich R, Noonan RJ, Lach FP, et al. Genomic signature of Fanconi anaemia DNA repair pathway deficiency in cancer. Nature. 2022;612(7940):495-502.
40. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discovery. 2022;12(1):31-46.
41. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605-D12.
42. Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, et al. The Human Cell Atlas. Elife. 2017;6.
43. Sinha PP. Bioinformatics with R Cookbook. Packt Publishing. 2014.
44. Sinha GB. Fundamentals of Bioinformatics and Computational Biology. Springer Berlin Heidelberg. 2015.
45. Keating SM, Waltemath D, Konig M, Zhang F, Drager A, Chaouiya C, et al. SBML Level 3: an extensible format for the exchange and reuse of biological models. Molecular systems biology. 2020;16(8):e9110.
46. de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002;9(1):67-103.
47. Dominguez-Huttinger E, Christodoulides P, Miyauchi K, Irvine AD, Okada-Hatakeyama M, Kubo M, et al. Mathematical modeling of atopic dermatitis reveals ”double-switch” mechanisms underlying 4 common disease phenotypes. The Journal of allergy and clinical immunology. 2017;139(6):1861-72 e7.
48. Balsa-Canto E, Banga JR, Egea JA, Fernandez-Villaverde A, de Hijas-Liste GM. Global optimization in systems biology: stochastic methods and their applications. Adv Exp Med Biol. 2012;736:409-24.
49. Tsiantis N, Balsa-Canto E, Banga JR. Optimality and identification of dynamic models in systems biology: an inverse optimal control framework. Bioinformatics. 2018;34(21):3780.
50. Shockley EM, Vrugt JA, Lopez CF. PyDREAM: high-dimensional parameter inference for biological models in python. Bioinformatics. 2018;34(4):695-7.
51. Dominguez-Huttinger E, Boon NJ, Clarke TB, Tanaka RJ. Mathematical Modeling of Streptococcus pneumoniae Colonization, Invasive Infection and Treatment. Front Physiol. 2017;8:115.
52. Zi Z. Sensitivity analysis approaches applied to systems biology models. IET systems biology. 2011;5(6):336-6.
53. Kuznetsov YA. Elements of applied bifurcation theory. Springer International Publishing. 2004.
54. Bargaje R, Trachana K, Shelton MN, McGinnis CS, Zhou JX, Chadick C, et al. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells. Proc Natl Acad Sci U S A. 2017;114(9):2271-6.
55. Fey D, Halasz M, Dreidax D, Kennedy SP, Hastings JF, Rauch N, et al. Signaling pathway models as biomarkers: Patient-specific simulations of JNK activity predict the survival of neuroblastoma patients. Science signaling. 2015;8(408):ra130.
56. Tanaka G, Dominguez-Huttinger E, Christodoulides P, Aihara K, Tanaka RJ. Bifurcation analysis of a mathematical model of atopic dermatitis to determine patient-specific effects of treatments on dynamic phenotypes. Journal of theoretical biology. 2018;448:66-79.
57. Christodoulides P, Hirata Y, Dominguez-Huttinger E, Danby SG, Cork MJ, Williams HC, et al. Computational design of treatment strategies for proactive therapy on atopic dermatitis using optimal control theory. Philos Trans A Math Phys Eng Sci. 2017;375(2096).
58. Niraj J, Farkkila A, D’Andrea AD. The Fanconi Anemia Pathway in Cancer. Annu Rev Cancer Biol. 2019;3:457-78.
59. Semlow DR, Walter JC. Mechanisms of Vertebrate DNA Interstrand Cross-Link Repair. Annu Rev Biochem. 2021;90:107-35.
60. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30(16):R921-R5.
61. Zong Z, Zhou F, Zhang L. The fungal mycobiome: a new hallmark of cancer revealed by pan-cancer analyses. Signal Transduct Target Ther. 2023;8(1):50.
62. Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet. 2019;20(11):631-56.
63. Yuan H, Yan M, Zhang G, Liu W, Deng C, Liao G, et al. CancerSEA: a cancer single-cell state atlas. Nucleic Acids Res. 2019;47(D1):D900-D8.
64. Akhoundova D, Rubin MA. Clinical application of advanced multi-omics tumor profiling: Shaping precision oncology of the future. Cancer cell. 2022;40(9):920-38.
65. Karimi E, Yu MW, Maritan SM, Perus LJM, Rezanejad M, Sorin M, et al. Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature. 2023;614(7948):555-63.
66. Pelka K, Hofree M, Chen JH, Sarkizova S, Pirl JD, Jorgji V, et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell. 2021;184(18):4734-52 e20.
67. Rodriguez A, Zhang K, Farkkila A, Filiatrault J, Yang C, Velazquez M, et al. MYC Promotes Bone Marrow Stem Cell Dysfunction in Fanconi Anemia. Cell stem cell. 2021;28(1):33-47 e8.
68. Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2018.
69. Marcou Y, D’Andrea A, Jeggo PA, Plowman PN. Normal cellular radiosensitivity in an adult Fanconi anaemia patient with marked clinical radiosensitivity. Radiother Oncol. 2001;60(1):75-9.
70. Alter BP. Radiosensitivity in Fanconi’s anemia patients. Radiother Oncol. 2002;62(3):345-7.
71. Laubenbacher R, Sluka JP, Glazier JA. Using digital twins in viral infection. Science. 2021;371(6534):1105-6.
72. Masison J, Beezley J, Mei Y, Ribeiro H, Knapp AC, Sordo Vieira L, et al. A modular computational framework for medical digital twins. Proc Natl Acad Sci U S A. 2021;118(20).
73. Tao F, Qi Q. Make more digital twins. Nature. 2019;573(7775):490-1.
74. An G. Specialty Grand Challenge: What it Will Take to Cross the Valley of Death: Translational Systems Biology, “True” Precision Medicine, Medical Digital Twins, Artificial Intelligence and In Silico Clinical Trials. Frontiers in Systems Biology. 2022;2.
75. Kovatchev B. A century of diabetes technology: signals, models, and artificial pancreas control. Trends Endocrinol Metab. 2019;30(7):432-44.
76. Shang JK, Esmaily M, Verma A, Reinhartz O, Figliola RS, Hsia TY, et al. Patient-specific multiscale modeling of the assisted bidirectional glenn. Ann Thorac Surg. 2019;107(4):1232-9.
77. Swanson K, Wu E, Zhang A, Alizadeh AA, Zou J. From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell. 2023;186(8):1772-91.
78. Marx V. Method of the Year: spatially resolved transcriptomics. Nature methods. 2021;18(1):9-14.
79. Lewis SM, Asselin-Labat ML, Nguyen Q, Berthelet J, Tan X, Wimmer VC, et al. Spatial omics and multiplexed imaging to explore cancer biology. Nature methods. 2021;18(9):997-1012.
80. Maniatis S, Petrescu J, Phatnani H. Spatially resolved transcriptomics and its applications in cancer. Curr Opin Genet Dev. 2021;66:70-7.
81. Stahl PL, Salmen F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353(6294):78-82.
82. Merritt CR, Ong GT, Church SE, Barker K, Danaher P, Geiss G, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol. 2020;38(5):586-99.
83. Nirmal AJ, Maliga Z, Vallius T, Quattrochi B, Chen AA, Jacobson CA, et al. The Spatial Landscape of Progression and Immunoediting in Primary Melanoma at Single-Cell Resolution. Cancer Discov. 2022;12(6):1518-41.
84. Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nature methods. 2014;11(4):417-22.
85. Hernandez S, Lazcano R, Serrano A, Powell S, Kostousov L, Mehta J, et al. Challenges and Opportunities for Immunoprofiling Using a Spatial High-Plex Technology: The NanoString GeoMx(©) Digital Spatial Profiler. Frontiers in oncology. 2022;12:890410.
86. Tang L. Spatially resolved DNA sequencing. Nature methods. 2022;19(2):139.
87. Zhao T, Chiang ZD, Morriss JW, LaFave LM, Murray EM, Del Priore I, et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature. 2022;601(7891):85-91.