
1
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Thermal Anomaly Area Intelligent Recognition Method Based on Infrared Inspection
Image of Electrical Equipment

Laiqi Wang 1, Jianhua Ou 1, Jianguo Wang 1*, Cong Hu 1, Yadong Fan 1, Fuhua Xie 1

1School of Electrical Engineering and Automation, Wuhan University, Wuhan, China
*wjg@whu.edu.cn

Abstract: The thermal anomaly area of electrical equipment in the substation is often hidden due to its small thermal area
and multiple anomalies overlaid. Accurately identify the thermal area is demanded on the condition detection of electrical
equipment, where the anomaly points of electrical equipment in infrared images are generally small and of low resolution.
We propose an improved YOLOv4 algorithm for infrared image anomaly area identification, which can detect the thermal
generation phenomenon of electrical equipment. We add a new target detection branch to the shallow feature map of 104
×104, which can better extract small target semantic information. The training process is enhanced with cosine annealing
and mosaic data enhancement. We establish a total of 719 infrared images of five types of thermal anomalies electrical
equipment to test our network. The accuracy of our model reach to as high as 96.78%, with a detection speed of 17 f/s and
an AP@0.5 of 94.23%. Compared with SSD, YOLOv4 and Faster RCNN, the algorithm in this paper obtains the highest
AP@0.5 with 94.23%, which is the best performance compared with the original YOLOv4 model in accuracy. The model is
robust to noise and luminance disturbances, and still provides good recognition under disturbances.

Index Terms—Infrared image, Target detection branch, robustness test, Electrical equipment fault identification.

1. INTRODUCTION
Electrical equipment undertakes important tasks in the

substation , where it ensures the stable operation of substation
and power system. Thermal faults may occur when the
electrical equipment is in long-term operation with heavy
load[1][2]. The thermal area of electrical equipment in the
substation is often hidden [3], due to its area is often very
small, and multiple devices may occur at the same time with a
variety of faults. To accurately and completely identify the
thermal area is very difficult [4][5]. This demand rises more
complex requirements on the condition detection of electrical
equipment.

When an electrical device fails in heavy load, it is
usually accompanied by overheating. Infrared images can be
taken by installing infrared camera equipment, where it can
reflect the infrared image of overheating [6]. By detecting the
hot spot on the infrared image, we can quickly find whether
the electrical equipment is in the state of thermal anomalies.

There are researchers using machine learning methods
to study infrared images of electrical equipment. Since
machine learning requires a large amount of feature extraction
work, the features in the anomalous regions of infrared images
are difficult to be fully extracted, resulting in poor image
recognition[7]. Yongbo Li et al [8] proposed a system for non-
smooth running fault diagnosis of rotating machinery based on
infrared thermography (IRT). Mohd Shawal Jadin et al [9]
used the multilayer perceptron (MLP) artificial neural network
and support vector machine (SVM) for classification.But none
of their results were particularly satisfactory.

Compared with machine learning, deep learning can
extract image features better. Deep learning networks can
automatically train parameters based on a large number of
images, saving a lot of human and material resources[10][11].
Deep learning networks are used for infrared image fault
recognition in electrical equipment due to their excellent

results in image recognition[12][13]. Haidong Shao [14]
improved CNN by introducing random pools and leakage-
corrected linear units to overcome the training problem in
classical CNN. Faster RCNN has better detection effect and is
used in electrical equipment fault detection. Some scholars
have achieved over ninety percent mAP using Faster RCNN to
detect electrical devices[15]. Lincong She[16] proposes a
multi-scale residual network with convolutional filtering using
convolutional kernels of different sizes to achieve insulator
breakage identification. Faster RCNN has also achieved
relatively good detection results on infrared images, Jianhua
Ou et al of our team [17] improved VGG16 in Faster RCNN
by adding anchors with aspect ratios of 1:3 and 3:1, and
achieved better recognition results for infrared images.CNN
and Faster RCNN have achieved good results in electrical
equipment image recognition. However, CNN and Faster
RCNN have more complex structure and training parameters,
which lead to their slower computing speed.

YOLO algorithm that can better meet the needs of real-
time monitoring of electrical equipment. Shenghui Wang et al
[18] built a database of insulator images for training and
testing, and used the YOLO algorithm to train the database for
five days, achieving good recognition results. Lianqiao Li[19]
designed a new feature enhancement module and proposed an
infrared insulator image detection model based on an
improved feature fusion single multibox detector. The model
achieves an accuracy higher than 80% and improves detection
speed.

However, the anomalies of electrical devices in
infrared images are generally small and of low resolution.
Current model for detection is less effective on this problem.
To solve this problem we propose an improved YOLOv4
algorithm, where we add the detection branch to the 104×104
feature layer, since the shallow feature layer of the network
retains more semantic information such as edges and textures.
We collected a total of 719 infrared images of five types of
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thermal faulty electrical devices to test our network. During
the testing we used training strategies such as three-layer
detection layer, four-layer detection layer, K-means clustering,
cosine annealing and mosaic data enhancement. By comparing
with other methods such as Faster RCNN and SSD, the results
show that our model has high accuracy with very fast speed.
After adding luminance and noise interference to the images,
the model still has good recognition effect, which indicates
that the model has strong robustness.
This paper is structured as follows, Section II introduces the

improved YOLOv4 model and dataset structure. Section III
describes the experimental test results and analysis of the
results. Section IV concludes and outlooks the paper.

2. DATA AND METHODS

2.1. Infrared Image Dataset

The dataset in this paper contains a total of 719 initial
images, most of which were taken from an electrical
equipment thermal anomaly simulation experiment in a
substation. We simulate different shapes of thermal anomalies
on electrical devices by placing different shapes of thermal
silicon wafers. We simulate thermal anomalies in various
locations by placing thermal silicon wafers on different
electrical devices. We also collect thermal anomalies of
electrical equipment at different times to simulate realistic
operating conditions. A total of 365 infrared images of
electrical equipment with thermal faults were obtained after
eliminating unclear heated areas and blurred images. Some
images of the dataset are shown in Fig. 1(a). There are
different kinds of thermal imagers used for infrared thermal
fault detection of substation electrical equipment, and the
heating fault conditions vary from substation to substation.
The target detection model trained by a single thermal

anomaly picture of substation electrical equipment obtained
from an infrared thermal imager has poor robustness. 345
infrared images of electrical equipment faults were collected
from the Internet to further enrich our training dataset. Some
images of the dataset are shown in Fig. 1(b). The images
collected in this paper contain thermal fault maps of insulator
strings, transformers, current transformers, wire clamps, and
other equipment in substations. A wide variety of thermal fault

(a) （b）
Fig. 1. Infrared image dataset of faulty electrical equipment. (a) Partial dataset for thermal fault simulation, all pictures are
from Wuchang East 220kv substation. (b) Infrared images of electrical equipment failures on the Internet.

TABLE I
DATA AUGMENTATIONMETHODS

Image processing methods Parameters

Physical space
change

Panning X=[-30,+30], Y=[-30,
+30]

Rotation (-20°,20°)

Scaling scale=(0.6,1.5)

Horizontal
Mirroring

With the right border as
the axis

Random cropping percent=(0.1,0.3))

Mis-cut "x": (-20, 20), "y": (-20,
20)

Gaussian blur (sigma=(1,3))

Up and down flip With the upper border as
the axis

Sharpening alpha=1, lightness=1

Color space
transformation

Gray Full image graying

HIS Hue ,Saturation,Intensity

Lab CIE Lab Color Space

Luv CIE Luv Color Space

YCbCr YCbCr color space
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infrared images can further enhance the robustness of the
model. Expansion of the dataset using data augmentation
methods can lead to a more paradigmatic and accurate trained
model .

In this paper, we do Physical space change and Color
space transformation on the image.The methods and
parameters used to perform data enhancement on the images
in this paper are shown in Table I.We expanded the dataset
through data augmentation to ensure a better fit of the model.

2.2. B. Improved YOLOv4

We propose a method for infrared image recognition of
faulty areas of electrical equipment based on an improved
YOLOv4 model, where the model structure is shown in Fig. 2.
The basic idea of object detection in the YOLO model is to
divide the image into a series of grids, traverse each grid, draw
the frame if the detected grid contains an object, and output
the final target prediction frame after traversal. Object
classification and regression of prediction frames are
performed simultaneously, and the whole process takes only

one step. As shown in Fig. 2, the YOLOv4 model mainly
consists of an input layer, a backbone layer, a neck layer and
an output layer. The input layer receives fixed-size images,
and after extracting features through the backbone network, it
performs upsampling and feature aggregation in the neck layer,
and then feeds them to the YOLO-Head classifier to output
prediction frames at different scales, and finally, the class,
confidence level and rectangular frame position of the target
are obtained by frame regression.

The backbone feature extraction network of YOLOv4
uses csparknet53, which mainly consists of a CBM
convolution module and a CSP residual module. the CBM
convolution module consists of a convolution layer, a
normalization layer and a Mish activation function layer.
YOLOv4 chose the Mish function as the activation function of
the CBM convolution module with the expression:

Mish = ​ � × ���ℎ ( �� ( 1 + ��)) (1)

Fig. 2. Block diagram of yolov4 structure.

Fig. 2. Block diagram of YOLOv4 structure.
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The Mish function has good smoothness, allowing small
negative gradients to flow in and ensuring the integrity of the
information flow.

The structure diagram of the cross-level local residual
network is shown in Fig. 3. The structure divides the
convolutional features input from the upper layer into two
parts in a certain proportion, one part is used to superimpose
the convolutional blocks and the other part is used for the
convolutional calculation of large residual edges. Each time
the newly combined features are convolved and the generated
new features are merged, and finally the final features are
output through the local transformation layer. The CSPnet
mechanism can reduce the repetition rate of gradient
information during the backpropagation of the network,
further reduce the computation and improve the learning
ability of the convolutional neural network.

The structure diagram of the cross-level local residual
network is shown in Fig. 3. The structure divides the
convolutional features input from the upper layer into two
parts in a certain proportion, one part is used to superimpose
the convolutional blocks and the other part is used for the
convolutional calculation of large residual edges. Each time
the Fig. 4 shows the Path Augmentation Network (PANet)
architecture. The path aggregation network layer (PANet)
combines a feature pyramid network and a path enhancement
network. The feature pyramid network effectively propagates
the high-level localization information from top to bottom,
making localization more accurate. The path augmentation
network propagates the underlying semantic information from
the bottom up, which facilitates classification.

The convolution layers of the YOLOv4 model are as
high as 60 or 70 convolutions. If we follow the up and down
sampling method of the common feature pyramid, the bottom
layer information flows to N2~N5, which requires several
convolutions and the information flow line is too long. With
the green dashed line in Fig. 4, the bottom features can be

made to flow to N2~N5 through only a few convolution layers,
which greatly improves the computational speed and feature
utilization.

The YOLO head is a classifier consisting of a CBL
convolution module, convolution and regression. The original
YOLOv4 model extracts three feature layers of the backbone
network for target detection, which are located in the middle
layer, lower middle layer, and bottom layer. Their sizes and
dimensions are (52, 52, 256), (26, 26, 512), and (13, 13, 1024),
respectively. The YOLOv4 model predicts three prior boxes
for the feature maps of each feature layer. Each prior box
includes: the position of the box (coordinates of the center
point, height and width of the box), the category of the target
object, and N categories.

Among the thermal anomaly of electrical equipment,
the most common is the current heating type fault, which
occurs mainly at fixtures and connection wires. The thermal
area is small, and the overheating area shown in the image
accounts for a small part of the whole image. In order to
accurately detect small hot spots of electrical equipment, this
paper makes corresponding improvements based on the
original YOLOv4 model. The improvement part is shown in
Fig. 2. The improvement strategy is 104 × 104, and a new
target detection branch is added to the shallow feature map of
104. The feature layer is obtained by four times downsampling,
which better preserves the semantic information of small
targets. The improved YOLOv4 model is changed from the
original 13×13, 26×26, and 52×52 three-scale detection layers
to 13×13, 26×26, 52×52, and 104×104.

Fig. 5 shows a schematic representation of the different
sizes of the a priori frames on the feature map. It can be seen
that the feature map is divided into large receptive fields with
a small number of grids and the corresponding a priori frames
are large in size, suitable for detecting large target objects. On
the contrary, the feature map is divided into large receptive
fields with a large number of grids, and the corresponding a

Fig. 3. Cross-stage local residual networks.
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priori frame size is smaller, suitable for detecting small target
objects. For heating faults of the image converter, the larger
the a priori frame, the larger the area of the detected fault
region, while the smaller the a priori frame, the better the fault
region can be enclosed.

Compared with the original YOLOv4 model, this paper
has an additional requirement of 104 × 104 to assign an
appropriate prior frame size for the feature map. By observing
and analyzing the detection objects in this paper, K-means
clustering of real frames from the training set is performed in
this paper to obtain an a priori frame size that is consistent
with hot fault zone detection.

Compared with the original YOLOv4 model, this paper
has an additional requirement of 104 × 104 to assign an
appropriate prior frame size for the feature map. By observing
and analyzing the detection objects in this paper, K-means
clustering of real frames from the training set is performed in

this paper to obtain an a priori frame size that is consistent
with hot fault zone detection.

The basic idea of the K-means algorithm is to select K
data points as the initial clustering centers for clustering
dimensional space data, calculate the Euclidean distance
between all data and the initial clustering centers, classify the
objects closest to the centers, and continuously update the
clustering centers by iterative methods until the sum of all
Euclidean distances is minimized. The schematic diagram of
this algorithm is shown in Fig. 6.

For the improved four-scale YOLOv4 detection model
in this paper, three prior frames are required for each detection
scale, so the number of clusters in the K-means clustering
algorithm is set to 12. After clustering the actual frames of the
training set data, the sizes of the four sets of prior frames
obtained are shown in Table II. The results show that the
corresponding a priori frames of feature maps divided into
fewer grids are also larger in size, and conversely, the
corresponding a priori frames of feature maps divided into
more grids are smaller in size.

Fig. 5. A priori frame on feature map.

Fig. 4. Path Augmentation Network (PANet) architecture.

Fig. 6. K-means clustering algorithm.
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In the training of the YOLOv4 model, this chapter
employs a unique mosaic enhancement technique. During the
training process, four images from a certain batch of samples
are randomly selected and stitched into new images by random
scaling, random cropping and random alignment. As shown in
Fig. 7, one image of the mosaic-enhanced data will contain
multiple hot-fault regions. The mosaic-enhanced image is
more beneficial for detecting small target thermal fault regions
than the previous case where the number of thermal fault
regions was small and numerous.

All categorical labels in the YOLO model are encoded
with either 0 or 1. During the training process, the position
will output 1 if the model detects that the target belongs to the
nth category, otherwise it will output 0. The coding of the
classification labels is in the form of what is called one-time
hot coding. Due to the limited data set, too much training time
can easily lead to overfitting. This problem can be solved by
using label smoothing techniques.

Label smoothing is a regularization strategy that
"softens" the labels obtained by traditional single-thermal
coding by reducing the weights of the real samples when
calculating the loss function, thus preventing overfitting when
calculating the loss values:

(1 ) ( )
1( )
1

i iy y u K

u K
K

     



 

(2)

3. Experiments and results analysis

3.1.Experiment of Training Strategies

The experimental platform was a windows 10 64-bit
system, the programming language was Python 3.7, and the
deep learning code environment was Pytorch. Experiments
were conducted on a desktop computer with an Intel(R)
core(TM) i5-10400f CPU 2.90ghz and an NVIDIA Ge force
RTX 2060 GPU. The models are trained using GPU training
mode. Before training, the original 719 IR images were

randomly divided into training dataset, validation dataset and
test dataset in the ratio of 8:1:1, and the size of all images
were normalized to 416 × 416 In this paper, 100 epochs were
trained for the constructed model.

The loss function is a measure of the consistency
between the predicted and actual results of the YOLO model,
and further adjusts the parameters of the network training
according to the change of the loss value. When the YOLO
model is used for target detection, the output includes the
bounding box of the target location, the confidence of the
bounding box and the target type, so the corresponding loss
function also has three parts.
The loss function in YOLOv4 consists of three parts:

location confidence classLoss Loss Loss Loss   (3)
locationLoss is the frame position loss, confidenceLoss is the

frame confidence loss, and classLoss is the target category loss.
The punishment factor added by YOLOv4 takes into account
the aspect ratio of the prediction frame and the target frame,
and uses CIoU. The calculation formula of CIoU is:

2 ( , )gb bCIoU IoU v
d

   
(4)

� and � are calculated as:

(1 )
v

IoU v
 

  (5)
2

2
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g

g
w wv
h h
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IoU is the intersection and union ratio of the predicted
bounding box and the real bounding box, b is the center point
of the predicted bounding box,

gb is the center point of the
real bounding box, 2 ( , )gb b is the Euclidean distance
between the predicted bounding box and the center point of
the real bounding box, d is the diagonal distance of the
minimum rectangular region that can contain both the
predicted bounding box and the real bounding box, and gw ,
gh , w and h are the width and height of the real bounding box

and the predicted bounding box respectively.
This chapter uses freeze training to train the model.

Freeze training incorporates the idea of migration learning, i.e.,
pre-training the network and then saving it for further training
of subsequent networks. In this chapter, during model training,
the first 50 epochs are frozen, the learning rate is set to 1 x 10-
3, and the number of samples in the batch is set to 14. The last
50 epochs are thawed for training, the learning rate is set to 1
x 10-4, and the number of samples in the batch is set to 2.

When training the model, the training loss value and
the validation loss value are saved after each epoch element in
order to fine-tune the parameters of the model by observing
the change in the loss value. To verify the effectiveness of the
cosine annealing algorithm in tuning the learning rate, the

Fig. 7. Partial mosaic enhanced data.

TABLE II
PRIOR FRAME SIZE OBTAINED BY K-MEANS

CLUSTERING
Feature
map 13×13 26×26 52×52 104×104

priori box
(68, 83)
(135, 57)
(155, 304)

(44, 149)
(46, 50)
(67, 216)

(25, 26)
(29, 41)
(32, 85)

(9, 11)
(13, 15)
(17, 21)
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model training results are compared here, as shown in Fig. 8.
It can be seen that before thawing, the training and validation
loss values using cosine annealing are smaller than the values
under normal conditions and there is no decay. After thawing,
the validation loss values of the model trained without cosine
annealing fluctuate and the model appears to be overfitted,

indicating that the learning rate is too high at that stage. It can
be seen that using cosine annealing to control the learning rate
is beneficial for model convergence. Fig. 9 shows the variation
pattern of the learning rate under the cosine annealing
algorithm.

Fig.8. Comparison of training and validation loss values with and without cosine annealing algorithm.

TABLE III
THE MODEL PERFORMANCE BY USING DIFFERENT STRATEGIES TO IMPROVE THE NETWORK

Model Training Strategies AP@0.5 DA Pr Re F1 MR-2

Triple detection layers 30.94% 71.43% 0.61 0.22 0.32 0.82

Four detection layers 42.92% 70.94% 0.67 0.31 0.42 0.73

Four detection layers + K-means 51.92% 85.2% 0.62 0.43 0.53 0.68

Four detection layers + K-means + cosine
annealing 59.53% 83.74% 0.80 0.26 0.39 0.61

Four detection layers + K-means + mosaic
data enhancement 76.77% 92.61% 0.87 0.59 .0.70 0.42

Four detection layers + K-means + mosaic
data enhancement + cosine annealing 83.17% 93.10% 0.78 0.872 0.7044 0.33

Fig.10.Model training and validation of loss values.

Fig.9. Learning rate variation under cosine annealing
algorithm.
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To verify the effectiveness of the improved YOLOv4
method in this paper, we used different strategies for model
training and testing, and the obtained metrics are shown in
Table III.

3.2. Anomaly area identification results and
Comparison

Based on the original data images, one of the image
enhancement methods listed in Table I was added as the total
data set for model training, validation and testing, and each
metric obtained by adding each image enhancement method to
the test set is shown in Table IV.

It can be seen that the training loss value decreases
rapidly from 213 for the first training to 21 for the second
training, and the overall loss value and validation loss of the
model gradually decrease and stabilize as the number of

training increases, indicating that the model is converging.

Before freezing the training, the training is unstable due to the
larger learning rate and fewer model parameters at this time,
making the training and validation loss values slightly more
volatile. After thawing, the learning rate is smaller, the model
parameters are larger, and the loss values change less and
gradually stabilize. The model with the minimum training loss
and validation loss values obtained in the 116th training was
used as the final fault identification model.

The 145 infrared images of electrical equipment
containing thermal faults are put into the model for testing,
and then the model outputs the location and target confidence
level of the rectangular box of the faulty region. The infrared
image recognition results of the fault region of electrical
equipment under different cases are shown in Fig. 11.

Fig. 11 shows the results of infrared image recognition
of fault areas of electrical equipment in outdoor substations
under different situations. Fig. 11(a) and Fig. 11 (c) show

the detection of individual equipment in the substation where

(a)

(b)

(c)

(d)
Fig. 11. Results of infrared image recognition of faulty areas of electrical equipment. (a) Individual faults exist in different
devices. (b) Multiple faults exist in the same scenario. (c) Different color palettes. (d) Small target hot zone.
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the heating area exists. It can be seen that the model can well
detect the fault areas existing in current transformers, voltage
transformers, circuit breakers, surge arresters and transformers,
and the confidence of fault area detection are close to 1. And
for small area fault areas this model can also accurately detect
them. Fig. 11 (b) shows the detection results of a graph
containing multiple devices with heat-emitting areas. From the
results, it can be seen that the model in this paper is able to
identify accurately regardless of the size and number of heat-
emitting regions. Fig. 11(d) shows the detection results for a
small heat dissipation area. It can be seen that the model has
better detection for small targets, which is important for
thermal fault detection during infrared imaging of line
insulators and tower fixtures at long distances.

The calculated results of the indicators obtained from
the model in this paper are shown in Table IV. The accuracy
of the model is as high as 96.78% and the detection speed is
17 f/s. AP@0.5 is 94.23%, indicating that the accuracy and
detection speed of the model are high and the model has good
performance in electrical equipment fault detection.
To further validate the superiority of the model proposed in

this paper for infrared identification of electrical equipment
faults, different feature extraction networks corresponding to
other current fault identification models were used to compare
the test results and calculate each metric, and the results are
shown in Table V.

From Table V, it can be seen that the AP@0.5 obtained
by Faster R-CNN for fault region identification measurements
is lower than the other algorithms, and the MR-2 value is also
high, indicating that this series of algorithms is less effective
in detecting small targets. In terms of detection speed, the SSD
algorithm has the fastest detection speed, the YOLO series
algorithm is the second, and the Faster R-CNN has the slowest
detection speed. The highest AP@0.5 of 94.23% is obtained
by this algorithm, which is 6.52% better than the original
YOLOv4 model, and 4.67% better in terms of accuracy. the
highest accuracy of 97.88% is obtained by the SSD (VGG16)

model, which is 1.1% higher than the model in this paper, but
the AP@0.5 of this model is 3.82% higher than it, and the
MR-2 is also lower than it 0.09, so the recognition
performance of the model in this paper is better. In summary,
the model in this paper has certain superiority in performance
for fault infrared recognition.

Aiming at the problems of irregular heating regions of
electrical equipment, small heating targets and low detection
accuracy, an improved YOLOv4-based infrared image
recognition algorithm for fault regions of electrical equipment
is proposed, and the fault region recognition algorithm is
studied by constructing a data set for model training and
model testing. Model testing results show that the improved
four-detection layer model improves AP by about 12%
compared with the original three-detection layer model. Model
robustness test experimental results show that the model
robustness is good.

3.3. Model Robustness Testing
In order to verify the robustness of the improved

YOLOv4 fault region recognition model, robustness test
experiments with Gaussian noise, pretzel noise, luminance
variation, and blur variation are performed on 719 test set
images.

For Gaussian noise, the mean value is set to 0, the
variance is set to 0.05~0.15, and the interval size is 0.01. For
the salt and pepper noise, the density percentage is changed
from 0.01 to 0.1, the interval size is 0.01, and the image
brightness is changed to 50% to 150% of the original
brightness, with an interval of 10%. Each of these three
methods is applied to the test dataset to obtain a new dataset,
and the transformed dataset is fed into the model for
testing.The test results are shown in Figure 12.

Fig.s 12(a) and 12(b) show that the AP and DA metrics
of the model still exceed 80% under low noise, indicating that
the model is robust to noise disturbances. However, the model
performance degrades to a certain extent when the noise is
high, and it is necessary to ensure that the images have good

TABLE IV
RESULTS OF FAULT AREA IDENTIFICATION

Number to be
identified

Number of models
identified MAP Detection speed(f/s) Pr Re F1 AP@0.5 MR-2

989 958 96.78% 17 0.92 0.92 0.93 94.23% 0.11

TABLE V
COMPARISON OF FAULT AREA IDENTIFICATION RESULTS OF DIFFERENTMODELS

Models AP@0.5 DA F1 Precision Recall MR-2 FPS

Faster R-CNN(VGG16) 77.79% 82.08% 0.58 0.429 0.912 0.41 10

Faster R-CNN(Restnet50) 81.12% 83.08% 0.59 0.432 0.923 0.35 5

SSD(VGG16) 90.41% 92.98% 0.58 0.961 0.413 0.20 28

SSD(Mobiletnet) 85.95% 86.35% 0.78 0.690 0.897 0.28 23

YOLOV3(Darknet) 89.57% 93.12% 0.92 0.919 0.920 0.17 16

YOLOv4(CSPDarknet) 87.71% 88.95% 0.87 0.908 0.837 0.22 13

Our Model 94.23% 96.78% 0.93 0.923 0.926 0.11 17

mailto:AP@0.5
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quality. From Fig. 4.12 (c) it is shown that a decrease or
increase in luminance relative to the original image causes the
device AP@0.5 and DA to decrease, both values varying
within a small range and above 80% overall, indicating good
robustness of the model to changes in luminance. Fig. 4.20 (d)
shows that as the standard deviation of the Gaussian kernel
function increases, the image becomes increasingly blurred
and the AP@0.5 and DA of fault identification both decrease,
but the model accuracy remains high in a small range,
indicating that the model is robust to Gaussian blur.

4. Conclusion
In this paper, We propose an improved YOLOv4

algorithm for infrared image anomaly area identification,
which can detect the thermal generation phenomenon of
electrical equipment. a new target detection branch based on
the shallow 104×104 feature map is added to the model of the
original YOLOv4, which solves the problems of irregular
thermal area of electrical equipment, small thermal targets and
low detection accuracy. The improved four-detection layer
model improves about 12% AP@0.5 over the original three-
detection layer model .

We constructed a dataset containing 719 images. We
used infrared cameras to capture images of various abnormal
equipment in the substation and collected some images from
the Internet to expand the dataset. To make the training better
we used data augmentation on the dataset. During model
training, three training techniques, mosaic data enhancement,
label smoothing, and cosine annealing, are used to improve the
accuracy of the training results. Compared with the original
model, the AP value of the resulting model improves by
52.23% and the accuracy improves by 21.67% after improving
the model using the three methods.The comparison with other
models shows that this model has excellent detection effect on
infrared images of electrical equipment faults.

The robustness of the improved model is tested, and the
results show that the model has good robustness to noise,

luminance and blur. The model is resistant to a certain level of
interference and can be adapted to different situations in the
work.
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