
An Efficient Implementation for Linear
Convolution with Reduced Latency in FPGA

Dingli Xue,1 Linda S. DeBrunner,2 Victor
DeBrunner,2 Zhen Huang,1 Ying Xiao,3 and Zhaohang
Zhang3

1Beijing National Research Center for Information Science and
Technology, Tsinghua University, Beijing
2Department of Electrical & Computer Engineering, Florida State
University, Tallahassee, FL
3Department of Electronic Engineering, Tsinghua University, Beijing
huangzhen@tsinghua.edu.cn

A recently developed linear convolution filter based on Hirschman the-
ory has shown its advantage in saving computations compared with
other convolution filters. In this paper, we ameliorate the Hirschman
convolution filter with the usage of split-radix algorithm and explore
its latency-reduced advantage for the first time. We present a compari-
son of hardware resource in FPGA for the proposed Hirschman-based
filter and other convolution filters. Simulation results indicate that the
split-radix Hirschman convolution filter achieves a promising reduction
in latency by averagely 18.15% with an acceptable power consumption
rise, compared with the main competitor using extended SRFFT. In the
case of device capacity limited, the proposed Hirschman convolution
filter is still computationally attractive as it performs small-size orig-
inator function, instead of larger Fourier transform required by other
convolution filters.

1. Introduction: Developing a new approach to compute linear convo-
lution more efficiently is still attractive for digital signal processing and
deep learning. Traditional convolution using the Fast Fourier Transform
(FFT) has drawbacks such as repetitive usage of twiddle factors and
expensive computational load for large signal size. Specifically, it real-
izes a linear convolution by computing extended cyclic convolutions of
zero-padded signal with numerous trivial multiplications by zero and
minus one. Some algorithms that consider decomposing large convolu-
tion of specific sizes into smaller skew-cyclic computations have been
shown in [1–6].

A promising convolution algorithm based on Hirschman theory has
been developed with a configuration optimization strategy [7–9]. Mean-
while, fast Discrete Hirschman transforms (DHTs) have been studied
in [10, 11] and motivated some related work [12, 13]. Among these
fast Hirschman Transforms, a split-radix DHT (SRDHT) introduces an
“L”-shaped structure that could reduce nontrivial real computations at
an expense of additional permutations. In this paper, we estimate the
computational performance for Hirschman convolution filter with the
assistance of the split-radix algorithm not considered yet. Because the
Hirschman convolution has an originator function that shares a similar
structure of smaller size with the FFT-based convolution, it is feasible
to implement the Hirschman convolution filter using repetitive butterfly
network already working well in industry. For the split-radix Hirschman
convolution filter and other Hirschman-based/FFT-based filters [10, 14–
16], they are all built using an FPGA (Cyclone IV EP4CE6E22C6,
Altera) with each filtering procedure clarified. We concentrate on the
performance in hardware, typically, latency and power consumption.
The split-radix Hirschman convolution filter introduces a reduction of
latency in most cases, except for the convolution size approaches the
next exponential. It works at high clock frequency (Fmax) with an
acceptable power rise. While the device capacity is sometimes limited,
the proposed Hirschman convolution filter can perform more efficiently
than the traditional FFT-based ones, since the originator function of the
SRDHT is relatively smaller and steady in general. Please note that, we
currently just propose a prospective Hirschman-based implementation
for linear convolution and stimulate future work, rather than surpassing
the existing comprehensive tools in industry.

2. Discrete Hirschman Transform: The conventional Heisenberg-Weyl
uncertainty is not applicable to describe the joint localization for a dis-
crete signal due to its inherent limitation of merely keeping translation

invariance in the continuous-time case [17, 18]. We prefer an entropy-
based measure, the Hirschman uncertainty principle (𝐻𝑝) firstly men-
tioned in Hirschman’s note [19]. For a finite discrete signal 𝑥 with
unit energy, we describe a class of 𝐻𝑝 by 𝐻𝑝 (𝑥) = 𝑝𝑆 (𝑥) + (1 −
𝑝)𝑆 (𝑋) , where 𝑆 (𝑥) = −∑𝐿𝑥−1

𝑛=0 |𝑥 [𝑛] |
2 log2 |𝑥 [𝑛] |2 gives the Shan-

non entropy and 𝑋 is the Fourier transform of 𝑥. Parameter 𝑝 (0 ≤
𝑝 ≤ 1) allows a trade-off between concentrations in both time and fre-
quency domains. We have a lower limit 𝐻𝑝 ≥ 1

2 log 𝑁 for 𝑝 = 1
2 where

𝑁 is the length of 𝑥. There is an unique orthogonal set of basis that
minimizes 𝐻𝑝 called the Hirschman Optimal Transform (HOT), which
is superior to the Discrete Fourier Transform (DFT) in terms of high-
resolution and computational complexity [10, 18, 20, 21]. The DHT is
the generalization of the HOT with increased hardware flexibility. For
𝑁 = 𝐿𝐾 , 0 ≤ 𝑟 ≤ 𝐾 − 1 and 0 ≤ 𝑙 ≤ 𝐿 − 1, the DHT is given by

𝑋𝐷𝐻𝑇 (𝐿𝑟 + 𝑙) =
1
√
𝐾

𝐾−1∑︁
𝑛=0

𝑥 [𝐿𝑛 + 𝑙]𝑊𝑛𝑟
𝐾 (1)

For 0 ≤ 𝑛 ≤ 𝐾 − 1 and 0 ≤ 𝑙 ≤ 𝐿 − 1, its inverse transform (IDHT) is

𝑥𝐼𝐷𝐻𝑇 [𝐿𝑛 + 𝑙] =
1
√
𝐾

𝐾−1∑︁
𝑟=0

𝑋 (𝐿𝑟 + 𝑙)𝑊−𝑛𝑟𝐾 (2)

where 𝑊𝐾 = 𝑒− 𝑗
2𝜋
𝐾 gives twiddle factors. Note that an 𝐿𝐾-point DHT

can be realized by periodic shifts of smaller FFTs, specifically, 𝐿, 𝐾-
point FFTs where each 𝐾-point FFT is the originator function of the
DHT. In this case, the DHT benefits from some familiar structures like
butterfly network already working well with FFT-based applications.

3. Split-Radix Hirschman Convolution: Algorithm 1 shows how the
Hirschman convolution convolves two finite discrete-time signals 𝑥 and
ℎ, where the length of 𝑥 is greater (𝐿𝑥 > 𝐿ℎ). We normally con-
sider 𝐾 as a power of 2 and then determine other parameters. We
extend the pre-computed Fourier spectrum of ℎ to a proper size 𝐿𝐾 ,
permute 𝑥, and multiply its 𝐿𝐾-point DHT by the extended spectrum
of ℎ. We next permute and separate the 𝐿𝐾-point IDHT of the prod-
uct. Segments are overlap-added with residual elements truncated for
our desired linear convolution result. Both the Hirschman-based and
FFT-based filters share a similar architecture that consists of 5 main
parts: Input Part, Transform Part, Multiplication Part, Inverse-Transform
Part and Output Part. Total clock cycles are given by 𝐶𝑆𝑅𝐷𝐻𝑇𝑐𝑜𝑛𝑣 =

𝑐𝑖𝑛1 +𝑐𝐷𝐻𝑇 +𝑐𝑀𝑈𝐿1 +𝑐𝐷𝐻𝑇 +𝑐𝑜𝑢𝑡1 and𝐶𝐹𝐹𝑇𝑐𝑜𝑛𝑣 = 𝑐𝑖𝑛2 +𝑐𝐹𝐹𝑇 +
𝑐𝑀𝑈𝐿2 + 𝑐𝐹𝐹𝑇 + 𝑐𝑜𝑢𝑡2. Please note that, the fourth terms 𝑐𝐷𝐻𝑇 and
𝑐𝐹𝐹𝑇 there refer to the Inverse-Transform Parts in fact. We use the same
denotations there since both the Transform and Inverse-Transform Parts
have functionally identical structures, except for some multiplications of
conjugate twiddle factors. Next, each filtering procedure will be elabo-
rated.

3.1. Input Part: We consider the FFT convolution filter propagates input
stream 𝑥 attached by zeros through a first-in-first-out (FIFO) in 1 clock
cycle by streaming. The Hirschman convolution filter requires more
operations by loading the input through a FIFO and permuting it to a
register in 𝐿𝐽+1 clock cycles (lines 5-9, Algorithm 1). It then needs 𝐿𝐾
clock cycles to duplicate each filter coefficient (line 4, Algorithm 1). If
we consider parallel pipelined method here, only 𝐿𝐾 + 1 clock cycles
are required. So the clock cycle counts are given by 𝑐𝑖𝑛1 = 𝐿𝐾 + 1 and
𝑐𝑖𝑛2 = 1 for this part.

3.2. Transform & Inverse Transform Parts: For both convolution fil-
ters, their Transform and Inverse-Transform Parts are functionally sim-
ilar, so we prefer to discuss the Transform Part to which the Inverse-
Transform Part corresponds. A split-radix algorithm is under consider-
ation for both the Hirschman and Fourier transforms. The split-radix
algorithm introduces a special “L"-shaped butterfly network slightly dif-
ferent from that of the radix-2 algorithm, based on a fact that the radix-
2 form can be transformed into radix-4 form by simply modifying the
exponents of some twiddle factors. It could be realized through a paral-
lel pipelined and shared substructure manner [22]. The Hirschman con-
volution filter propagates data from the Input Part to a register in 𝐿𝐾
clock cycles. Next filtering procedure is an 𝐿𝐾-point SRDHT computa-
tion that contains “L"-shaped butterfly stages by log2 𝐾 times. This pro-
cedure requires 𝐿𝐾

3 log2 𝐾 clock cycles for all arithmetic operations.

ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el 1

https://orcid.org/0000-0003-1633-7233
https://orcid.org/0000-0001-9926-8602
https://orcid.org/0000-0003-2198-2552

Algorithm 1: Linear convolution algorithm based on the
Hirschman Theory

Input : 𝑥 and ℎ, of lengths 𝐿𝑥 -point and 𝐿ℎ-point (𝐿𝑥 > 𝐿ℎ);
𝐾 , length of originator function

Parameter: 𝐽 , length of segment separated from 𝑥;
𝐿, number of segment

Output :𝐶, convolution result

1 Given 𝐾 , 𝐽 ← 𝐾 − 𝐿ℎ + 1 and 𝐿 ← ⌈ 𝐿𝑥
𝐽
⌉

2 Zero-pad 𝑥 to 𝐿𝐾-point
3 𝐻 ← 𝐾-point DFT of ℎ
4 𝐻̂ ← Repeat each element in 𝐻 by 𝐿 times
5 for 𝑖 ← 0 to 𝐽 − 1 do
6 for 𝑗 ← 0 to 𝐿 − 1 do
7 𝑥̂ (𝑖 ∗ 𝐿 + 𝑗) ← 𝑥 (𝑗 ∗ 𝐽 + 𝑖)
8 end
9 end

10 𝑋̂ ← 𝐿𝐾-point DHT of 𝑥̂
11 𝑍̂ ← Point-wise multiplication of 𝑋̂ and 𝐻̂
12 𝑧̂ ← 𝐿𝐾-point IDHT of 𝑍̂
13 for 𝑖 ← 0 to 𝐿 − 1 do
14 for 𝑗 ← 0 to 𝐾 − 1 do
15 𝑧 (𝑖 ∗ 𝐾 + 𝑗) ← 𝑧̂ (𝑗 ∗ 𝐿 + 𝑖)
16 end
17 end
18 Separate 𝑧 into 𝐿, 𝐾-point segments
19 𝐶 ← Overlap-add one segment and the next by 𝐾 − 𝐽 elements
20 Truncate the tail for 𝐿𝑥 + 𝐿ℎ − 1 points𝐶
21 Output the desired convolution result

It next completes an 𝐿𝐾-point order reversal and then outputs 𝐿𝐾-
point result. Similarly, the FFT-based filter loads data in 𝑁 clock cycles,
computes an 𝑁 -point split-radix FFT (SRFFT) through 𝑁

3 log2 𝑁 clock
cycles, reverses and then stores 𝑁 -point result. The clock cycles are
given by 𝑐𝐷𝐻𝑇 = 𝐿𝐾 + 𝐿𝐾3 log2 𝐾 + 𝐿𝐾 + 𝐿𝐾 = 𝐿𝐾 (3 + 1

3 log2 𝐾)
and 𝑐𝐹𝐹𝑇 = 𝑁 + 𝑁

3 log2 𝑁 + 𝑁 + 𝑁 = 𝑁 (3 + 1
3 log2 𝑁) for differ-

ent Transform Parts, respectively. We clarify that the Hirschman-based
and FFT-based convolution filters perform identically for 𝐾 = 𝑁 and
𝐿 = 1. However, it is feasible for the Hirschman-based filter to save
clock cycles as 𝐾 < 𝑁 since it requires less split-radix butterfly stages
than that of its FFT-based competitor.

3.3. Multiplication Part: In the Multiplication Part, the Transform Part
output is multiplied by the pre-computed filter coefficients, 𝐻. The
Hirschman-based and FFT-based convolution filters perform 𝐿𝐾-point
and 𝑁 -point complex multiplications, respectively, with clock cycles
given by 𝑐𝑀𝑈𝐿1 = 𝐿𝐾 and 𝑐𝑀𝑈𝐿2 = 𝑁 . Two products are inverse-
transformed in the Inverse-Transform Part using the same clock cycles
as the Transform Part mentioned in Section IV. B.

3.4. Output Part: Unlike the FFT-based filter where the first 𝐿𝑥 +𝐿ℎ −1
elements of its output are exactly the linear convolution result, the pro-
posed Hirschman-based filter requires extra 𝐿𝐾 clock cycles to regroup
and overlap-add the output in a manner of addressing (lines 13-17,
Algorithm 1). Redundant elements are truncated to keep only the first
𝐿𝑥 + 𝐿ℎ − 1 numbers remained for the linear convolution result (lines
19-20, Algorithm 1). The clock cycle counts of the Output Part are given
by 𝑐𝑜𝑢𝑡1 = 𝐿𝐾 + (𝐿𝑥 +𝐿ℎ −1) and 𝑐𝑜𝑢𝑡2 = 𝐿𝑥 +𝐿ℎ −1. Consequently,
we express the requirements in clock cycles for both split-radix convo-
lution filters by

𝐶𝑆𝑅𝐷𝐻𝑇𝑐𝑜𝑛𝑣 =𝑐𝑖𝑛1 + 2 × 𝑐𝐷𝐻𝑇 + 𝑐𝑀𝑈𝐿1 + 𝑐𝑜𝑢𝑡1

=𝐿𝐾 (9 + 2
3

log2 𝐾) + 𝐿𝑥 + 𝐿ℎ (3)

𝐶𝐹𝐹𝑇𝑐𝑜𝑛𝑣 =𝑐𝑖𝑛2 + 2 × 𝑐𝐹𝐹𝑇 + 𝑐𝑀𝑈𝐿2 + 𝑐𝑜𝑢𝑡2

=𝑁 (7 + 2
3

log2 𝑁) + 𝐿𝑥 + 𝐿ℎ (4)

The Hirschman-based filter reduces clock cycles through its
Transform/Inverse-Transform Parts, while it requires more to per-
mute and regroup the output additionally. On FPGA environment, a
device normally spends more time to realize a complex computation

than a simple loading/shifting operation, even though they are both
counted by 1 clock cycle. It is inadequate to estimate the latency just
according to clock cycles, we should further discuss clock frequency
and power consumption.

4. Consumption in Hardware Resources: In this section, we firstly
verify the advantage in saving hardware resources for the proposed
split-radix Hirschman convolution filter. As explained in [8], a basic
Hirschman convolution filter has an optimal configuration among mul-
tiple parameter choices for the best computational complexity, which
leads to the largest reduction in latency. We conjecture the requirement
in hardware resources would vary for different convolution sizes, thus
we investigate sizes from 200 to 1288 points involving 4 exponential
numbers (256, 512, 1024, and 2048 points). Suppose that the filter size
is 30 (𝐿ℎ = 30), the optimal configuration of the Hirschman convolution
filter has the originator function to be 𝐾 = 128 points. We implement
the split-radix Hirschman convolution filter with other 4 competitors:
2 advanced Hirschman-based filters [10, 16], and 2 FFT-based filters.
Since a DHT computation regards 𝐾-point DFT as its originator func-
tion [18, 21], we consider the usage of fully parallel pipelined manner
and repetitive application of butterfly network. All convolution filters are
built with an FPGA, Cyclone IV EP4CE6E22C6, Altera and simulated
in Quartus II with Intel Core i7-10700 CPU, 2.90GHz. We choose the
Slow 1200mV 85C Model. Data set consists of 16-bit fixed-point un-
scaled numbers and phase factor width is also 16-bit.

4.1. Clock Cycles: Tab. 1 verifies our analysis in Section IV.E that the
clock cycles of the SRFFT convolution filter increases massively as the
convolution size crosses 256, 512, 1024 points. It is because that these
sizes indicate different Fourier computations of 512, 1024, 2048 points.
The split-radix Hirschman convolution filter generally introduces reduc-
tion in clock cycles but brings more for the convolution size approaching
the next exponential due to an increased usage of the originator func-
tion. However, its originator function is normally smaller and its but-
terfly network size is fairly changeless, which is attractive for limited
device capacity.

4.2. Clock Frequency: Maximum clock frequency, 𝐹𝑚𝑎𝑥 , is a measure-
ment for paths where the source and destination registers or ports are
driven by the same clock. Some FPGA providers recommend that the
𝐹𝑚𝑎𝑥 should be always regarded as a clock constraint for signal analy-
sis. We make all convolution filters well perform under the device limit.
As shown in Tab. 1, the split-radix Hirschman convolution filter gener-
ally requires the 𝐹𝑚𝑎𝑥 of mean 175.15MHz higher than 154.79MHz and
156.76MHz for the regular and extended SRFFT-based filters, respec-
tively. We also notice that the split-radix algorithm brings more effi-
ciency than the radix-2 version for the Hirschman convolution filter.

4.3. Power: Tab. 1 indicates that the proposed Hirschman convolution
filter requires averagely 3.05% more power than that of the main com-
petitor using extended SRFFT [15]. It is because that the Hirschman-
based filter yields higher clock frequency due to its efficient compu-
tation of smaller-size originator function. Meanwhile, the SRFFT-based
competitors have to run larger butterfly-networks of bidirectional Fourier
computations for different convolution sizes. The fixed-point bit-shifting
design results in the least power dissipation due to its direct accesses to
memory and fast multiplications/divisions by 2 using bit-shifting.

4.4. Latency: Fig. 1 compares the latency for all convolution filters in
discussion. Two SRFFT-based filters show a similar stepped growth
in latency. Compared with the main competitor using the extended
SRFFT, the proposed Hirschman convolution filter generally requires
less latency by averagely 18.15% through the whole filtering for dif-
ferent convolution sizes. But for some convolution sizes approaching
the next exponential numbers, its latency-reduced advantage diminishes
since the Hirschman-based filter has increasing requirements of origina-
tor function for overlapping procedures. The radix-2 Hirschman-based
filter yields more latency as the radix-2 DHT is less efficient than the
SRDHT [11]. The fixed-point bit-shifting design requires the largest
latency due to its numerous and redundant loading operations. Moreover,

2 ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el

Table 1. Comparison in hardware resources for the FFT-based and Hirschman convolution filters using Cyclone IV EP4CE6E22C6 Slow
1200mV 85C Model, Altera. (convolution size: point; Fmax: MHz, power: W)

Conv
Size

FFT-based filter
(SRFFT)[14]

FFT-based filter
(extended SRFFT)[15]

Hirschman-based filter
(R2DHT) [10]

Hirschman-based filter
fixed-point shifting) [16]

Hirschman-based filter
(SRDHT)

Fmax Clock Power Fmax Clock Power Fmax Clock Power Fmax Clock Power Fmax Clock Power

200 141.38 3358 0.605 143.04 3358 0.599 163.93 6089 0.619 95.49 7592 0.580 175.80 3700 0.619
264 151.48 6921 0.614 153.70 6921 0.608 165.62 9097 0.625 96.77 10120 0.582 177.42 5513 0.625
328 148.49 6985 0.611 150.07 6985 0.605 165.56 12105 0.622 95.96 12648 0.582 177.10 7326 0.622
392 150.14 7049 0.612 152.19 7049 0.606 164.83 12169 0.624 96.54 15176 0.583 176.93 7390 0.624
456 145.83 7113 0.610 147.76 7113 0.604 165.55 15177 0.625 95.47 17704 0.584 177.21 9204 0.625
520 157.12 14516 0.620 159.35 14516 0.614 165.19 15241 0.626 96.15 20232 0.585 176.92 9268 0.626
584 156.89 14580 0.615 158.77 14580 0.609 164.71 18249 0.628 95.53 22760 0.585 176.20 11081 0.628
648 154.82 14644 0.616 156.95 14644 0.611 163.23 21257 0.627 95.25 25288 0.587 175.49 12894 0.627
712 154.23 14708 0.614 156.42 14708 0.608 163.01 21321 0.630 94.89 27816 0.588 174.94 12958 0.630
776 155.60 14772 0.613 157.41 14772 0.607 162.70 24329 0.633 95.02 30344 0.588 174.33 14772 0.633
840 156.32 14836 0.614 158.31 14836 0.608 162.85 27337 0.632 95.30 32872 0.589 174.84 16585 0.632
904 155.20 14900 0.612 157.51 14900 0.606 161.89 27401 0.633 95.04 35400 0.591 173.86 16649 0.633
968 153.78 14964 0.620 155.74 14964 0.614 161.97 30409 0.631 94.67 37928 0.591 173.50 18462 0.631

1032 162.12 30388 0.630 164.01 30388 0.624 163.08 33417 0.633 95.63 40456 0.592 174.77 20276 0.633
1096 161.76 30452 0.628 163.88 30452 0.622 162.53 33481 0.635 95.14 42984 0.593 174.21 20340 0.635
1160 160.84 30516 0.626 162.74 30516 0.620 162.05 36489 0.638 94.87 45512 0.593 173.63 22153 0.638
1224 160.28 30580 0.627 162.49 30580 0.621 160.88 39497 0.638 94.43 48040 0.594 172.94 23966 0.638
1288 159.89 30644 0.622 161.82 30644 0.617 160.76 39561 0.639 94.53 50568 0.595 172.54 24030 0.639

200 400 600 800 1000 1200 1400

Convolution Size (point)

0

100

200

300

400

500

600

L
a

te
n

c
y
 (

u
s
)

SRFFTconv [14]

exSRFFTconv [15]

R2DHTconv [10]

Fixed-point DHTconv [16]

SRDHTconv

Fig 1 Comparison in latency for the split-radix Hirschman-based and
SRFFT-based convolution filters.

the latency-reduced advantage of the split-radix Hirschman convolution
filter could become even more enhanced with increased convolution size.

5. Conclusion: We verify the latency-reduced advantage for the split-
radix Hirschman convolution filter. This proposed filter is implemented
using an FPGA (Cyclone IV EP4CE6E22C6, Altera) along with other
Hirschman-based/FFT-based convolution filters. It could save latency in
most cases of convolution sizes but require more as the convolution size
approaches the next exponential. Compared to the main competitor using
the extended SRFFT, the proposed filter performs well at higher clock
frequency and introduces a reduction in latency by averagely 18.15%,
with an acceptable power consumption rise by about 3.05%. In general,
we consider this split-radix Hirschman convolution filter as a computa-
tionally attractive substitute to realize fast and efficient linear convolu-
tion for many applications in signal processing and deep learning.

References
1. Nussbaumer, H.J.: Fast Fourier Transform and Convolution Algo-

rithms. Berlin, Heidelberg: Springer Verlag (1981)
2. Mou, Z.J., Duhamel, P.: Short-length FIR filters and their use in fast

nonrecursive filtering. IEEE Trans. Signal Process. 39(6), 1322–1332
(Jun. 1991)

3. Cheng, C., Parhi, K.K.: Hardware efficient fast parallel FIR filter struc-
tures based on iterated short convolution. IEEE Trans. Circuits Syst. I
51(8), 1492–1500 (Aug. 2004)

4. Narasimha, M.J.: Linear convolution using skew-cyclic convolutions.
IEEE Signal Process. Lett. 14(3), 173–176 (Mar. 2007)

5. Coleman, J.N., et al.: Arithmetic on the european logarithmic micro-
processor. IEEE Trans. Comput. 49(7), 702–715 (Jul 2000)

6. Albu, F., et al.: Pipelined implementations of the a priori error-feedback
lsl algorithm using logarithmic arithmetic. In: Proc. 2002 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, vol. 3,
pp. III 2681–2684. (2002)

7. Xue, D., DeBrunner, L.S., DeBrunner, V.: Linear convolution filter to
reduce computational complexity based on discrete hirschman trans-
form. IEEE Signal Process. Lett. 26(12), 1935–1939 (Dec. 2019)

8. Xue, D., DeBrunner, L.S., DeBrunner, V.: Reduced complexity optimal
convolution based on the Discrete Hirschman Transform. IEEE Trans.
Circuits Syst. I: Reg. Papers 68, 1–9 (Mar. 2021)

9. Wang, W., DeBrunner, V., DeBrunner, L.S.: Fast convolution algo-
rithm for real-valued finite length sequences. In: Proc. IEEE Int’l.
Conf. Acoust., Speech, Signal Process. (ICASSP), , pp. 577–580. (May
2023)

10. Xue, D., DeBrunner, L.S., DeBrunner, V.: On computing the Discrete
Hirschman Transform. IEEE Trans. Signal Process. 68, 6444–6452
(Nov. 2020)

11. Xue, D., et al.: Split-radix algorithm for the Discrete Hirschman Trans-
form. IEEE Signal Process. Lett. 29, 199–203 (Dec. 2021)

12. Liu, Y., et al.: One-step calculation circuit of FFT and its application.
IEEE Trans. Circuits Syst. I, Reg. Papers 69(7), 2781–2793 (2022)

13. Kazemian, M., Abouei, J., Anpalagan, A.: A low complexity enhanced-
noma scheme to reduce inter-user interference, ber and papr in 5g wire-
less systems. Phys. Commun. 48, 101 (2021)

14. Duhamel, P., Hollmann, H.: Split radix fft algorithm. Electron. Lett.
20, 14–16 (1984)

15. Takahashi, D.: An extended split-radix FFT algorithm. IEEE Signal
Process. Lett. 8(5), 145–147 (May 2001)

16. Thomas, R., DeBrunner, V., DeBrunner, L.: Fixed-point implementa-
tion of Discrete Hirschman Transform. In: Proc. Asilomar Conference
on Signals, Systems and Computers, pp. 1507–1511. (Oct. 2018)

17. DeBrunner, V., Ozaydin, M., Przebinda, T.: Resolution in time-
frequency. IEEE Trans. Signal Process. 47(3), 783–788 (Mar. 1999)

18. DeBrunner, V., et al.: Entropy-based uncertainty measures for 𝐿2(Rn),
𝑙2(Z), and 𝑙2(Z/𝑁Z) with a Hirschman Optimal Transform for
𝑙2(Z/NZ). IEEE Trans. Signal Process. 53(8), 2690–2699 (Aug. 2005)

19. Hirschman, I.I.: A note on entropy. Amer. J. Math. 79, 152–156 (1957)
20. Przebinda, T., DeBrunner, V., Ozaydin, M.: Using a new uncertainty

measure to determine optimal bases for signal representations. In: Proc.
IEEE Int’l. Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 3,
pp. 1365–1368. (Mar. 1999)

21. Przebinda, T., DeBrunner, V., Ozaydin, M.: The optimal transform for
the discrete Hirschman uncertainty principle. IEEE Trans. Inf. Theory
47(5), 2086–2090 (Jul. 2001)

22. Hazarika, J., Ahamed, S.R., Nemade, H.B.: Low-complexity, energy-
efficient fully parallel split-radix FFT architecture. Electronics Letters
58(18), 678–680 (2022)

ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el 3

