References
- Barton, P. S. et al. (2013) ‘The role of carrion in maintaining
biodiversity and ecological processes in terrestrial ecosystems’,Oecologia . Springer Verlag, pp. 761–772. doi:
10.1007/s00442-012-2460-3.
- Benninger, L. A., Carter, D. O. and Forbes, S. L. (2008) ‘The
biochemical alteration of soil beneath a decomposing carcass’,Forensic Science International . Forensic Sci Int, 180(2–3),
pp. 70–75. doi: 10.1016/j.forsciint.2008.07.001.
- Brown, J. H. and Gillooly, J. F. (2003) ‘Ecological food webs:
High-quality data facilitate theoretical unification’,Proceedings of the National Academy of Sciences , 100(4).
Available at: www.pnas.orgcgidoi10.1073pnas.0630310100 (Accessed: 21
January 2022).
- Cardinale, B. J. et al. (2012) ‘Biodiversity loss and its
impact on humanity’, Nature 2012 486:7401 . Nature Publishing
Group, 486(7401), pp. 59–67. doi: 10.1038/nature11148.
- Cederholm, C. J. et al. (1999) ‘Pacific Salmon Carcasses:
Essential Contributions of Nutrients and Energy for Aquatic and
Terrestrial Ecosystems’, Fisheries , 24(10), pp. 6–15. doi:
10.1577/1548-8446(1999)024<0006:psc>2.0.co;2.
- Coleman, D. . and Hendrix, P. . (2000) Invertebrates as
Webmasters in Ecosystems . CABI Publishing. Available at:
http://sherekashmir.informaticspublishing.com/353/1/9780851993942.pdf
(Accessed: 21 January 2022).
- Cunningham, C. X. et al. (2018) ‘Top carnivore decline has
cascading effects on scavengers and carrion persistence’,Proceedings of the Royal Society B . The Royal Society,
285(1892). doi: 10.1098/RSPB.2018.1582.
- Danell, K., Berteaux, D. and Bråthen, K. A. (2002) ‘Effect of muskox
carcasses on nitrogen concentration in tundra vegetation’,Arctic , 55(4), pp. 389–392. doi: 10.14430/arctic723.
- Devault, T. L. et al. (2003) ‘Scavenging by Vertebrates :
Behavioral , Ecological , and Evolutionary Perspectives on an
Important Energy Transfer Pathway in Terrestrial Ecosystems’,Oikos , 102(2), pp. 225–234.
- Devault, T. L., Brisbin, I. L. and Rhodes, O. E. (2004) ‘Factors
influencing the acquisition of rodent carrion by vertebrate scavengers
and decomposers’, Canadian Journal of Zoology , 509, pp.
502–509. doi: 10.1139/Z04-022.
- Graves, G. R. (2017) ‘Field Measurements of Gastrointestinal pH of New
World Vultures in Guyana’, Source: Journal of Raptor Research ,
51(4), pp. 465–469. doi: 10.3356/JRR-16-62.1.
- Hill, J. E. et al. (2018) ‘Effects of vulture exclusion on
carrion consumption by facultative scavengers’, Ecology and
Evolution . John Wiley & Sons, Ltd, 8(5), pp. 2518–2526. doi:
10.1002/ECE3.3840.
- Houston, D. C. and Cooper, J. E. (1975) ‘The Digestive Tract of the
Whiteback Griffon Vulture and its Role in Disease Transmission Among
Wild Ungulates’, Journal of Wildlife Diseases . Allen Press,
11(3), pp. 306–313. doi: 10.7589/0090-3558-11.3.306.
- Huijbers, C. M. et al. (2016) ‘Functional replacement across
species pools of vertebrate scavengers separated at a continental
scale maintains an ecosystem function’, Functional Ecology ,
30m(6), pp. 998–1005. doi: 10.1111/1365-2435.12577.
- Kaczensky, P., Hayes, R. D. and Promberger, C. (2005) ‘Effect of raven
Corvus corax scavenging on the kill rates of wolf Canis lupus packs’,Widllife Biology , 11(2), pp. 101–108.
- Kneidel, K. A. (1984) ‘Influence of carcass taxon and size on species
composition of carrion-breeding Diptera.’, American Midland
Naturalist , 111(1), pp. 57–63. doi: 10.2307/2425542.
- Lenth, R. V. (2021) emmeans: Estimated Marginal Means, aka
Least-Squares Means. R package version 1.5.4.
https://CRAN.R-project.org/package=emmeans . Available at:
https://cran.r-project.org/web/packages/emmeans/index.html (Accessed:
21 January 2022).
- Lindeman, R. L. (1942) ‘The Trophic-Dynamic Aspect of Ecology’,Ecology , 23(4), pp. 399–417.
- Macdonald, B. C. T. et al. (2014) ‘Carrion decomposition causes
large and lasting effects on soil amino acid and peptide flux’,Soil Biology and Biochemistry . Elsevier Ltd, 69, pp. 132–140.
doi: 10.1016/j.soilbio.2013.10.042.
- Markandya, A. et al. (2008) ‘Counting the cost of vulture
decline — An appraisal of the human health and other benefits of
vultures in India’, 7. doi: 10.1016/j.ecolecon.2008.04.020.
- Materassi, M. et al. (2017) ‘Kleptoparasitism and complexity in
a multi-trophic web’, Ecological Complexity . Elsevier B.V., 29,
pp. 49–60. doi: 10.1016/J.ECOCOM.2016.12.004.
- Morales-Reyes, Z. et al. (2017) ‘Scavenging efficiency and red
fox abundance in Mediterranean mountains with and without vultures’,Acta Oecologica , 79(February), pp. 81–88. doi:
10.1016/j.actao.2016.12.012.
- Naves-Alegre, L. et al. (2021) ‘Uncovering the vertebrate
scavenger guild composition and functioning in the Cerrado
biodiversity hotspot’, Biotropica . John Wiley & Sons, Ltd, 00,
pp. 1–12. doi: 10.1111/BTP.13006.
- Ogada, D. L. et al. (2012) ‘Effects of Vulture Declines on
Facultative Scavengers and Potential Implications for Mammalian
Disease’, Conservation Biology , 26(3), pp. 453–460. doi:
10.1111/j.1523-1739.2012.01827.x.
- Olson, Z. H. et al. (2012) ‘Scavenger community response to the
removal of a dominant Scavenger community response to the removal of a
dominant scavenger scavenger’. doi: 10.1111/j.1600-0706.2011.19771.x.
- Parmenter, R. R. and Macmahon, J. A. (2009) ‘Carrion Decomposition and
Nutrient Cycling in a Semiarid Shrub — Steppe Ecosystem’,Ecological Monographs , 79(4), pp. 637–661.
- Pechal, J. L. et al. (2013) ‘Microbial community functional
change during vertebrate carrion decomposition’, PLoS ONE ,
8(11), pp. 1–11. doi: 10.1371/journal.pone.0079035.
- Putman, R. J. (1978) ‘Patterns of Carbon dioxide Evolution from
Decaying Carrion Decomposition of Small Mammal Carrion in Temperate
Systems 1’, Oikos , 31(1), pp. 47–57.
- Roggenbuck, M. et al. (2014) ‘The microbiome of New World
vultures’, Nature Communications 2014 5:1 . Nature Publishing
Group, 5(1), pp. 1–8. doi: 10.1038/ncomms6498.
- Team, R. C. (2021) ‘R: A language and environment for statistical
computing.’ R Foundation for Statistical Computing, Vienna, Austria.
Available at: https://www.r-project.org/.
- Tobajas, J. et al. (2021) ‘Scavenging patterns of generalist
predators in forested areas: The potential implications of increase in
carrion availability on a threatened capercaillie population’,Animal Conservation . John Wiley & Sons, Ltd. doi:
10.1111/ACV.12735.
- Tomberlin, J. K. et al. (2017) ‘Mass mortality events and the
role of necrophagous invertebrates’, Current Opinion in Insect
Science . Elsevier Inc., 23, pp. 7–12. doi:
10.1016/j.cois.2017.06.006.
- Towne, E. G. (2000) ‘Prairie vegetation and soil nutrient responses to
ungulate carcasses’, (September 1999), pp. 232–239.
- Wickham, H. (2009) ggplot2: Elegant Graphics for Data Analysis ,Springer . Springer-Verlag New York. doi:
10.1007/978-0-387-98141-3.
- Zepeda Mendoza, M. L. et al. (2018) ‘Protective role of the
vulture facial skin and gut microbiomes aid adaptation to scavenging’,Acta Veterinaria Scandinavica . BioMed Central, 60(1). doi:
10.1186/S13028-018-0415-3.
Table 1. Parameter estimates of the best model showing individual
effects of treatments on logit-transformed proportional loss of carrion
biomass.