References
1. Belmabkhout Y, Bhatt PM, Adil K, et al. Natural gas upgrading using a
fluorinated MOF with tuned H2S and CO2adsorption selectivity. Nat. Energy . 2018; 3: 1059-1066.
2. Mansi S. S., Michael T, J. Ilja S. Hydrogen Sulfide Capture: From
Absorption in Polar Liquids to Oxide, Zeolite, and Metal-Organic
Framework Adsorbents and Membranes. Chem. Rev . 2017; 117:
9755-9803.
3. Zhan J, Wang B, Zhang L, Sun B, Fu J, Chu G, Zou H. Simultaneous
Absorption of H2S and CO2 into the
MDEA+PZ Aqueous Solution in a Rotating Packed Bed. Ind. Eng. Chem.
Res . 2020; 59(17): 8295-8303.
4. Lemus J, Santiago R, Benito D, Welton T, Hallett JP. Process Analysis
of Ionic Liquid-Based Blends as H2S Absorbents: Search
for Thermodynamic/Kinetic Synergies. ACS Sustainable. Chem. Eng .
2021; 9: 2080-2088.
5. Miyano Y, Fujihara I. Henry’s constants of carbon dioxide in methanol
at 250-500 K. Fluid Phase Equilibr . 2004; 221: 57-62.
6. Alhseinat E, Pal P, Keewan M, Banat F. Foaming study combined with
physical characterization of aqueous MDEA gas sweetening solutions.J. Nat. Gas Sci. Eng . 2014; 17: 49-57.
7. Pedro J. Carvalho, Coutinho J.
The polarity effect upon the
methane solubility in ionic liquids: a contribution for the design of
ionic liquids for enhanced CO2 /CH4 and
H2S/CH4 selectivity. Energy
Environ. Sci . 2011; 4: 4614.
8. Zhang ZE, et al. Sour gas reservoirs and sulfur-removal technologies:
A collection of published research (2009-2015). J. Nat. Gas Sci.
Eng . 2015; 26: 1485-1490.
9. Wiheeb A, Shamsudin I, Ahmad M, Murat M, Kim J, Othman M. Present
Technologies for Hydrogen Sulfide Removal from Gaseous Mixtures.Rev. Chem. Eng . 2013; 29: 449-470.
10. Ammar A, Naji S. Comparison study of activators performance for MDEA
solution of acid gases capturing from natural gas: Simulation-based on a
real plant. Environ. Technol. Inno . 2020; 17: 100562.
11. Zong L, Chen C. Thermodynamic modeling of CO2 and
H2S solubilities in aqueous DIPA solution, aqueous
sulfolane-DIPA solution, and aqueous sulfolane-MDEA solution with
electrolyte NRTL model. Fluid Phase Equilibr. 2011; 306: 190-203.
12. Mandal B, Biswas A, Bandyopadhyay S. Selective Absorption of
H2S from Gas Streams Containing H2S and
CO2 into Aqueous Solutions of N-Methyldiethanolamine and
2-Amino-2-Methyl-1-Propanol[J]. Sep. Purif. Technol . 2004;
35: 191-202.
13. Burr B, Lyddon L. A Comparison of Physical Solvents for Acid Gas
Removal, 87th Annual Gas Processors Association Convention, Grapevine,
TX, March 2008.
14. Phillip K, Rainbolt J, Bearden M, Zheng F, Heldebrant D. Chemically
selective gas sweetening without thermal-swing regeneration.Energy Environ. Sci . 2011; 4: 1385-1390.
15. Zhang F, Shen B, Sun H, Liu J, Liu L. Rational formulation design
and commercial application of a new hybrid solvent for selectively
removing H2S and organosulfur from sour natural gas.Energ. Fuel. 2016; 30: 12-19.
16. Haider J, Saeed S, Qyyum M, Kazmi B, Ahmad R, et al. Simultaneous
capture of acid gases from natural gas adopting ionic liquids:
Challenges, recent developments, and prospects. Renew. Sust.
Energ. Rev . 2020; 123: 109771.
17. Zhao W, Zhao W, Xie X, Li Y, Chen, Y. Phase-Change Reversible
Absorption of Hydrogen Sulfide by the Superbase 1,5-Diazabicyclo
[4.3.0] non-5-ene in Organic Solvents. Ind. Eng. Chem. Res .
2019; 58: 1701-1710.
18. Liu F, Cheng N, Jiang H, Zheng W, Chen Y, et al.
1-ethyl-3-methylimidazolium chloride plus imidazole deep eutectic
solvents as physical solvents for remarkable separation of
H2S from CO2. Sep. Purif.
Technol . 2021; 276: 119313.
19. Pribble R, Zwier S. Size-Specific Infrared Spectra of
Benzene-(H2O)n Clusters (n =1 through 7):
Evidence for Noncyclic (H2O)n Structures.Science . 1994; 265: 75-79.
20. Han Y, Liu R, Jiang C, Wang H, Zheng X. The aggregation structure of
a methanol/CHCl3 binary mixture investigated by
polarized Raman spectroscopy and HNMR. J. Mol. Liq . 2021; 335:
116224.
21. Sangeetha T, Sahana R, Mounica P, Elangovan A, Shanmugam R, et al.
H-Bond interactions in water multimers and water multimers-Pyridine
complexes: Natural bond orbital and reduced density gradient isosurface
analyses. J. Mol. Liq . 2023; 377: 121524.
22. Rustomji C, Yang Y, Kim T, Mac J, Kim Y, Caldwell E, et al.
Liquefied gas electrolytes for electrochemical energy storage devices.Science . 2017; 356: eaal4263.
23. Xu J, Zhang J, Pollard T, Li Q, Tan S, et al. Electrolyte design for
Li-ion batteries under extreme operating conditions. Nature .
2023; 614: 694-700.
24. Liu C, Chen Y, Jiang H, Wu K, Peng Q, et al. Revealing the
Structure-Interaction-Dissolubility Relationships through Computational
Investigation Coupled with Solubility Measurement: Toward Solvent Design
for Organosulfide Capture. Ind. Eng. Chem. Res . 2022; 61(20):
7183-7192.
25 Gainza P, Wehrle Sarah, Beauvais A, Marchand A, et al. De novo design
of protein interactions with learned surface fingerprints.Nature. 2023; 617: 176-184.
26. Liu Q, Zhang L, Tang K, Liu L, Du J, et al. Machine learning-based
atom contribution method for the prediction of surface charge density
profiles and solvent design. AIChE. J . 2021; 67: 17110.
27. Zhang X, Xiong W, Peng L, Wu Y, Hu X. Highly selective absorption
separation of H2S and CO2 from
CH4 by novel azole-based protic ionic liquids.AIChE. J . 2020; 66: 16936.
28. Karibayev M, Shah D. Comprehensive Computational Analysis Exploring
the Formation of Caprolactam-Based Deep Eutectic Solvents and Their
Applications in Natural Gas Desulfurization. Energ. Fuel . 2020;
34: 9894-9902.
29. Jessop, Heldebrant D, Li X, Eckert C, Liotta C. Reversible
nonpolar-to-polar solvent. Nature. 2005; 436: 25.
30. Shaikh A, Posada-Pérez S, Brotons-Rufes A, Pajski J, Vajiha, et al.
Selective absorption of H2S and CO2 by
azole based protic ionic liquids: A combined density functional theory
and molecular dynamics study. J. Mol. Liq . 2022; 367: 120558.
31. Xiong W, Shi M, Peng L, Zhang X, Hu X, et al. Low viscosity
superbase protic ionic liquids for the highly efficient simultaneous
removal of H2S and CO2 from
CH4. Sep. Purif. Technol . 2021; 263: 118417.
32. Frisch M, et al. Gaussian 09, Revision E.01.; Gaussian, Inc.:
Wallingford CT, 2013.
33. Fan X, Ji X, Chen L, Chen J, Deng T, et al. All-temperature
batteries enabled by fluorinated electrolytes with non-polar solvents.Nat. Energy. 2019; 4, 882-89.
34. Johnson E, Keinan S, Mori P, Contreras J, et al. Revealing
Noncovalent Interactions. J. Am. Chem. Soc . 2010; 132(18):
6498-6506.
35. Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer.J. Comput. Chem . 2012; 33(5): 580-592.
36. Liu C, Chen Y, Guo G, Zhao Q, Jiang H, et al. Interpretable Machine
Learning Model for Predicting Interaction Energies between Dimethyl
Sulfide and Potential Absorbing Solvents. Ind. Eng. Chem. Res .
2023; 62(12): 5274-5285.
37. Sun Y, Ren S, Hou Y, Zhang K, Zhang Q, et al. Highly Reversible and
Efficient Absorption of Low-Concentration NO by Amino-Acid-Based Ionic
Liquids. ACS Sustain. Chem. Eng . 2020; 8: 3283-3290.
38. Wei L, Geng Z, Liu Y, Lu R, Xu Y, et al. Highly efficient and
reversible H2S capture by mercapto carboxylic anion
functionalized ionic liquids. J. Mol. Liq . 2021; 343, 116975.
39. Zheng W, Wu D, Feng X, Hu J, Zhang F, et al. Low viscous Protic
ionic liquids functionalized with multiple Lewis base for highly
efficient capture of H2S. J. Mol. Liq . 2018; 263:
209-217.
40. Huang K, Zhang X, Hu X, Wu Y. Hydrophobic Protic Ionic Liquids
Tethered with Tertiary Amine Group for Highly Efficient and Selective
Absorption of H2S from CO2. AIChE.
J . 2016; 62: 4480-4490.
41. Shi M, Xiong W, Zhang X, Ji J, Hu X. Highly efficient and selective
H2S capture by task-specific deep eutectic solvents
through chemical dual-site absorption. Sep. Purif. Technol . 2022;
283: 120167.
42. Wu H, Shen M, Chen X, Yu G, Abdeltawab A, et al. New absorbents for
hydrogen sulfide: Deep eutectic solvents of tetrabutylammonium
bromide/carboxylic acids and choline chloride/carboxylic acids.Sep. Purif. Technol . 2019; 224: 281-289.
43. Jalili A. Shokouhi M, Maurer G, Jenab M. Solubility of
CO2 and H2S in the ionic liquid
1-ethyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate.J. Chem. Thermodyn . 2013; 67: 55-62.
44 Jou F, Mather A, Schmidt K. Solubility of methane in propylene
carbonate. J. Chem. Eng. Data. 2015; 60(4): 1010-1013.
45. Sun D, Zhao Y, Cao Y, Liu M, Zhang Y, et al. Investigation on the
Interaction Mechanism of the Solvent Extraction for Mercaptan Removal
from Liquefied Petroleum Gas. Energ. Fuel . 2020; 34: 4788-4798.