References
1. Belmabkhout Y, Bhatt PM, Adil K, et al. Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2adsorption selectivity. Nat. Energy . 2018; 3: 1059-1066.
2. Mansi S. S., Michael T, J. Ilja S. Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal-Organic Framework Adsorbents and Membranes. Chem. Rev . 2017; 117: 9755-9803.
3. Zhan J, Wang B, Zhang L, Sun B, Fu J, Chu G, Zou H. Simultaneous Absorption of H2S and CO2 into the MDEA+PZ Aqueous Solution in a Rotating Packed Bed. Ind. Eng. Chem. Res . 2020; 59(17): 8295-8303.
4. Lemus J, Santiago R, Benito D, Welton T, Hallett JP. Process Analysis of Ionic Liquid-Based Blends as H2S Absorbents: Search for Thermodynamic/Kinetic Synergies. ACS Sustainable. Chem. Eng . 2021; 9: 2080-2088.
5. Miyano Y, Fujihara I. Henry’s constants of carbon dioxide in methanol at 250-500 K. Fluid Phase Equilibr . 2004; 221: 57-62.
6. Alhseinat E, Pal P, Keewan M, Banat F. Foaming study combined with physical characterization of aqueous MDEA gas sweetening solutions.J. Nat. Gas Sci. Eng . 2014; 17: 49-57.
7. Pedro J. Carvalho, Coutinho J. The polarity effect upon the methane solubility in ionic liquids: a contribution for the design of ionic liquids for enhanced CO2 /CH4 and H2S/CH4 selectivity. Energy Environ. Sci . 2011; 4: 4614.
8. Zhang ZE, et al. Sour gas reservoirs and sulfur-removal technologies: A collection of published research (2009-2015). J. Nat. Gas Sci. Eng . 2015; 26: 1485-1490.
9. Wiheeb A, Shamsudin I, Ahmad M, Murat M, Kim J, Othman M. Present Technologies for Hydrogen Sulfide Removal from Gaseous Mixtures.Rev. Chem. Eng . 2013; 29: 449-470.
10. Ammar A, Naji S. Comparison study of activators performance for MDEA solution of acid gases capturing from natural gas: Simulation-based on a real plant. Environ. Technol. Inno . 2020; 17: 100562.
11. Zong L, Chen C. Thermodynamic modeling of CO2 and H2S solubilities in aqueous DIPA solution, aqueous sulfolane-DIPA solution, and aqueous sulfolane-MDEA solution with electrolyte NRTL model. Fluid Phase Equilibr. 2011; 306: 190-203.
12. Mandal B, Biswas A, Bandyopadhyay S. Selective Absorption of H2S from Gas Streams Containing H2S and CO2 into Aqueous Solutions of N-Methyldiethanolamine and 2-Amino-2-Methyl-1-Propanol[J]. Sep. Purif. Technol . 2004; 35: 191-202.
13. Burr B, Lyddon L. A Comparison of Physical Solvents for Acid Gas Removal, 87th Annual Gas Processors Association Convention, Grapevine, TX, March 2008.
14. Phillip K, Rainbolt J, Bearden M, Zheng F, Heldebrant D. Chemically selective gas sweetening without thermal-swing regeneration.Energy Environ. Sci . 2011; 4: 1385-1390.
15. Zhang F, Shen B, Sun H, Liu J, Liu L. Rational formulation design and commercial application of a new hybrid solvent for selectively removing H2S and organosulfur from sour natural gas.Energ. Fuel. 2016; 30: 12-19.
16. Haider J, Saeed S, Qyyum M, Kazmi B, Ahmad R, et al. Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects. Renew. Sust. Energ. Rev . 2020; 123: 109771.
17. Zhao W, Zhao W, Xie X, Li Y, Chen, Y. Phase-Change Reversible Absorption of Hydrogen Sulfide by the Superbase 1,5-Diazabicyclo [4.3.0] non-5-ene in Organic Solvents. Ind. Eng. Chem. Res . 2019; 58: 1701-1710.
18. Liu F, Cheng N, Jiang H, Zheng W, Chen Y, et al. 1-ethyl-3-methylimidazolium chloride plus imidazole deep eutectic solvents as physical solvents for remarkable separation of H2S from CO2. Sep. Purif. Technol . 2021; 276: 119313.
19. Pribble R, Zwier S. Size-Specific Infrared Spectra of Benzene-(H2O)n Clusters (n =1 through 7): Evidence for Noncyclic (H2O)n Structures.Science . 1994; 265: 75-79.
20. Han Y, Liu R, Jiang C, Wang H, Zheng X. The aggregation structure of a methanol/CHCl3 binary mixture investigated by polarized Raman spectroscopy and HNMR. J. Mol. Liq . 2021; 335: 116224.
21. Sangeetha T, Sahana R, Mounica P, Elangovan A, Shanmugam R, et al. H-Bond interactions in water multimers and water multimers-Pyridine complexes: Natural bond orbital and reduced density gradient isosurface analyses. J. Mol. Liq . 2023; 377: 121524.
22. Rustomji C, Yang Y, Kim T, Mac J, Kim Y, Caldwell E, et al. Liquefied gas electrolytes for electrochemical energy storage devices.Science . 2017; 356: eaal4263.
23. Xu J, Zhang J, Pollard T, Li Q, Tan S, et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature . 2023; 614: 694-700.
24. Liu C, Chen Y, Jiang H, Wu K, Peng Q, et al. Revealing the Structure-Interaction-Dissolubility Relationships through Computational Investigation Coupled with Solubility Measurement: Toward Solvent Design for Organosulfide Capture. Ind. Eng. Chem. Res . 2022; 61(20): 7183-7192.
25 Gainza P, Wehrle Sarah, Beauvais A, Marchand A, et al. De novo design of protein interactions with learned surface fingerprints.Nature. 2023; 617: 176-184.
26. Liu Q, Zhang L, Tang K, Liu L, Du J, et al. Machine learning-based atom contribution method for the prediction of surface charge density profiles and solvent design. AIChE. J . 2021; 67: 17110.
27. Zhang X, Xiong W, Peng L, Wu Y, Hu X. Highly selective absorption separation of H2S and CO2 from CH4 by novel azole-based protic ionic liquids.AIChE. J . 2020; 66: 16936.
28. Karibayev M, Shah D. Comprehensive Computational Analysis Exploring the Formation of Caprolactam-Based Deep Eutectic Solvents and Their Applications in Natural Gas Desulfurization. Energ. Fuel . 2020; 34: 9894-9902.
29. Jessop, Heldebrant D, Li X, Eckert C, Liotta C. Reversible nonpolar-to-polar solvent. Nature. 2005; 436: 25.
30. Shaikh A, Posada-Pérez S, Brotons-Rufes A, Pajski J, Vajiha, et al. Selective absorption of H2S and CO2 by azole based protic ionic liquids: A combined density functional theory and molecular dynamics study. J. Mol. Liq . 2022; 367: 120558.
31. Xiong W, Shi M, Peng L, Zhang X, Hu X, et al. Low viscosity superbase protic ionic liquids for the highly efficient simultaneous removal of H2S and CO2 from CH4. Sep. Purif. Technol . 2021; 263: 118417.
32. Frisch M, et al. Gaussian 09, Revision E.01.; Gaussian, Inc.: Wallingford CT, 2013.
33. Fan X, Ji  X, Chen L, Chen J, Deng T, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents.Nat. Energy. 2019; 4, 882-89.
34. Johnson E, Keinan S, Mori P, Contreras J, et al. Revealing Noncovalent Interactions. J. Am. Chem. Soc . 2010; 132(18): 6498-6506.
35. Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer.J. Comput. Chem . 2012; 33(5): 580-592.
36. Liu C, Chen Y, Guo G, Zhao Q, Jiang H, et al. Interpretable Machine Learning Model for Predicting Interaction Energies between Dimethyl Sulfide and Potential Absorbing Solvents. Ind. Eng. Chem. Res . 2023; 62(12): 5274-5285.
37. Sun Y, Ren S, Hou Y, Zhang K, Zhang Q, et al. Highly Reversible and Efficient Absorption of Low-Concentration NO by Amino-Acid-Based Ionic Liquids. ACS Sustain. Chem. Eng . 2020; 8: 3283-3290.
38. Wei L, Geng Z, Liu Y, Lu R, Xu Y, et al. Highly efficient and reversible H2S capture by mercapto carboxylic anion functionalized ionic liquids. J. Mol. Liq . 2021; 343, 116975.
39. Zheng W, Wu D, Feng X, Hu J, Zhang F, et al. Low viscous Protic ionic liquids functionalized with multiple Lewis base for highly efficient capture of H2S. J. Mol. Liq . 2018; 263: 209-217.
40. Huang K, Zhang X, Hu X, Wu Y. Hydrophobic Protic Ionic Liquids Tethered with Tertiary Amine Group for Highly Efficient and Selective Absorption of H2S from CO2. AIChE. J . 2016; 62: 4480-4490.
41. Shi M, Xiong W, Zhang X, Ji J, Hu X. Highly efficient and selective H2S capture by task-specific deep eutectic solvents through chemical dual-site absorption. Sep. Purif. Technol . 2022; 283: 120167.
42. Wu H, Shen M, Chen X, Yu G, Abdeltawab A, et al. New absorbents for hydrogen sulfide: Deep eutectic solvents of tetrabutylammonium bromide/carboxylic acids and choline chloride/carboxylic acids.Sep. Purif. Technol . 2019; 224: 281-289.
43. Jalili A. Shokouhi M, Maurer G, Jenab M. Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate.J. Chem. Thermodyn . 2013; 67: 55-62.
44 Jou F, Mather A, Schmidt K. Solubility of methane in propylene carbonate. J. Chem. Eng. Data. 2015; 60(4): 1010-1013.
45. Sun D, Zhao Y, Cao Y, Liu M, Zhang Y, et al. Investigation on the Interaction Mechanism of the Solvent Extraction for Mercaptan Removal from Liquefied Petroleum Gas. Energ. Fuel . 2020; 34: 4788-4798.