References
Airan RD, Thompson KR, Fenno LE, Bernstein H, & Deisseroth K (2009).
Temporally precise in vivo control of intracellular signalling. Nature
458: 1025-1029.
Alam MK, El-Sayed A, Barreto K, Bernhard W, Fonge H, & Geyer CR (2019).
Site-Specific Fluorescent Labeling of Antibodies and Diabodies Using
SpyTag/SpyCatcher System for In Vivo Optical Imaging. Mol Imaging Biol
21: 54-66.
Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, et
al. (2010). Time-resolved FRET between GPCR ligands reveals oligomers
in native tissues. Nat Chem Biol 6: 587-594.
Alcobia DC, Ziegler AI, Kondrashov A, Comeo E, Mistry S, Kellam B,
et al. (2018). Visualizing Ligand Binding to a GPCR In Vivo Using
NanoBRET. iScience 6: 280-288.
Alsteens D, Pfreundschuh M, Zhang C, Spoerri PM, Coughlin SR, Kobilka
BK, et al. (2015). Imaging G protein-coupled receptors while
quantifying their ligand-binding free-energy landscape. Nat Methods
12: 845-851.
Alvarez-Curto E, Inoue A, Jenkins L, Raihan SZ, Prihandoko R, Tobin
AB, et al. (2016). Targeted Elimination of G Proteins and
Arrestins Defines Their Specific Contributions to Both Intensity and
Duration of G Protein-coupled Receptor Signaling. J Biol Chem
291: 27147-27159.
Antoine T, Ott D, Ebell K, Hansen K, Henry L, Becker F, et al.(2016). Homogeneous time-resolved G protein-coupled receptor-ligand
binding assay based on fluorescence cross-correlation spectroscopy. Anal
Biochem 502: 24-35.
Anton SE, Kayser C, Maiellaro I, Nemec K, Moller J, Koschinski A,
et al. (2022). Receptor-associated independent cAMP nanodomains mediate
spatiotemporal specificity of GPCR signaling. Cell 185:1130-1142 e1111.
Araya R, Andino-Pavlovsky V, Yuste R, & Etchenique R (2013). Two-photon
optical interrogation of individual dendritic spines with caged
dopamine. ACS Chem Neurosci 4: 1163-1167.
Arsic A, Hagemann C, Stajkovic N, Schubert T, & Nikic-Spiegel I (2022).
Minimal genetically encoded tags for fluorescent protein labeling in
living neurons. Nat Commun 13: 314.
Arttamangkul S, Plazek A, Platt EJ, Jin H, Murray TF, Birdsong WT,
et al. (2019). Visualizing endogenous opioid receptors in living
neurons using ligand-directed chemistry. Elife 8.
Asher WB, Geggier P, Holsey MD, Gilmore GT, Pati AK, Meszaros J,
et al. (2021). Single-molecule FRET imaging of GPCR dimers in living
cells. Nat Methods 18: 397-405.
Asher WB, Terry DS, Gregorio GGA, Kahsai AW, Borgia A, Xie B, et
al. (2022). GPCR-mediated beta-arrestin activation deconvoluted with
single-molecule precision. Cell 185: 1661-1675 e1616.
Ast J, Arvaniti A, Fine NHF, Nasteska D, Ashford FB, Stamataki Z,
et al. (2020). Super-resolution microscopy compatible fluorescent
probes reveal endogenous glucagon-like peptide-1 receptor distribution
and dynamics. Nat Commun 11: 467.
Axelrod D (1981). Cell-substrate contacts illuminated by total internal
reflection fluorescence. J Cell Biol 89: 141-145.
Banerjee C, Liauw BW, & Vafabakhsh R (2022). Visualizing the
Conformational Dynamics of Membrane Receptors Using Single-Molecule
FRET. J Vis Exp.
Barbazan J, Majellaro M, Martinez AL, Brea JM, Sotelo E, & Abal M
(2022). Identification of A(2B)AR as a potential target in colorectal
cancer using novel fluorescent GPCR ligands. Biomed Pharmacother
153: 113408.
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino
JS, et al. (2006). Imaging intracellular fluorescent proteins at
nanometer resolution. Science 313: 1642-1645.
Bondar A, Jang W, Sviridova E, & Lambert NA (2020). Components of the
Gs signaling cascade exhibit distinct changes in mobility and membrane
domain localization upon beta2 -adrenergic receptor activation. Traffic
21: 324-332.
Bondar A, & Lazar J (2014). Dissociated GalphaGTP and Gbetagamma
protein subunits are the major activated form of heterotrimeric Gi/o
proteins. J Biol Chem 289: 1271-1281.
Bondar A, & Lazar J (2017). The G protein Gi1 exhibits basal coupling
but not preassembly with G protein-coupled receptors. J Biol Chem
292: 9690-9698.
Bondar A, Rybakova O, Melcr J, Dohnalek J, Khoroshyy P, Tichacek
O, et al. (2021). Quantitative linear dichroism imaging of
molecular processes in living cells made simple by open software tools.
Commun Biol 4: 189.
Briddon SJ, Kilpatrick LE, & Hill SJ (2018). Studying GPCR Pharmacology
in Membrane Microdomains: Fluorescence Correlation Spectroscopy Comes of
Age. Trends Pharmacol Sci 39: 158-174.
Caetano Crowley FA, Heit B, & Ferguson SSG (2019). Super-Resolution
Imaging of G Protein-Coupled Receptors Using Ground State Depletion
Microscopy. Methods Mol Biol 1947: 323-336.
Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U, Borzi A, et
al. (2013). Single-molecule analysis of fluorescently labeled
G-protein-coupled receptors reveals complexes with distinct dynamics and
organization. Proc Natl Acad Sci U S A 110: 743-748.
Camp ND, Lee KS, Cherry A, Wacker-Mhyre JL, Kountz TS, Park JM, et
al. (2016). Dynamic mass redistribution reveals diverging importance of
PDZ-ligands for G protein-coupled receptor pharmacodynamics. Pharmacol
Res 105: 13-21.
Carroll EC, Berlin S, Levitz J, Kienzler MA, Yuan Z, Madsen D, et
al. (2015). Two-photon brightness of azobenzene photoswitches designed
for glutamate receptor optogenetics. Proc Natl Acad Sci U S A
112: E776-785.
Chen F, Tillberg PW, & Boyden ES (2015). Optical imaging. Expansion
microscopy. Science 347: 543-548.
Chen Y, Saulnier JL, Yellen G, & Sabatini BL (2014). A PKA activity
sensor for quantitative analysis of endogenous GPCR signaling via
2-photon FRET-FLIM imaging. Front Pharmacol 5: 56.
Cho NH, Cheveralls KC, Brunner AD, Kim K, Michaelis AC, Raghavan
P, et al. (2022). OpenCell: Endogenous tagging for the
cartography of human cellular organization. Science 375:eabi6983.
Cole F, Zähringer J, Bohlen J, Schröder T, Steiner F, Stefani FD,
et al. (2023). Super-Resolved FRET and Co-Tracking in pMINFLUX.
bioRxiv: 2023.2003.2024.534096.
Dague E, Pons V, Roland A, Azais JM, Arcucci S, Lachaize V, et
al. (2022). Atomic force microscopy-single-molecule force spectroscopy
unveils GPCR cell surface architecture. Commun Biol 5: 221.
Denk W (1994). Two-photon scanning photochemical microscopy: mapping
ligand-gated ion channel distributions. Proc Natl Acad Sci U S A
91: 6629-6633.
Digman MA, & Gratton E (2009). Analysis of diffusion and binding in
cells using the RICS approach. Microsc Res Tech 72: 323-332.
Dressler H, Economides K, Favara S, Wu NN, Pang Z, & Polites HG (2014).
The CRE luc bioluminescence transgenic mouse model for detecting ligand
activation of GPCRs. J Biomol Screen 19: 232-241.
Drube J, Haider RS, Matthees ESF, Reichel M, Zeiner J, Fritzwanker
S, et al. (2022). GPCR kinase knockout cells reveal the impact of
individual GRKs on arrestin binding and GPCR regulation. Nat Commun
13: 540.
Dudok B, Barna L, Ledri M, Szabo SI, Szabadits E, Pinter B, et
al. (2015). Cell-specific STORM super-resolution imaging reveals
nanoscale organization of cannabinoid signaling. Nat Neurosci
18: 75-86.
Eichel K, Jullie D, Barsi-Rhyne B, Latorraca NR, Masureel M, Sibarita
JB, et al. (2018). Catalytic activation of beta-arrestin by
GPCRs. Nature 557: 381-386.
Eichel K, Jullie D, & von Zastrow M (2016). beta-Arrestin drives MAP
kinase signalling from clathrin-coated structures after GPCR
dissociation. Nat Cell Biol 18: 303-310.
Ergin E, Dogan A, Parmaksiz M, Elcin AE, & Elcin YM (2016).
Time-Resolved Fluorescence Resonance Energy Transfer [TR-FRET]
Assays for Biochemical Processes. Curr Pharm Biotechnol 17:1222-1230.
Fernandes DD, Neale C, Gomes GW, Li Y, Malik A, Pandey A, et al.(2021). Ligand modulation of the conformational dynamics of the A(2A)
adenosine receptor revealed by single-molecule fluorescence. Sci Rep
11: 5910.
Förster T (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz.
Annalen der Physik 437: 55-75.
Foust DJ, & Piston DW (2021). Measuring G Protein Activation with
Spectrally Resolved Fluorescence Fluctuation Spectroscopy.
bioRxiv: 2021.2011.2003.467169.
Gautier A, Juillerat A, Heinis C, Correa IR, Jr., Kindermann M, Beaufils
F, et al. (2008). An engineered protein tag for multiprotein
labeling in living cells. Chem Biol 15: 128-136.
Gentzsch C, Seier K, Drakopoulos A, Jobin ML, Lanoiselee Y, Koszegi
Z, et al. (2020). Selective and Wash-Resistant Fluorescent
Dihydrocodeinone Derivatives Allow Single-Molecule Imaging of mu-Opioid
Receptor Dimerization. Angew Chem Int Ed Engl 59: 5958-5964.
Gil AA, Carrasco-Lopez C, Zhu L, Zhao EM, Ravindran PT, Wilson MZ,
et al. (2020). Optogenetic control of protein binding using
light-switchable nanobodies. Nat Commun 11: 4044.
Gormal RS, Padmanabhan P, Kasula R, Bademosi AT, Coakley S, Giacomotto
J, et al. (2020). Modular transient nanoclustering of activated
beta2-adrenergic receptors revealed by single-molecule tracking of
conformation-specific nanobodies. Proc Natl Acad Sci U S A.
Gotzke H, Kilisch M, Martinez-Carranza M, Sograte-Idrissi S, Rajavel A,
Schlichthaerle T, et al. (2019). The ALFA-tag is a highly
versatile tool for nanobody-based bioscience applications. Nat Commun
10: 4403.
Graham TGW, Ferrie JJ, Dailey GM, Tjian R, & Darzacq X (2022).
Detecting molecular interactions in live-cell single-molecule imaging
with proximity-assisted photoactivation (PAPA). Elife 11.
Gregorio GG, Masureel M, Hilger D, Terry DS, Juette M, Zhao H, et
al. (2017). Single-molecule analysis of ligand efficacy in
beta2AR-G-protein activation. Nature 547: 68-73.
Grime RL, Goulding J, Uddin R, Stoddart LA, Hill SJ, Poyner DR, et
al. (2020). Single molecule binding of a ligand to a G-protein-coupled
receptor in real time using fluorescence correlation spectroscopy,
rendered possible by nano-encapsulation in styrene maleic acid lipid
particles. Nanoscale 12: 11518-11525.
Grimes J, Koszegi Z, Lanoiselee Y, Miljus T, O’Brien SL, Stepniewski
TM, et al. (2023). Plasma membrane preassociation drives
beta-arrestin coupling to receptors and activation. Cell 186:2238-2255 e2220.
Gustafsson MG (2000). Surpassing the lateral resolution limit by a
factor of two using structured illumination microscopy. J Microsc
198: 82-87.
Gustafsson N, Culley S, Ashdown G, Owen DM, Pereira PM, & Henriques R
(2016). Fast live-cell conventional fluorophore nanoscopy with ImageJ
through super-resolution radial fluctuations. Nat Commun 7:12471.
Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J, Ries J, et
al. (2020). MINFLUX nanoscopy delivers 3D multicolor nanometer
resolution in cells. Nat Methods 17: 217-224.
Han MJ, He QT, Yang M, Chen C, Yao Y, Liu X, et al. (2021).
Single-molecule FRET and conformational analysis of beta-arrestin-1
through genetic code expansion and a Se-click reaction. Chem Sci
12: 9114-9123.
Harkes R, Kukk O, Mukherjee S, Klarenbeek J, van den Broek B, & Jalink
K (2021). Dynamic FRET-FLIM based screening of signal transduction
pathways. Sci Rep 11: 20711.
Hattori M, & Ozawa T (2015). High-throughput live cell imaging and
analysis for temporal reaction of G protein-coupled receptor based on
split luciferase fragment complementation. Anal Sci 31:327-330.
Hell SW, & Wichmann J (1994). Breaking the diffraction resolution limit
by stimulated emission: stimulated-emission-depletion fluorescence
microscopy. Opt Lett 19: 780-782.
Helmerich DA, Beliu G, Taban D, Meub M, Streit M, Kuhlemann A, et
al. (2022). Photoswitching fingerprint analysis bypasses the 10-nm
resolution barrier. Nat Methods 19: 986-994.
Herrick-Davis K, Grinde E, Cowan A, & Mazurkiewicz JE (2013).
Fluorescence correlation spectroscopy analysis of serotonin, adrenergic,
muscarinic, and dopamine receptor dimerization: the oligomer number
puzzle. Mol Pharmacol 84: 630-642.
Heuninck J, Hounsou C, Dupuis E, Trinquet E, Mouillac B, Pin JP,
et al. (2019). Time-Resolved FRET-Based Assays to Characterize G
Protein-Coupled Receptor Hetero-oligomer Pharmacology. Methods Mol Biol
1947: 151-168.
Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP, Steyaert
J, et al. (2013). Conformational biosensors reveal GPCR
signalling from endosomes. Nature 495: 534-538.
Isbilir A, Moller J, Arimont M, Bobkov V, Perpina-Viciano C, Hoffmann
C, et al. (2020). Advanced fluorescence microscopy reveals
disruption of dynamic CXCR4 dimerization by subpocket-specific inverse
agonists. Proc Natl Acad Sci U S A 117: 29144-29154.
Jonas KC, Fanelli F, Huhtaniemi IT, & Hanyaloglu AC (2015). Single
molecule analysis of functionally asymmetric G protein-coupled receptor
(GPCR) oligomers reveals diverse spatial and structural assemblies. J
Biol Chem 290: 3875-3892.
Joseph MD, Tomas Bort E, Grose RP, McCormick PJ, & Simoncelli S (2021).
Quantitative Super-Resolution Imaging for the Analysis of GPCR
Oligomerization. Biomolecules 11.
Kasai RS, Ito SV, Awane RM, Fujiwara TK, & Kusumi A (2018). The Class-A
GPCR Dopamine D2 Receptor Forms Transient Dimers Stabilized by Agonists:
Detection by Single-Molecule Tracking. Cell Biochem Biophys 76:29-37.
Kauk M, & Hoffmann C (2018). Intramolecular and Intermolecular FRET
Sensors for GPCRs - Monitoring Conformational Changes and Beyond. Trends
Pharmacol Sci 39: 123-135.
Kilpatrick LE, & Hill SJ (2021). The use of fluorescence correlation
spectroscopy to characterise the molecular mobility of G protein-coupled
receptors in membrane microdomains: an update. Biochem Soc Trans
49: 1547-1554.
Kim H, Baek IY, & Seong J (2022). Genetically encoded fluorescent
biosensors for GPCR research. Front Cell Dev Biol 10: 1007893.
Komatsuzaki A, Ohyanagi T, Tsukasaki Y, Miyanaga Y, Ueda M, & Jin T
(2015). Compact halo-ligand-conjugated quantum dots for multicolored
single-molecule imaging of overcrowding GPCR proteins on cell membranes.
Small 11: 1396-1401.
Kono M, Conlon EG, Lux SY, Yanagida K, Hla T, & Proia RL (2017).
Bioluminescence imaging of G protein-coupled receptor activation in
living mice. Nat Commun 8: 1163.
Kroning KE, & Wang W (2022). Genetically encoded tools for in vivo
G-protein-coupled receptor agonist detection at cellular resolution.
Clin Transl Med 12: e1124.
Laine RF, Heil HS, Coelho S, Nixon-Abell J, Jimenez A, Galgani T,
et al. (2022). High-fidelity 3D live-cell nanoscopy through data-driven
enhanced super-resolution radial fluctuation. bioRxiv:2022.2004.2007.487490.
Lamichhane R, Liu JJ, Pljevaljcic G, White KL, van der Schans E,
Katritch V, et al. (2015). Single-molecule view of basal activity
and activation mechanisms of the G protein-coupled receptor beta2AR.
Proc Natl Acad Sci U S A 112: 14254-14259.
Latty SL, Felce JH, Weimann L, Lee SF, Davis SJ, & Klenerman D (2015).
Referenced Single-Molecule Measurements Differentiate between GPCR
Oligomerization States. Biophys J 109: 1798-1806.
Lazar J, Bondar A, Timr S, & Firestein SJ (2011). Two-photon
polarization microscopy reveals protein structure and function. Nat
Methods 8: 684-690.
Lecat-Guillet N, Quast RB, Liu H, Bourrier E, Moller TC, Rovira X,
et al. (2023). Concerted conformational changes control metabotropic
glutamate receptor activity. Sci Adv 9: eadf1378.
Li H, Yang J, Tian C, Diao M, Wang Q, Zhao S, et al. (2020).
Organized cannabinoid receptor distribution in neurons revealed by
super-resolution fluorescence imaging. Nat Commun 11: 5699.
Liese J, Rooijakkers SH, van Strijp JA, Novick RP, & Dustin ML (2013).
Intravital two-photon microscopy of host-pathogen interactions in a
mouse model of Staphylococcus aureus skin abscess formation. Cell
Microbiol 15: 891-909.
Lieto AM, Cush RC, & Thompson NL (2003). Ligand-receptor kinetics
measured by total internal reflection with fluorescence correlation
spectroscopy. Biophys J 85: 3294-3302.
Liput DJ, Nguyen TA, Augustin SM, Lee JO, & Vogel SS (2020). A Guide to
Fluorescence Lifetime Microscopy and Forster’s Resonance Energy Transfer
in Neuroscience. Curr Protoc Neurosci 94: e108.
Liu B, Stone OJ, Pablo M, Herron JC, Nogueira AT, Dagliyan O, et
al. (2021). Biosensors based on peptide exposure show single molecule
conformations in live cells. Cell 184: 5670-5685 e5623.
Lockyer J, Reading A, Vicenzi S, Delandre C, Marshall O, Gasperini
R, et al. (2023). Optogenetic inhibition of Gα signalling alters
and regulates circuit functionality and early circuit formation.
bioRxiv: 2023.2005.2006.539674.
Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich
C, et al. (2008). HaloTag: a novel protein labeling technology
for cell imaging and protein analysis. ACS Chem Biol 3:373-382.
Maslov I, Volkov O, Khorn P, Orekhov P, Gusach A, Kuzmichev P, et
al. (2023). Sub-millisecond conformational dynamics of the A(2A)
adenosine receptor revealed by single-molecule FRET. Commun Biol
6: 362.
Masullo LA, Szalai AM, Lopez LF, Pilo-Pais M, Acuna GP, & Stefani FD
(2022). An alternative to MINFLUX that enables nanometer resolution in a
confocal microscope. Light: Science & Applications 11: 199.
Maziarz M, Park JC, Leyme A, Marivin A, Garcia-Lopez A, Patel PP,
et al. (2020). Revealing the Activity of Trimeric G-proteins in Live
Cells with a Versatile Biosensor Design. Cell.
Mihaila TS, Bate C, Ostersehlt LM, Pape JK, Keller-Findeisen J, Sahl
SJ, et al. (2022). Enhanced incorporation of subnanometer tags
into cellular proteins for fluorescence nanoscopy via optimized genetic
code expansion. Proc Natl Acad Sci U S A 119: e2201861119.
Moller J, Isbilir A, Sungkaworn T, Osberg B, Karathanasis C, Sunkara
V, et al. (2020). Single-molecule analysis reveals
agonist-specific dimer formation of micro-opioid receptors. Nat Chem
Biol 16: 946-954.
Myskova J, Rybakova O, Brynda J, Khoroshyy P, Bondar A, & Lazar J
(2020). Directionality of light absorption and emission in
representative fluorescent proteins. Proc Natl Acad Sci U S A
117: 32395-32401.
Nehme R, Carpenter B, Singhal A, Strege A, Edwards PC, White CF,
et al. (2017). Mini-G proteins: Novel tools for studying GPCRs in their
active conformation. PLoS One 12: e0175642.
Olsen RHJ, DiBerto JF, English JG, Glaudin AM, Krumm BE, Slocum
ST, et al. (2020). TRUPATH, an open-source biosensor platform for
interrogating the GPCR transducerome. Nat Chem Biol 16:841-849.
Olsen RHJ, & English JG (2023). Advancements in G protein-coupled
receptor biosensors to study GPCR-G protein coupling. Br J Pharmacol
180: 1433-1443.
Ostersehlt LM, Jans DC, Wittek A, Keller-Findeisen J, Inamdar K, Sahl
SJ, et al. (2022). DNA-PAINT MINFLUX nanoscopy. Nat Methods
19: 1072-1075.
Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong WH, et
al. (2018). Ultrafast neuronal imaging of dopamine dynamics with
designed genetically encoded sensors. Science 360.
Payne NC, Kalyakina AS, Singh K, Tye MA, & Mazitschek R (2021). Bright
and stable luminescent probes for target engagement profiling in live
cells. Nat Chem Biol 17: 1168-1177.
Petelák A, Lambert NA, & Bondar A (2023). Serotonin 5-HT7 receptor
slows down the Gs protein: a single molecule perspective. Molecular
Biology of the Cell 0: mbc.E23-03-0117.
Pham C, Moro DH, Mouffle C, Didienne S, Hepp R, Pfrieger FW, et
al. (2020). Mapping astrocyte activity domains by light sheet imaging
and spatio-temporal correlation screening. Neuroimage 220:117069.
Philip F, Sengupta P, & Scarlata S (2007). Signaling through a G
Protein-coupled receptor and its corresponding G protein follows a
stoichiometrically limited model. J Biol Chem 282: 19203-19216.
Polit A, Rysiewicz B, Mystek P, Blasiak E, & Dziedzicka-Wasylewska M
(2020). The Galphai protein subclass selectivity to the dopamine D(2)
receptor is also decided by their location at the cell membrane. Cell
Commun Signal 18: 189.
Pulin M, Stockhausen KE, Masseck OA, Kubitschke M, Busse B, Wiegert
JS, et al. (2022). Orthogonally-polarized excitation for improved
two-photon and second-harmonic-generation microscopy, applied to
neurotransmitter imaging with GPCR-based sensors. Biomed Opt Express
13: 777-790.
Quast RB, & Margeat E (2019). Studying GPCR conformational dynamics by
single molecule fluorescence. Mol Cell Endocrinol 493: 110469.
Raich I, Rivas-Santisteban R, Lillo A, Lillo J, Reyes-Resina I, Nadal
X, et al. (2021). Similarities and differences upon binding of
naturally occurring Delta(9)-tetrahydrocannabinol-derivatives to
cannabinoid CB(1) and CB(2) receptors. Pharmacol Res 174:105970.
Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, et
al. (2011). Crystal structure of the beta2 adrenergic receptor-Gs
protein complex. Nature 477: 549-555.
Ravotto L, Duffet L, Zhou X, Weber B, & Patriarchi T (2020). A Bright
and Colorful Future for G-Protein Coupled Receptor Sensors. Front Cell
Neurosci 14: 67.
Reinhardt SCM, Masullo LA, Baudrexel I, Steen PR, Kowalewski R, Eklund
AS, et al. (2023). Angstrom-resolution fluorescence microscopy.
Nature 617: 711-716.
Remy I, & Michnick SW (2006). A highly sensitive protein-protein
interaction assay based on Gaussia luciferase. Nat Methods 3:977-979.
Rico CA, Berchiche YA, Horioka M, Peeler JC, Lorenzen E, Tian H,
et al. (2019). High-Affinity Binding of Chemokine Analogs that Display
Ligand Bias at the HIV-1 Coreceptor CCR5. Biophys J 117:903-919.
Rimoli CV, Valades-Cruz CA, Curcio V, Mavrakis M, & Brasselet S (2022).
4polar-STORM polarized super-resolution imaging of actin filament
organization in cells. Nat Commun 13: 301.
Rose RH, Briddon SJ, & Hill SJ (2012). A novel fluorescent histamine
H(1) receptor antagonist demonstrates the advantage of using
fluorescence correlation spectroscopy to study the binding of lipophilic
ligands. Br J Pharmacol 165: 1789-1800.
Rosier N, Gratz L, Schihada H, Moller J, Isbilir A, Humphrys LJ,
et al. (2021). A Versatile Sub-Nanomolar Fluorescent Ligand Enables
NanoBRET Binding Studies and Single-Molecule Microscopy at the Histamine
H(3) Receptor. J Med Chem 64: 11695-11708.
Rust MJ, Bates M, & Zhuang X (2006). Sub-diffraction-limit imaging by
stochastic optical reconstruction microscopy (STORM). Nat Methods
3: 793-795.
Sanchez MF, Els-Heindl S, Beck-Sickinger AG, Wieneke R, & Tampe R
(2021). Photoinduced receptor confinement drives ligand-independent GPCR
signaling. Science 371.
Scarselli M, Annibale P, & Radenovic A (2012). Cell type-specific
beta2-adrenergic receptor clusters identified using photoactivated
localization microscopy are not lipid raft related, but depend on actin
cytoskeleton integrity. J Biol Chem 287: 16768-16780.
Schnitzbauer J, Strauss MT, Schlichthaerle T, Schueder F, & Jungmann R
(2017). Super-resolution microscopy with DNA-PAINT. Nat Protoc
12: 1198-1228.
Schoenlein RW, Peteanu LA, Mathies RA, & Shank CV (1991). The first
step in vision: femtosecond isomerization of rhodopsin. Science
254: 412-415.
Sezgin E, Schneider F, Galiani S, Urbancic I, Waithe D, Lagerholm
BC, et al. (2019). Measuring nanoscale diffusion dynamics in
cellular membranes with super-resolution STED-FCS. Nat Protoc
14: 1054-1083.
Shaib AH, Chouaib AA, Chowdhury R, Mihaylov D, Zhang C, Imani V,
et al. (2023). Visualizing proteins by expansion microscopy.
bioRxiv: 2022.2008.2003.502284.
Shen A, Nieves-Cintron M, Deng Y, Shi Q, Chowdhury D, Qi J, et
al. (2018). Functionally distinct and selectively phosphorylated GPCR
subpopulations co-exist in a single cell. Nat Commun 9: 1050.
Siddig S, Aufmkolk S, Doose S, Jobin ML, Werner C, Sauer M, et
al. (2020). Super-resolution imaging reveals the nanoscale organization
of metabotropic glutamate receptors at presynaptic active zones. Sci Adv
6: eaay7193.
Sleno R, Devost D, Petrin D, Zhang A, Bourque K, Shinjo Y, et al.(2017). Conformational biosensors reveal allosteric interactions between
heterodimeric AT1 angiotensin and prostaglandin F2alpha receptors. J
Biol Chem 292: 12139-12152.
Sotolongo Bellon J, Birkholz O, Richter CP, Eull F, Kenneweg H, Wilmes
S, et al. (2022). Four-color single-molecule imaging with
engineered tags resolves the molecular architecture of signaling
complexes in the plasma membrane. Cell Rep Methods 2: 100165.
Sotoma S, Iimura J, Igarashi R, Hirosawa KM, Ohnishi H, Mizukami
S, et al. (2016). Selective Labeling of Proteins on Living Cell
Membranes Using Fluorescent Nanodiamond Probes. Nanomaterials (Basel) 6.
Stoddart LA, Kindon ND, Otun O, Harwood CR, Patera F, Veprintsev
DB, et al. (2020). Ligand-directed covalent labelling of a GPCR
with a fluorescent tag in live cells. Commun Biol 3: 722.
Sun F, Zeng J, Jing M, Zhou J, Feng J, Owen SF, et al. (2018). A
Genetically Encoded Fluorescent Sensor Enables Rapid and Specific
Detection of Dopamine in Flies, Fish, and Mice. Cell 174:481-496 e419.
Sungkaworn T, Jobin ML, Burnecki K, Weron A, Lohse MJ, & Calebiro D
(2017). Single-molecule imaging reveals receptor-G protein interactions
at cell surface hot spots. Nature 550: 543-547.
Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, et al.(2017). Dual role of mitochondria in producing melatonin and driving
GPCR signaling to block cytochrome c release. Proc Natl Acad Sci U S A
114: E7997-E8006.
Szalai AM, Armando NG, Barabas FM, Stefani FD, Giordano L, Bari
SE, et al. (2018). A fluorescence nanoscopy marker for
corticotropin-releasing hormone type 1 receptor: computer design,
synthesis, signaling effects, super-resolved fluorescence imaging, and
in situ affinity constant in cells. Phys Chem Chem Phys 20:29212-29220.
Tahk MJ, Laasfeld T, Meriste E, Brea J, Loza MI, Majellaro M, et
al. (2023). Fluorescence based HTS-compatible ligand binding assays for
dopamine D(3) receptors in baculovirus preparations and live cells.
Front Mol Biosci 10: 1119157.
Takakura H, Hattori M, Takeuchi M, & Ozawa T (2012). Visualization and
quantitative analysis of G protein-coupled receptor-beta-arrestin
interaction in single cells and specific organs of living mice using
split luciferase complementation. ACS Chem Biol 7: 901-910.
Tomas Bort E, Joseph MD, Wang Q, Carter EP, Roth NJ, Gibson J, et
al. (2023). Purinergic GPCR-integrin interactions drive pancreatic
cancer cell invasion. Elife 12.
Tsvetanova NG, Irannejad R, & von Zastrow M (2015). G protein-coupled
receptor (GPCR) signaling via heterotrimeric G proteins from endosomes.
J Biol Chem 290: 6689-6696.
Voie AH, Burns DH, & Spelman FA (1993). Orthogonal-plane fluorescence
optical sectioning: three-dimensional imaging of macroscopic biological
specimens. J Microsc 170: 229-236.
Wan Q, Okashah N, Inoue A, Nehme R, Carpenter B, Tate CG, et al.(2018). Mini G protein probes for active G protein-coupled receptors
(GPCRs) in live cells. J Biol Chem 293: 7466-7473.
Wang T, Li G, Wang D, Li F, Men D, Hu T, et al. (2019).
Quantitative profiling of integrin alphavbeta3 on single cells with
quantum dot labeling to reveal the phenotypic heterogeneity of
glioblastoma. Nanoscale 11: 18224-18231.
Wang Y, Eddison M, Fleishman G, Weigert M, Xu S, Wang T, et al.(2021). EASI-FISH for thick tissue defines lateral hypothalamus
spatio-molecular organization. Cell 184: 6361-6377 e6324.
Weber M, Leutenegger M, Stoldt S, Jakobs S, Mihaila TS, Butkevich
AN, et al. (2021). MINSTED fluorescence localization and
nanoscopy. Nat Photonics 15: 361-366.
Wohland T, Shi X, Sankaran J, & Stelzer EH (2010). Single plane
illumination fluorescence correlation spectroscopy (SPIM-FCS) probes
inhomogeneous three-dimensional environments. Opt Express 18:10627-10641.
Yang J, Gong Z, Lu YB, Xu CJ, Wei TF, Yang MS, et al. (2020).
FLIM-FRET-Based Structural Characterization of a Class-A GPCR Dimer in
the Cell Membrane. J Mol Biol 432: 4596-4611.
Yasui M, Hiroshima M, Kozuka J, Sako Y, & Ueda M (2018). Automated
single-molecule imaging in living cells. Nat Commun 9: 3061.