6 Conclusion
Every challenge presents an opportunity, and with a world filled with
more challenges, there too lie wider fields of opportunity. Yeast
research appears to be reaching an inflection point on the crosswinds of
cyber-biological convergence. Research on synthetic yeast can be used to
enable minimal genomes, which when use in concert with pan-genomes and
neochromosomes creates new frontiers for experimental exploration. None
of these advances, however, have eventuated outside the context of
global politics and the grand challenges all of humanity faces.
Multi-decade trends continue to shape yeast research, and to be shaped
by that same research. The same trends that produced Moore’s Law are now
exponentially advancing the rate of technological change in the life
sciences.
The challenge for the yeast research community (and the opportunity) is
to responsibly advance the future of industrial biotechnology within the
current context of techno-politics and great power competition. The
tools and techniques of science diplomacy are being dusted off and
re-honed so that they are properly shaped for the post-pandemic world.
There is much that the yeast research community can be optimistic about,
and the limit to what can be achieved continues to be set by the
boundaries of our imagination.
ACKNOWLEDGEMENTS
The Yeast 2.0 research is financially supported by Macquarie
University, Bioplatforms Australia, the New South Wales (NSW) Chief
Scientist and Engineer, and the NSW Government’s Department of Primary
Industries. Australian Government funding through its investment agency,
the Australian Research Council , towards the Macquarie University
led ARC Centre of Excellence in Synthetic Biology is gratefully
acknowledged.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
ORCID
Thomas A Dixon: 0000-0003-4746-2301
Isak S Pretorius: 0000-0001-9127-3175
Roy S. K. Walker: 0000-0003-0960-4591
REFERENCES
Agmon, N., Temple, J., Tang, Z., Schraink, T., Baron, M., Chen, J.,
Mita, P., Martin, J. A., Tu, B. P., Yanai, I., Fenyö, D. & Boeke, J. D.
(2020). Phylogenetic debugging of a complete human biosynthetic pathway
transplanted into yeast. Nucleic Acids Res , 48, 486-499.
Avalos, J. L. (2022). Biosensor and optogenetics for systems biology of
yeast branched-chain alcohol production and tolerance (No.
DOE-PRINCETON-0019363). Jose Avalos/The Trustees of Princeton
University.
Belda, I., Williams, T. C., De Celis, M., Paulsen, I. T. & Pretorius,
I. S. (2021). Seeding the idea of encapsulating a representative
synthetic metagenome in a single yeast cell. Nature
Communications, 12, 1599.
Bell, P. J. L., Paras, F. E., Mandarakas, S., Arcenal, P.,
Robinson-Cast, S., Grobler, A. S. & Attfield, P. V. (2022). An
electro-microbial process to uncouple food production from
Photosynthesis for application in space exploration. Life
(Basel), 12.
Berliner, A. J., Hilzinger, J. M., Abel, A. J., Mcnulty, M. J.,
Makrygiorgos, G., Averesch, N. J. H., Sen Gupta, S., Benvenuti, A.,
Caddell, D. F., Cestellos-Blanco, S., Doloman, A., Friedline, S., Ho,
D., Gu, W., Hill, A., Kusuma, P., Lipsky, I., Mirkovic, M., Luis Meraz,
J., Pane, V., Sander, K. B., Shi, F., Skerker, J. M., Styer, A.,
Valgardson, K., Wetmore, K., Woo, S.-G., Xiong, Y., Yates, K., Zhang,
C., Zhen, S., Bugbee, B., Clark, D. S., Coleman-Derr, D., Mesbah, A.,
Nandi, S., Waymouth, R. M., Yang, P., Criddle, C. S., Mcdonald, K. A.,
Seefeldt, L. C., Menezes, A. A. & Arkin, A. P. (2021). Towards a
Biomanufactory on Mars. Frontiers in Astronomy and Space
Sciences, 8.
Blunt, N. S., Camps, J., Crawford, O., Izsák, R., Leontica, S., Mirani,
A., Moylett, A., Scivier, S. A., Sünderhauf, C., Schopf, P., Taylor, J.
M. & Holzmann, N. (2022). Perspective on the Current State-of-the-Art
of Quantum computing for drug discovery applications. Journal of
Chemical Theory and Computation , 18(12), 7001-7023.
Botstein, D., & Fink, G. R. (2011). Yeast: an experimental organism for
21st century biology. Genetics , 189(3), 695-704.
Cao, J., Cogdell, R. J., Coker, D. F., Duan, H. G., Hauer, J.,
Kleinekathöfer, U., Jansen, T. L., Mančal, T., Miller, R.J.D., Ogilvie,
J.P., Prokhorenko, V. I., Renger, T., Tan, H. S., Tempelaar, R.,
Thorwart, M., Thyrhaug, E., Westenhoff, S. & Zigmantas, D. (2020).
Quantum biology revisited. Science Advances , 6(14), eaaz4888.
Cao, Y., Romero, J., & Aspuru-Guzik, A. (2018). Potential of quantum
computing for drug discovery. IBM Journal of Research and
Development , 62(6), 6-1.
Cherry, J. M., Hong, E. L., Amundsen, C., Balakrishnan, R., Binkley, G.,
Chan, E. T., Christie, K. R., Costanzo, M. C., Dwight, S. S., Engel, S.
R., Fisk, D. G., Hirschman, J. E., Hitz, B. C., Karra, K., Krieger, C.
J., Miyasato, S. R., Nash, R. S., Park, J., Skrzypek, M. S., Simison,
M., Weng, S. & Wong, E. D. (2012). Saccharomyces Genome
Database: the genomics resource of budding yeast. Nucleic Acids
Research, 40, D700-5.
Conacher, C. G., Luyt, N. A., Naidoo-Blassoples, R. K., Rossouw, D.,
Setati, M. E. & Bauer, F. F. (2021). The ecology of wine fermentation:
a model for the study of complex microbial ecosystems. Applied
Microbiology and Biotechnology, 105, 3027-3043.
Dixon, T. (2021). The grey zone of cyber-biological security.International Affairs , 97(3), 685-702.
Dixon, T, Curach, N. & Pretorius I, S. (2020). Bio-informational
futures: The convergence of artificial intelligence and synthetic
biology. EMBO Reports, 21, e50036, 1-5.
Dixon, T., Freemont, P. S., Johnson, R. A. & Pretorius, I. S. (2022). A
global forum on synthetic biology: the need for international
engagement. Nature Communications,doi.org/10.1038/s41467-022-31265-9.
Dixon T. & Pretorius, I. S. (2020). Drawing on the past to shape the
future of synthetic yeast research. International Journal of
Molecular Science , 21:7156 doi:10.3390/ijms21197156.
Dixon, T., Williams, T. C. & Pretorius, I. S. (2021a) Sensing the
future of bio-informational engineering. Nature Communications ,
12:388, doi.org/10.1038/s41467-020-20764-2.
Dixon, T., Williams, T.C. & Pretorius, I. S. (2021b) Bioinformational
trends in grape and wine biotechnology. Trends Biotechnol , 40:
doi/org/10.1016/j.tibtech.2021.05.001
Dymond, J. S., Richardson, S. M., Coombes, C. E., Babatz, T., Muller,
H., Annaluru, N., Blake, W. J., Schwerzmann, J. W., Dai, J., Lindstrom,
D. L., Boeke, A. C., Gottschling, D. E., Chandrasegaran, S., Bader, J.
S. & Boeke, J. D. (2011). Synthetic chromosome arms function in yeast
and generate phenotypic diversity by design. Nature,477, 471-6.
Engineering Biology Research Consortium (2019). Engineering Biology: A
Research Roadmap for the Next-Generation Bioeconomy. Retrieved from
https://roadmap.ebrc.org. DOI: 10.25498/E4159B.
Engineering Biology Research Consortium (2022). Engineering Biology for
Climate & Sustainability. Retrieved from
https://roadmap.ebrc.org/engineering-biology-for-climate-sustainability/.
Espinosa, M. I., Gonzalez-Garcia, R. A., Valgepea, K., Plan, M. R.,
Scott, C., Pretorius, I. S., Marcellin, E., Paulsen, I. T. & Williams,
T. C. (2020). Adaptive laboratory evolution of native methanol
assimilation in Saccharomyces cerevisiae . Nature
Communications, 11, 5564.
Eriksson, D., Custers, R., Björnberg, K. E., Hansson, S. O., Purnhagen,
K., Qaim, M., Romeis, J., Schiemann, J., Schleissing, S., Tosun, J. &
Visser, R. G. (2020). Options to reform the European Union legislation
on GMOs: Scope and definitions. Trends in Biotechnology , 38(3),
231-234.
French, K. E. (2019). Harnessing synthetic biology for sustainable
development. Nature Sustainability , 2(4), 250-252.
Frischmon, C., Sorenson, C., Winikoff, M. & Adamala, K. P. (2021).
Build-a-Cell: Engineering a synthetic cell community. Life(Basel), MDPI, 11.
Gentili, P. L., & Stano, P. (2022). Chemical neural networks inside
synthetic cells? A proposal for their realization and modeling.Frontiers in Bioengineering and Biotechnology , 10.
Georgianna, D. R., & Mayfield, S. P. (2012). Exploiting diversity and
synthetic biology for the production of algal biofuels. Nature ,
488(7411), 329-335.
Gyngell, A. (2017). Fear of Abandonment: Australia in the World since
1942. La Trobe University Press .
Hillson, N., Caddick, M., Cai, Y., Carrasco, J. A., Chang, M. W.,
Curach, N. C., Bell, D. J., Le Feuvre, R., Friedman, D. C., Fu, X.,
Gold, N. D., Herrgård, M. J., Holowko, M. B., Johnson, J.R. Johnson, R.
A., Keasling, J. D., Kitney, R. I., Kondo, A., Liu, C., Martin, V. J.
J., Menolascina, F., Ogino, C., Patron, N.J., Pavan, M., Poh, C. L.
Pretorius, I. S., Rosser, S.J., Scrutton, N. S., Storch, M., Tekotte,
H., Travnik, E., Vickers, C. E., Yew, W. S., Yuan, Y., Zhao, H. &
Freemont, P. S. (2019). Building a global alliance of biofoundries.Nature Communications , 10(1), 2040.
Hutchison, C. A., Chuang, R.-Y., Noskov, V. N., Assad-Garcia, N.,
Deerinck, T. J., Ellisman, M. H., Gill, J., Kannan, K., Karas, B. J.,
Ma, L., Pelletier, J. F., Qi, Z.-Q., Richter, R. A., Strychalski, E. A.,
Sun, L., Suzuki, Y., Tsvetanova, B., Wise, K. S., Smith, H. O., Glass,
J. I., Merryman, C., Gibson, D. G. & Venter, J. C. (2016). Design and
synthesis of a minimal bacterial genome. Science, 351,aad6253.
Jagtap, U.B., Jadhav, J. P., Bapat, V. A. & Pretorius, I. S. (2017).
Synthetic biology stretching the realms of possibility in wine yeast
research. International Journal of Food Microbiol , 252, 24–34.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., … & Hassabis, D. (2021). Highly accurate protein
structure prediction with AlphaFold. Nature , 596(7873), 583-589.
Kehe, J. S. (2020). Massively parallel combinatorial microbiology
(Doctoral dissertation, Massachusetts Institute of Technology, Boston,
USA).
Khan, K., Su, C. W., Umar, M., & Zhang, W. (2022). Geopolitics of
technology: A new battleground?. Technological and Economic
Development of Economy , 28(2), 442-462.
Kitney, R. I. (2021). Building the UK’s industrial base in engineering
biology. Engineering Biology , 5(4), 98-106.
Kutyna, D. R., Onetto, C. A., Williams, T. C., Goold, H. D., Paulsen, I.
T., Pretorius, I. S., Johnson, D. L. & Borneman, A. R. (2022).
Construction of a synthetic Saccharomyces cerevisiae pan-genome
neo-chromosome. Nature Communications, 13, 3628.
Lambert, N., Chen, Y. N., Cheng, Y. C., Li, C. M., Chen, G. Y. & Nori,
F. (2013). Quantum biology. Nature Physics , 9(1), 10-18.
Lee, D., Lloyd, N., Pretorius, I. S. Bornaman, A, R. (2016).
Heterologous production of raspberry ketone in the wine yeast
Saccharomyces cerevisiae via pathway engineering and synthetic enzyme
fusion. Microbial Cell Factories , 15, 49–55.
Leonard, A. C., & Whitehead, T. A. (2022). Design and engineering of
genetically encoded protein biosensors for small molecules.Current Opinion in Biotechnology , 78, 102787.
Lewis, J. A. (2018). Technological competition and China. Center for
Strategic and International Studies (CSIS).
Lieber, K. A. (2019). War and the engineers: The primacy of politics
over technology. Cornell University Press, Sage House, Ithaca,
USA.
Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N.,
Verkuil, R., Kabeli, O., Schmeuli Y., Costa, A. D. S., Fazel-Zarandi,
M., Sercu, T., Candido, S. & Rives, A. (2023). Evolutionary-scale
prediction of atomic-level protein structure with a language model.Science , 379(6637), 1123-1130.
Llorente, B., Williams, T. C., Goold, H. D., Pretorius, I. S. &
Paulsen, I. T. (2022). Harnessing bioengineered microbes as a versatile
platform for space nutrition. Nature Communications, 13,6177.
McLennan, A. (2018). Regulation of Synthetic Biology. Edward Elgar
Publishing , U.K.
Miller, C. (2022). Chip War: The Fight for the World’s Most Critical
Technology. Simon and Schuster , New York, USA.
Mitchell, L. A. & Boeke, J. D. (2014). Circular permutation of a
synthetic eukaryotic chromosome with the telomerator. Proceedings
of the National Academy of Sciences (PNAS) U. S. A., 111,17003-10.
Naseri, G. (2023). A roadmap to establish a comprehensive platform for
sustainable manufacturing of natural products in yeast. Nature
Communications , 14(1), 1916.
Naseri, G., & Koffas, M. A. (2020). Application of combinatorial
optimization strategies in synthetic biology. Nature
Communications , 11(1), 2446.
National Academies of Sciences, Engineering, and Medicine. (2019).
Quantum Computing: Progress and Prospects. Washington, DC: The
National Academies Press . https://doi.org/10.17226/25196.
Moe-Behrens, G. H., Davis, R. & Haynes, K. A. (2013). Preparing
synthetic biology for the world. Frontiers in Microbiology,4, 5.
Montague, M., Mcarthur, G. H. T., Cockell, C. S., Held, J., Marshall,
W., Sherman, L. A., Wang, N., Nicholson, W. L., Tarjan, D. R. &
Cumbers, J. (2012). The role of synthetic biology for in situ resource
utilization (ISRU). Astrobiology, 12, 1135-42.
Noskov, V. N., Chuang, R. Y., Gibson, D. G., Leem, S. H., Larionov, V.
& Kouprina, N. (2011). Isolation of circular yeast artificial
chromosomes for synthetic biology and functional genomics studies.Nature Protocols, 6, 89-96.
Paddon, C. J., & Keasling, J. D. (2014). Semi-synthetic artemisinin: a
model for the use of synthetic biology in pharmaceutical development.Nature Reviews Microbiology , 12(5), 355-367.
Peccoud, J., Gallegos, J. E., Murch, R., Buchholz, W. G., & Raman, S.
(2018). Cyberbiosecurity: from naive trust to risk awareness.Trends in biotechnology , 36(1), 4-7.
Peter, J., De Chiara, M., Friedrich, A., Yue, J.-X., Pflieger, D.,
Bergström, A., Sigwalt, A., Barre, B., Freel, K., Llored, A., Cruaud,
C., Labadie, K., Aury, J.-M., Istace, B., Lebrigand, K., Barbry, P.,
Engelen, S., Lemainque, A., Wincker, P., Liti, G. & Schacherer, J.
(2018). Genome evolution across 1,011 Saccharomyces cerevisiaeisolates. Nature , 556, 339-344.
Pham, C., Stogios, P. J., Savchenko, A., & Mahadevan, R. (2022).
Advances in engineering and optimization of transcription factor-based
biosensors for plug-and-play small molecule detection. Current
Opinion in Biotechnology , 76, 102753.
Pretorius, I. S. (2000). Tailoring wine yeast for the new millennium:
novel approaches to the ancient art of winemaking. Yeast, 6,
675–729.
Pretorius, I S. (2016). Conducting wine symphonics with the aid of yeast
genomics. Beverages , 2, 36; doi:10.3390/beverages2040036.
Pretorius, I. S. (2017a). Synthetic genome engineering forging new
frontiers for wine yeast. Critical Reviews in Biotechnolology ,
37, 112–136.
Pretorius, I.S. (2017b). Solving yeast jigsaw puzzles over a glass of
wine: Synthetic genome engineering pioneers new possibilities for wine
research. EMBO Reports , 18, 1875–1884.
Pretorius, I. S. (2020). Tasting the terroir of wine yeast innovation.FEMS Yeast Res , 20. doi/10.1093/femsyr/foz084
Pretorius, I. S. & Bauer FF. (2002). Meeting the consumer challenge
through genetically customised wine yeast strains. Trends in
Biotechnology , 20, 426-432.
Pretorius, I. S. & Boeke, J. D. (2018). Yeast 2.0 Connecting the dots
in the construction of the world’s first functional synthetic eukaryotic
genome. FEMS Yeast Research , 18, 1–15.
Pretorius, I. S., Curtin, C. D, Chambers, P.J. (2012). The winemaker’s
bug: From ancient wisdom to opening new vistas with frontier yeast
science. Bioengineered , 3, 47-156.
Pretorius, I.S. & Høj P.B. (2005). Grape and Wine Biotechnology:
Challenges, opportunities and potential benefits. Australian
Journal of Grape Wine Research, 11, 83-108.
Peter, J., De Chiara, M., Friedrich, A., Yue, J.-X., Pflieger, D.,
Bergström, A., Sigwalt, A., Barre, B., Freel, K., Llored, A., Cruaud,
C., Labadie, K., Aury, J.-M., Istace, B., Lebrigand, K., Barbry, P.,
Engelen, S., Lemainque, A., Wincker, P., Liti, G. & Schacherer, J.
(2018). Genome evolution across 1,011 Saccharomyces cerevisiaeisolates. Nature, 556, 339-344.
Postma, E. D., Dashko, S., Van Breemen, L., Taylor Parkins, S. K., Van
Den Broek, M., Daran, J.-M. & Daran-Lapujade, P. (2021). A
supernumerary designer chromosome for modular in vivo pathway
assembly in Saccharomyces cerevisiae . Nucleic Acids
Research, 49, 1769-1783.
Richardson, S. M., Mitchell, L. A., Stracquadanio, G., Yang, K., Dymond,
J. S., Dicarlo, J. E., Lee, D., Huang, C. L., Chandrasegaran, S., Cai,
Y., Boeke, J. D. & Bader, J. S. (2017). Design of a synthetic yeast
genome. Science, 355, 1040-1044.
Shaw, W. M. Yamauchi, H., Mead, J., Gowers, G.O.F, Bell, D.J. Larsson,
D.O.N., Wigglesworth, M., Ladds, G., Ellis, T. (2019). Engineering a
model cell for rational tuning of GPCR signaling. Cell. 177,
782-796.
Shen, Y., Stracquadanio, G., Wang, Y., Yang, K., Mitchell, L. A., Xue,
Y., Cai, Y., Chen, T., Dymond, J. S., Kang, K., Gong J., Zeng, X, Zhang,
Y., Li, Y., Feng, Q., Xu, X., Wang, J., Wang, J., Yang, H., Boeke, J.
D., Bader, J.S. (2016). SCRaMbLE generates designed combinatorial
stochastic diversity in synthetic chromosomes. Genome Research ,
26, 36–49.
Shen, M. J., Wu, Y., Yang, K., Li, Y., Xu, H., Zhang, H., Li, B.Z., Li,
X., Xiao, W. H., Zhou, X., Mitchell, L. A., Bader, J. S., Yuan, Y. &
Boeke, J. D. (2018). Heterozygous diploid and interspecies SCRaMbLEing.Nature Communications , 9, 1934.
Stano, P. (2022). A four-track perspective for bottom-up synthetic
cells. Frontiers in Bioengineering and Biotechnology , 10,
1029446.
Stano, P. (2021). Chemical neural networks and synthetic cell
biotechnology: preludes to chemical AI. In : International Meeting
on Computational Intelligence Methods for Bioinformatics and
Biostatistics (pp. 1-12). Cham: Springer International Publishing, New
York, USA.
Stolarczyk, K., Rogalski, J., & Bilewicz, R. (2020). NAD (P)-dependent
glucose dehydrogenase: Applications for biosensors, bioelectrodes, and
biofuel cells. Bioelectrochemistry , 135, 107574.
Santomartino, R., Averesch, N. J. H., Bhuiyan, M., Cockell, C. S.,
Colangelo, J., Gumulya, Y., Lehner, B., Lopez-Ayala, I., Mcmahon, S.,
Mohanty, A., Santa Maria, S. R., Urbaniak, C., Volger, R., Yang, J. &
Zea, L. (2023). Toward sustainable space exploration: a roadmap for
harnessing the power of microorganisms. Nature Communications,14, 1391.
Schindler, D., Walker, R. S. K., Jiang, S., Brooks, A. N., Wang, Y.,
Müller, C. A., Cockram, C., Luo, Y., García, A., Schraivogel, D.,
Mozziconacci, J., Blount, B. A., Cai, J., Ogunlana, L., Liu, W.,
Jönsson, K., Abramczyk, D., Garcia-Ruiz, E., Turowski, T. W., Swidah,
R., Ellis, T., Antequera, F., Shen, Y., Nieduszynski, C. A., Koszul, R.,
Dai, J., Steinmetz, L. M., Boeke, J. D. & Cai, Y. (2022). Design,
Construction, and functional characterization of a tRNA neochromosome in
Yeast. bioRxiv , DOI: 2022.10.03.510608.
Shaw, W. M., Yamauchi, H., Mead, J., Gowers, G.-O. F., Bell, D. J.,
Öling, D., Larsson, N., Wigglesworth, M., Ladds, G. & Ellis, T. (2019).
Engineering a model cell for rational tuning of GPCR signaling.Cell, 177, 782-796.e27.
Shen, Y., Stracquadanio, G., Wang, Y., Yang, K., Mitchell, L. A., Xue,
Y., Cai, Y., Chen, T., Dymond, J. S., Kang, K., Gong, J., Zeng, X.,
Zhang, Y., Li, Y., Feng, Q., Xu, X., Wang, J., Wang, J., Yang, H.,
Boeke, J. D. & Bader, J. S. (2016). SCRaMbLE generates designed
combinatorial stochastic diversity in synthetic chromosomes.Genome Res, 26, 36-49.
Vanhercke, B., Sabato, S., &
Spasova, S. (2023). Social policy in the European Union: State of play
2022: Policymaking in a permacrisis; 23rd annual
report. ETUI, Printshop, Brussels.
Van Wyk, N., Kroukamp, H., Pretorius, I. S. (2018). The smell of
synthetic biology: Engineering strategies for aroma compound production
in yeast. Fermentation , 4, 1-18.
Torres, L., Krüger, A., Csibra, E., Gianni, E. & Pinheiro, V. B.
(2016). Synthetic biology approaches to biological containment:
pre-emptively tackling potential risks. Essays in Biochemistry,60, 393-410.
Tsoi, R., Wu, F., Zhang, C., Bewick, S., Karig, D. & You, L. (2018).
Metabolic division of labor in microbial systems. Proceedings of
the National Academy of Sciences USA, 115, 2526.
Warringer, J., Zörgö, E., Cubillos, F. A., Zia, A., Gjuvsland, A.,
Simpson, J. T., Forsmark, A., Durbin, R., Omholt, S. W., Louis, E. J.,
Liti, G., Moses, A. & Blomberg, A. (2011). Trait variation in yeast is
defined by population history. PLOS Genetics, 7,e1002111.
Wahid, E., Ocheja, O. B., Marsili, E., Guaragnella, C., & Guaragnella,
N. (2023). Biological and technical challenges for implementation of
yeast‐based biosensors. Microbial Biotechnology . 16(1), 54-66.
Walker, R. S. K. & Pretorius, I. S. (2018). Applications of Yeast
Synthetic Biology Geared towards the Production ofBiopharmaceuticals . Genes, 9, 340.
Walker, R. S. K. & Pretorius, I. S. (2022). Synthetic biology for the
engineering of complex wine yeast communities. Nature Food, 3,
249-254.
Weiss, L. (2014). America Inc.?: innovation and enterprise in the
national security state. Cornell University Press, Sage House,
Ithaca, USA.
Williams, T. C., Pretorius, I. S. & Paulsen, I. T. (2016). Synthetic
evolution of metabolic productivity using biosensors. Trends in
Biotechnology , 34, 371-381.
Williams, T. C., Xu, X., Ostrowski, M., Pretorius, I. S. & Paulsen, I.
T. (2017). Positive-feedback, ratiometric biosensor expression improves
high-throughput metabolite-producer screening efficiency in yeast.Synthetic Biology, 2, ysw002.
Wu, Y., Zhu, R.Y., Mitchell, L. A., Ma, L., Liu, R., Zhao, M., Jia, B.,
Xu, H., Li, Y. X., Yang, Z. M., Ma, Y., Li, X., Liu, H., Liu, D., Xiao,
W. H., Zhou, X., Li, B. Z., Yuan, Y. J. & Boeke, J. D. (2018). In vitro
DNA SCRaMbLE. Nature Communications, 9, 1935.
Xu, X., Meier, F., Blount, B. A., Pretorius, I. S., Ellis, T., Paulsen,
I. T. & Williams, T. C. (2023). Trimming the genomic fat: minimising
and re-functionalising genomes using synthetic biology. Nature
Communications, 14, 1984.
Yu, P., Lei, C., & Nie, Z. (2022). Integration of electrochemical
interface and cell-free synthetic biology for biosensing. Journal
of Electroanalytical Chemistry , 911, 116209.
Zhang, X., Hu, Y., Yang, X., Tang, Y., Han, S., Kang, A., Deng, H., Chi,
Y., Zhu, D. & Lu, Y. (2019). Förster resonance energy transfer
(FRET)-based biosensors for biological applications. Biosensors
and Bioelectronics , 138, 111314.
Zhirnov, V. (2018). Semiconductor synthetic biology roadmap.
Semiconductor Research Corporation Durham.
Wu, Y., Zhu, R.Y., Mitchell, L. A., Ma, L., Liu, R., Zhao, M., Jia, B.,
Xu, H., Li, Y. X., Yang, Z. M., Ma, Y., Li, X., Liu, H., Liu, D., Xiao,
W. H., Zhou, X., Li, B. Z., Yuan, Y. J. & Boeke, J. D. . In vitro DNA
SCRaMbLE. Nature Communications, 9, 1935.