6  Conclusion
Every challenge presents an opportunity, and with a world filled with more challenges, there too lie wider fields of opportunity. Yeast research appears to be reaching an inflection point on the crosswinds of cyber-biological convergence. Research on synthetic yeast can be used to enable minimal genomes, which when use in concert with pan-genomes and neochromosomes creates new frontiers for experimental exploration. None of these advances, however, have eventuated outside the context of global politics and the grand challenges all of humanity faces. Multi-decade trends continue to shape yeast research, and to be shaped by that same research. The same trends that produced Moore’s Law are now exponentially advancing the rate of technological change in the life sciences.
The challenge for the yeast research community (and the opportunity) is to responsibly advance the future of industrial biotechnology within the current context of techno-politics and great power competition. The tools and techniques of science diplomacy are being dusted off and re-honed so that they are properly shaped for the post-pandemic world. There is much that the yeast research community can be optimistic about, and the limit to what can be achieved continues to be set by the boundaries of our imagination.
ACKNOWLEDGEMENTS
The Yeast 2.0 research is financially supported by Macquarie University, Bioplatforms Australia, the New South Wales (NSW) Chief Scientist and Engineer, and the NSW Government’s Department of Primary Industries. Australian Government funding through its investment agency, the Australian Research Council , towards the Macquarie University led ARC Centre of Excellence in Synthetic Biology is gratefully acknowledged.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
ORCID
Thomas A Dixon: 0000-0003-4746-2301
Isak S Pretorius: 0000-0001-9127-3175
Roy S. K. Walker: 0000-0003-0960-4591
REFERENCES
Agmon, N., Temple, J., Tang, Z., Schraink, T., Baron, M., Chen, J., Mita, P., Martin, J. A., Tu, B. P., Yanai, I., Fenyö, D. & Boeke, J. D. (2020). Phylogenetic debugging of a complete human biosynthetic pathway transplanted into yeast. Nucleic Acids Res , 48, 486-499.
Avalos, J. L. (2022). Biosensor and optogenetics for systems biology of yeast branched-chain alcohol production and tolerance (No. DOE-PRINCETON-0019363). Jose Avalos/The Trustees of Princeton University.
Belda, I., Williams, T. C., De Celis, M., Paulsen, I. T. & Pretorius, I. S. (2021). Seeding the idea of encapsulating a representative synthetic metagenome in a single yeast cell. Nature Communications, 12, 1599.
Bell, P. J. L., Paras, F. E., Mandarakas, S., Arcenal, P., Robinson-Cast, S., Grobler, A. S. & Attfield, P. V. (2022). An electro-microbial process to uncouple food production from Photosynthesis for application in space exploration. Life (Basel), 12.
Berliner, A. J., Hilzinger, J. M., Abel, A. J., Mcnulty, M. J., Makrygiorgos, G., Averesch, N. J. H., Sen Gupta, S., Benvenuti, A., Caddell, D. F., Cestellos-Blanco, S., Doloman, A., Friedline, S., Ho, D., Gu, W., Hill, A., Kusuma, P., Lipsky, I., Mirkovic, M., Luis Meraz, J., Pane, V., Sander, K. B., Shi, F., Skerker, J. M., Styer, A., Valgardson, K., Wetmore, K., Woo, S.-G., Xiong, Y., Yates, K., Zhang, C., Zhen, S., Bugbee, B., Clark, D. S., Coleman-Derr, D., Mesbah, A., Nandi, S., Waymouth, R. M., Yang, P., Criddle, C. S., Mcdonald, K. A., Seefeldt, L. C., Menezes, A. A. & Arkin, A. P. (2021). Towards a Biomanufactory on Mars. Frontiers in Astronomy and Space Sciences, 8.
Blunt, N. S., Camps, J., Crawford, O., Izsák, R., Leontica, S., Mirani, A., Moylett, A., Scivier, S. A., Sünderhauf, C., Schopf, P., Taylor, J. M. & Holzmann, N. (2022). Perspective on the Current State-of-the-Art of Quantum computing for drug discovery applications. Journal of Chemical Theory and Computation , 18(12), 7001-7023.
Botstein, D., & Fink, G. R. (2011). Yeast: an experimental organism for 21st century biology. Genetics , 189(3), 695-704.
Cao, J., Cogdell, R. J., Coker, D. F., Duan, H. G., Hauer, J., Kleinekathöfer, U., Jansen, T. L., Mančal, T., Miller, R.J.D., Ogilvie, J.P., Prokhorenko, V. I., Renger, T., Tan, H. S., Tempelaar, R., Thorwart, M., Thyrhaug, E., Westenhoff, S. & Zigmantas, D. (2020). Quantum biology revisited. Science Advances , 6(14), eaaz4888.
Cao, Y., Romero, J., & Aspuru-Guzik, A. (2018). Potential of quantum computing for drug discovery. IBM Journal of Research and Development , 62(6), 6-1.
Cherry, J. M., Hong, E. L., Amundsen, C., Balakrishnan, R., Binkley, G., Chan, E. T., Christie, K. R., Costanzo, M. C., Dwight, S. S., Engel, S. R., Fisk, D. G., Hirschman, J. E., Hitz, B. C., Karra, K., Krieger, C. J., Miyasato, S. R., Nash, R. S., Park, J., Skrzypek, M. S., Simison, M., Weng, S. & Wong, E. D. (2012). Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Research, 40, D700-5.
Conacher, C. G., Luyt, N. A., Naidoo-Blassoples, R. K., Rossouw, D., Setati, M. E. & Bauer, F. F. (2021). The ecology of wine fermentation: a model for the study of complex microbial ecosystems. Applied Microbiology and Biotechnology, 105, 3027-3043.
Dixon, T. (2021). The grey zone of cyber-biological security.International Affairs , 97(3), 685-702.
Dixon, T, Curach, N. & Pretorius I, S. (2020). Bio-informational futures: The convergence of artificial intelligence and synthetic biology. EMBO Reports, 21, e50036, 1-5.
Dixon, T., Freemont, P. S., Johnson, R. A. & Pretorius, I. S. (2022). A global forum on synthetic biology: the need for international engagement. Nature Communications,doi.org/10.1038/s41467-022-31265-9.
Dixon T. & Pretorius, I. S. (2020). Drawing on the past to shape the future of synthetic yeast research. International Journal of Molecular Science , 21:7156 doi:10.3390/ijms21197156.
Dixon, T., Williams, T. C. & Pretorius, I. S. (2021a) Sensing the future of bio-informational engineering. Nature Communications , 12:388, doi.org/10.1038/s41467-020-20764-2.
Dixon, T., Williams, T.C. & Pretorius, I. S. (2021b) Bioinformational trends in grape and wine biotechnology. Trends Biotechnol , 40: doi/org/10.1016/j.tibtech.2021.05.001
Dymond, J. S., Richardson, S. M., Coombes, C. E., Babatz, T., Muller, H., Annaluru, N., Blake, W. J., Schwerzmann, J. W., Dai, J., Lindstrom, D. L., Boeke, A. C., Gottschling, D. E., Chandrasegaran, S., Bader, J. S. & Boeke, J. D. (2011). Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature,477, 471-6.
Engineering Biology Research Consortium (2019). Engineering Biology: A Research Roadmap for the Next-Generation Bioeconomy. Retrieved from https://roadmap.ebrc.org. DOI: 10.25498/E4159B.
Engineering Biology Research Consortium (2022). Engineering Biology for Climate & Sustainability. Retrieved from https://roadmap.ebrc.org/engineering-biology-for-climate-sustainability/.
Espinosa, M. I., Gonzalez-Garcia, R. A., Valgepea, K., Plan, M. R., Scott, C., Pretorius, I. S., Marcellin, E., Paulsen, I. T. & Williams, T. C. (2020). Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae . Nature Communications, 11, 5564.
Eriksson, D., Custers, R., Björnberg, K. E., Hansson, S. O., Purnhagen, K., Qaim, M., Romeis, J., Schiemann, J., Schleissing, S., Tosun, J. & Visser, R. G. (2020). Options to reform the European Union legislation on GMOs: Scope and definitions. Trends in Biotechnology , 38(3), 231-234.
French, K. E. (2019). Harnessing synthetic biology for sustainable development. Nature Sustainability , 2(4), 250-252.
Frischmon, C., Sorenson, C., Winikoff, M. & Adamala, K. P. (2021). Build-a-Cell: Engineering a synthetic cell community. Life(Basel), MDPI, 11.
Gentili, P. L., & Stano, P. (2022). Chemical neural networks inside synthetic cells? A proposal for their realization and modeling.Frontiers in Bioengineering and Biotechnology , 10.
Georgianna, D. R., & Mayfield, S. P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature , 488(7411), 329-335.
Gyngell, A. (2017). Fear of Abandonment: Australia in the World since 1942. La Trobe University Press .
Hillson, N., Caddick, M., Cai, Y., Carrasco, J. A., Chang, M. W., Curach, N. C., Bell, D. J., Le Feuvre, R., Friedman, D. C., Fu, X., Gold, N. D., Herrgård, M. J., Holowko, M. B., Johnson, J.R. Johnson, R. A., Keasling, J. D., Kitney, R. I., Kondo, A., Liu, C., Martin, V. J. J., Menolascina, F., Ogino, C., Patron, N.J., Pavan, M., Poh, C. L. Pretorius, I. S., Rosser, S.J., Scrutton, N. S., Storch, M., Tekotte, H., Travnik, E., Vickers, C. E., Yew, W. S., Yuan, Y., Zhao, H. & Freemont, P. S. (2019). Building a global alliance of biofoundries.Nature Communications , 10(1), 2040.
Hutchison, C. A., Chuang, R.-Y., Noskov, V. N., Assad-Garcia, N., Deerinck, T. J., Ellisman, M. H., Gill, J., Kannan, K., Karas, B. J., Ma, L., Pelletier, J. F., Qi, Z.-Q., Richter, R. A., Strychalski, E. A., Sun, L., Suzuki, Y., Tsvetanova, B., Wise, K. S., Smith, H. O., Glass, J. I., Merryman, C., Gibson, D. G. & Venter, J. C. (2016). Design and synthesis of a minimal bacterial genome. Science, 351,aad6253.
Jagtap, U.B., Jadhav, J. P., Bapat, V. A. & Pretorius, I. S. (2017). Synthetic biology stretching the realms of possibility in wine yeast research. International Journal of Food Microbiol , 252, 24–34.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., … & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature , 596(7873), 583-589.
Kehe, J. S. (2020). Massively parallel combinatorial microbiology (Doctoral dissertation, Massachusetts Institute of Technology, Boston, USA).
Khan, K., Su, C. W., Umar, M., & Zhang, W. (2022). Geopolitics of technology: A new battleground?. Technological and Economic Development of Economy , 28(2), 442-462.
Kitney, R. I. (2021). Building the UK’s industrial base in engineering biology. Engineering Biology , 5(4), 98-106.
Kutyna, D. R., Onetto, C. A., Williams, T. C., Goold, H. D., Paulsen, I. T., Pretorius, I. S., Johnson, D. L. & Borneman, A. R. (2022). Construction of a synthetic Saccharomyces cerevisiae pan-genome neo-chromosome. Nature Communications, 13, 3628.
Lambert, N., Chen, Y. N., Cheng, Y. C., Li, C. M., Chen, G. Y. & Nori, F. (2013). Quantum biology. Nature Physics , 9(1), 10-18.
Lee, D., Lloyd, N., Pretorius, I. S. Bornaman, A, R. (2016). Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Microbial Cell Factories , 15, 49–55.
Leonard, A. C., & Whitehead, T. A. (2022). Design and engineering of genetically encoded protein biosensors for small molecules.Current Opinion in Biotechnology , 78, 102787.
Lewis, J. A. (2018). Technological competition and China. Center for Strategic and International Studies (CSIS).
Lieber, K. A. (2019). War and the engineers: The primacy of politics over technology. Cornell University Press, Sage House, Ithaca, USA.
Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Schmeuli Y., Costa, A. D. S., Fazel-Zarandi, M., Sercu, T., Candido, S. & Rives, A. (2023). Evolutionary-scale prediction of atomic-level protein structure with a language model.Science , 379(6637), 1123-1130.
Llorente, B., Williams, T. C., Goold, H. D., Pretorius, I. S. & Paulsen, I. T. (2022). Harnessing bioengineered microbes as a versatile platform for space nutrition. Nature Communications, 13,6177.
McLennan, A. (2018). Regulation of Synthetic Biology. Edward Elgar Publishing , U.K.
Miller, C. (2022). Chip War: The Fight for the World’s Most Critical Technology. Simon and Schuster , New York, USA.
Mitchell, L. A. & Boeke, J. D. (2014). Circular permutation of a synthetic eukaryotic chromosome with the telomerator. Proceedings of the National Academy of Sciences (PNAS) U. S. A., 111,17003-10.
Naseri, G. (2023). A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast. Nature Communications , 14(1), 1916.
Naseri, G., & Koffas, M. A. (2020). Application of combinatorial optimization strategies in synthetic biology. Nature Communications , 11(1), 2446.
National Academies of Sciences, Engineering, and Medicine. (2019). Quantum Computing: Progress and Prospects. Washington, DC: The National Academies Press . https://doi.org/10.17226/25196.
Moe-Behrens, G. H., Davis, R. & Haynes, K. A. (2013). Preparing synthetic biology for the world. Frontiers in Microbiology,4, 5.
Montague, M., Mcarthur, G. H. T., Cockell, C. S., Held, J., Marshall, W., Sherman, L. A., Wang, N., Nicholson, W. L., Tarjan, D. R. & Cumbers, J. (2012). The role of synthetic biology for in situ resource utilization (ISRU). Astrobiology, 12, 1135-42.
Noskov, V. N., Chuang, R. Y., Gibson, D. G., Leem, S. H., Larionov, V. & Kouprina, N. (2011). Isolation of circular yeast artificial chromosomes for synthetic biology and functional genomics studies.Nature Protocols, 6, 89-96.
Paddon, C. J., & Keasling, J. D. (2014). Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development.Nature Reviews Microbiology , 12(5), 355-367.
Peccoud, J., Gallegos, J. E., Murch, R., Buchholz, W. G., & Raman, S. (2018). Cyberbiosecurity: from naive trust to risk awareness.Trends in biotechnology , 36(1), 4-7.
Peter, J., De Chiara, M., Friedrich, A., Yue, J.-X., Pflieger, D., Bergström, A., Sigwalt, A., Barre, B., Freel, K., Llored, A., Cruaud, C., Labadie, K., Aury, J.-M., Istace, B., Lebrigand, K., Barbry, P., Engelen, S., Lemainque, A., Wincker, P., Liti, G. & Schacherer, J. (2018). Genome evolution across 1,011 Saccharomyces cerevisiaeisolates. Nature , 556, 339-344.
Pham, C., Stogios, P. J., Savchenko, A., & Mahadevan, R. (2022). Advances in engineering and optimization of transcription factor-based biosensors for plug-and-play small molecule detection. Current Opinion in Biotechnology , 76, 102753.
Pretorius, I. S. (2000). Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast, 6, 675–729.
Pretorius, I S. (2016). Conducting wine symphonics with the aid of yeast genomics. Beverages , 2, 36; doi:10.3390/beverages2040036.
Pretorius, I. S. (2017a). Synthetic genome engineering forging new frontiers for wine yeast. Critical Reviews in Biotechnolology , 37, 112–136.
Pretorius, I.S. (2017b). Solving yeast jigsaw puzzles over a glass of wine: Synthetic genome engineering pioneers new possibilities for wine research. EMBO Reports , 18, 1875–1884.
Pretorius, I. S. (2020). Tasting the terroir of wine yeast innovation.FEMS Yeast Res , 20. doi/10.1093/femsyr/foz084
Pretorius, I. S. & Bauer FF. (2002). Meeting the consumer challenge through genetically customised wine yeast strains. Trends in Biotechnology , 20, 426-432.
Pretorius, I. S. & Boeke, J. D. (2018). Yeast 2.0 Connecting the dots in the construction of the world’s first functional synthetic eukaryotic genome. FEMS Yeast Research , 18, 1–15.
Pretorius, I. S., Curtin, C. D, Chambers, P.J. (2012). The winemaker’s bug: From ancient wisdom to opening new vistas with frontier yeast science. Bioengineered , 3, 47-156.
Pretorius, I.S. & Høj P.B. (2005). Grape and Wine Biotechnology: Challenges, opportunities and potential benefits. Australian Journal of Grape Wine Research, 11, 83-108.
Peter, J., De Chiara, M., Friedrich, A., Yue, J.-X., Pflieger, D., Bergström, A., Sigwalt, A., Barre, B., Freel, K., Llored, A., Cruaud, C., Labadie, K., Aury, J.-M., Istace, B., Lebrigand, K., Barbry, P., Engelen, S., Lemainque, A., Wincker, P., Liti, G. & Schacherer, J. (2018). Genome evolution across 1,011 Saccharomyces cerevisiaeisolates. Nature, 556, 339-344.
Postma, E. D., Dashko, S., Van Breemen, L., Taylor Parkins, S. K., Van Den Broek, M., Daran, J.-M. & Daran-Lapujade, P. (2021). A supernumerary designer chromosome for modular in vivo pathway assembly in Saccharomyces cerevisiae . Nucleic Acids Research, 49, 1769-1783.
Richardson, S. M., Mitchell, L. A., Stracquadanio, G., Yang, K., Dymond, J. S., Dicarlo, J. E., Lee, D., Huang, C. L., Chandrasegaran, S., Cai, Y., Boeke, J. D. & Bader, J. S. (2017). Design of a synthetic yeast genome. Science, 355, 1040-1044.
Shaw, W. M. Yamauchi, H., Mead, J., Gowers, G.O.F, Bell, D.J. Larsson, D.O.N., Wigglesworth, M., Ladds, G., Ellis, T. (2019). Engineering a model cell for rational tuning of GPCR signaling. Cell. 177, 782-796.
Shen, Y., Stracquadanio, G., Wang, Y., Yang, K., Mitchell, L. A., Xue, Y., Cai, Y., Chen, T., Dymond, J. S., Kang, K., Gong J., Zeng, X, Zhang, Y., Li, Y., Feng, Q., Xu, X., Wang, J., Wang, J., Yang, H., Boeke, J. D., Bader, J.S. (2016). SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Research , 26, 36–49.
Shen, M. J., Wu, Y., Yang, K., Li, Y., Xu, H., Zhang, H., Li, B.Z., Li, X., Xiao, W. H., Zhou, X., Mitchell, L. A., Bader, J. S., Yuan, Y. & Boeke, J. D. (2018). Heterozygous diploid and interspecies SCRaMbLEing.Nature Communications , 9, 1934.
Stano, P. (2022). A four-track perspective for bottom-up synthetic cells. Frontiers in Bioengineering and Biotechnology , 10, 1029446.
Stano, P. (2021). Chemical neural networks and synthetic cell biotechnology: preludes to chemical AI. In : International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics (pp. 1-12). Cham: Springer International Publishing, New York, USA.
Stolarczyk, K., Rogalski, J., & Bilewicz, R. (2020). NAD (P)-dependent glucose dehydrogenase: Applications for biosensors, bioelectrodes, and biofuel cells. Bioelectrochemistry , 135, 107574.
Santomartino, R., Averesch, N. J. H., Bhuiyan, M., Cockell, C. S., Colangelo, J., Gumulya, Y., Lehner, B., Lopez-Ayala, I., Mcmahon, S., Mohanty, A., Santa Maria, S. R., Urbaniak, C., Volger, R., Yang, J. & Zea, L. (2023). Toward sustainable space exploration: a roadmap for harnessing the power of microorganisms. Nature Communications,14, 1391.
Schindler, D., Walker, R. S. K., Jiang, S., Brooks, A. N., Wang, Y., Müller, C. A., Cockram, C., Luo, Y., García, A., Schraivogel, D., Mozziconacci, J., Blount, B. A., Cai, J., Ogunlana, L., Liu, W., Jönsson, K., Abramczyk, D., Garcia-Ruiz, E., Turowski, T. W., Swidah, R., Ellis, T., Antequera, F., Shen, Y., Nieduszynski, C. A., Koszul, R., Dai, J., Steinmetz, L. M., Boeke, J. D. & Cai, Y. (2022). Design, Construction, and functional characterization of a tRNA neochromosome in Yeast. bioRxiv , DOI: 2022.10.03.510608.
Shaw, W. M., Yamauchi, H., Mead, J., Gowers, G.-O. F., Bell, D. J., Öling, D., Larsson, N., Wigglesworth, M., Ladds, G. & Ellis, T. (2019). Engineering a model cell for rational tuning of GPCR signaling.Cell, 177, 782-796.e27.
Shen, Y., Stracquadanio, G., Wang, Y., Yang, K., Mitchell, L. A., Xue, Y., Cai, Y., Chen, T., Dymond, J. S., Kang, K., Gong, J., Zeng, X., Zhang, Y., Li, Y., Feng, Q., Xu, X., Wang, J., Wang, J., Yang, H., Boeke, J. D. & Bader, J. S. (2016). SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes.Genome Res, 26, 36-49.
Vanhercke, B., Sabato, S., & Spasova, S. (2023). Social policy in the European Union: State of play 2022: Policymaking in a permacrisis; 23rd annual report. ETUI, Printshop, Brussels.
Van Wyk, N., Kroukamp, H., Pretorius, I. S. (2018). The smell of synthetic biology: Engineering strategies for aroma compound production in yeast. Fermentation , 4, 1-18.
Torres, L., Krüger, A., Csibra, E., Gianni, E. & Pinheiro, V. B. (2016). Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays in Biochemistry,60, 393-410.
Tsoi, R., Wu, F., Zhang, C., Bewick, S., Karig, D. & You, L. (2018). Metabolic division of labor in microbial systems. Proceedings of the National Academy of Sciences USA, 115, 2526.
Warringer, J., Zörgö, E., Cubillos, F. A., Zia, A., Gjuvsland, A., Simpson, J. T., Forsmark, A., Durbin, R., Omholt, S. W., Louis, E. J., Liti, G., Moses, A. & Blomberg, A. (2011). Trait variation in yeast is defined by population history. PLOS Genetics, 7,e1002111.
Wahid, E., Ocheja, O. B., Marsili, E., Guaragnella, C., & Guaragnella, N. (2023). Biological and technical challenges for implementation of yeast‐based biosensors. Microbial Biotechnology . 16(1), 54-66.
Walker, R. S. K. & Pretorius, I. S. (2018). Applications of Yeast Synthetic Biology Geared towards the Production ofBiopharmaceuticals . Genes, 9, 340.
Walker, R. S. K. & Pretorius, I. S. (2022). Synthetic biology for the engineering of complex wine yeast communities. Nature Food, 3, 249-254.
Weiss, L. (2014). America Inc.?: innovation and enterprise in the national security state. Cornell University Press, Sage House, Ithaca, USA.
Williams, T. C., Pretorius, I. S. & Paulsen, I. T. (2016). Synthetic evolution of metabolic productivity using biosensors. Trends in Biotechnology , 34, 371-381.
Williams, T. C., Xu, X., Ostrowski, M., Pretorius, I. S. & Paulsen, I. T. (2017). Positive-feedback, ratiometric biosensor expression improves high-throughput metabolite-producer screening efficiency in yeast.Synthetic Biology, 2, ysw002.
Wu, Y., Zhu, R.Y., Mitchell, L. A., Ma, L., Liu, R., Zhao, M., Jia, B., Xu, H., Li, Y. X., Yang, Z. M., Ma, Y., Li, X., Liu, H., Liu, D., Xiao, W. H., Zhou, X., Li, B. Z., Yuan, Y. J. & Boeke, J. D. (2018). In vitro DNA SCRaMbLE. Nature Communications, 9, 1935.
Xu, X., Meier, F., Blount, B. A., Pretorius, I. S., Ellis, T., Paulsen, I. T. & Williams, T. C. (2023). Trimming the genomic fat: minimising and re-functionalising genomes using synthetic biology. Nature Communications, 14, 1984.
Yu, P., Lei, C., & Nie, Z. (2022). Integration of electrochemical interface and cell-free synthetic biology for biosensing. Journal of Electroanalytical Chemistry , 911, 116209.
Zhang, X., Hu, Y., Yang, X., Tang, Y., Han, S., Kang, A., Deng, H., Chi, Y., Zhu, D. & Lu, Y. (2019). Förster resonance energy transfer (FRET)-based biosensors for biological applications. Biosensors and Bioelectronics , 138, 111314.
Zhirnov, V. (2018). Semiconductor synthetic biology roadmap. Semiconductor Research Corporation Durham.
Wu, Y., Zhu, R.Y., Mitchell, L. A., Ma, L., Liu, R., Zhao, M., Jia, B., Xu, H., Li, Y. X., Yang, Z. M., Ma, Y., Li, X., Liu, H., Liu, D., Xiao, W. H., Zhou, X., Li, B. Z., Yuan, Y. J. & Boeke, J. D. . In vitro DNA SCRaMbLE. Nature Communications, 9, 1935.