General Procedure for Synthesis of Symmetric Biaryl Ketones from Aryl hydrazine hydrochloride:
In a 100 mL reactor the mixture of aryl hydrazine hydrochloride (1 mmol), PdCl2(PPh3)2 (2 mol%) and CuI (5 mol%) and Na2CO3 (2 equiv.), in acetonitrile (10 mL) were added and pressurized with 4 bar CO/O2 in a ratio of (3/1). This reaction mixture was heated at 100 °C with constant stirring for 12 h. After the reaction, the reactor was cooled at room temperature, and remained gas was vented carefully. The reaction mixture was diluted with ethyl acetate (10 mL) and then washed with water. The organic layer fraction was dried over sodium sulphate and concentrated under rotary evaporation. Then obtained crude residue was monitored by GC-MS, and purified by column chromatography (pet ether: ethyl acetate, 80/20 v/v). The desired product was separated by chromatography and confirmed by GC-MS, and NMR techniques.
Supporting Information
The supporting information for this article is available on the WWW under https://doi.org/10.1002/cjoc.2021xxxxx.
Acknowledgment
Y. A. K. gratefully acknowledges the University Grants Commission (UGC) (New Delhi, India, for the Senior Research Fellowship (SRF).
References
  1. a) Surana, K.; Chaudhary, B.; Diwaker, M.; Sharma, S. Benzophenone: A Ubiquitous Scaffold in Medicinal Chemistry. Medchemcomm2018 , 9 (11), 1803–1817; (b) Saidi, L.; Rocha, D. H. A.; Talhi, O.; Bentarzi, Y.; Nedjar‐Kolli, B.; Bachari, K.; Almeida Paz, F. A.; Helguero, L. A.; Silva, A. M. S. Synthesis of Benzophenones and in Vitro Evaluation of Their Anticancer Potential in Breast and Prostate Cancer Cells. ChemMedChem 2019 ,14 (10), 1041–1048; (c) Zabiulla; Gulnaz, A. R.; Mohammed, Y. H. E.; Khanum, S. A. Design, Synthesis and Molecular Docking of Benzophenone Conjugated with Oxadiazole Sulphur Bridge Pyrazole Pharmacophores as Anti Inflammatory and Analgesic Agents.Bioorg. Chem. 2019 , 92 , 103220.
  2. Luque-Ortega, J. R.; Reuther, P.; Rivas, L.; Dardonville, C. New Benzophenone-Derived Bisphosphonium Salts as Leishmanicidal Leads Targeting Mitochondria through Inhibition of Respiratory Complex II.J. Med. Chem. 2010 , 53 (4), 1788–1798.
  3. Tehfe, M.-A.; Dumur, F.; Graff, B.; Morlet-Savary, F.; Fouassier, J.-P.; Gigmes, D.; Lalevée, J. New Push–Pull Dyes Derived from Michler’s Ketone for Polymerization Reactions Upon Visible Lights.Macromolecules 2013 , 46 (10), 3761–3770.
  4. Lucas, P.; Mehdi, N. El; Ho, H. A.; Bélanger, D.; Breau, L. Expedient Synthesis of Symmetric Aryl Ketones and of Ambient-Temperature Molten Salts of Imidazole. Synthesis (Stuttg). 2000 ,2000 (09), 1253–1258.
  5. Pettit, G. R.; Toki, B.; Herald, D. L.; Verdier-Pinard, P.; Boyd, M. R.; Hamel, E.; Pettit, R. K. Antineoplastic Agents. 379. Synthesis of Phenstatin Phosphate 1a, J. Med. Chem. 1998 , 41(10), 1688–1695.
  6. Álvarez, C.; Álvarez, R.; Corchete, P.; Pérez-Melero, C.; Peláez, R.; Medarde, M. Synthesis and Biological Activity of Naphthalene Analogues of Phenstatins: Naphthylphenstatins. Bioorg. Med. Chem. Lett.2007 , 17 (12), 3417–3420.
  7. (a) Sartori, G.; Maggi, R. Use of Solid Catalysts in Friedel−Crafts Acylation Reactions. Chem. Rev. 2006 ,106 (3), 1077–1104. https://doi.org/10.1021/cr040695c. (b) Gore, P. H. The Friedel-Crafts Acylation Reaction and Its Application to Polycyclic Aromatic Hydrocarbons. Chem. Rev. 1955 ,55 (2), 229–281.
  8. (a) Gaikwad, V. V.; Mane, P. A.; Dey, S.; Bhanage, B. M. Xantphos‐ligated Palladium Dithiolates: An Unprecedented and Convenient Catalyst for the Carbonylative Suzuki–Miyaura Cross‐coupling Reaction with High Turnover Number and Turnover Frequency. Appl. Organomet. Chem. 2020 , 34 (1); (b) Gautam, P.; Bhanage, B. M. Palladacycle-Catalyzed Carbonylative Suzuki–Miyaura Coupling with High Turnover Number and Turnover Frequency. J. Org. Chem. 2015 , 80 (15), 7810–7815; (c) Hao, Y.; Jiang, J.; Wang, Y.; Jin, Z. An Efficient and Recyclable Thermoregulated Phosphine–Palladium Catalyst for the Carbonylative Suzuki Coupling of Aryl Halides with aryl boronic Acids in Water. Catal. Commun. 2015 , 71 , 106–110.
  9. (a) Wu, F.-P.; Peng, J.-B.; Qi, X.; Wu, X.-F. Palladium-Catalyzed Carbonylative Homocoupling of Aryl Iodides for the Synthesis of Symmetrical Diaryl Ketones with Formic Acid. ChemCatChem2018 , 10 (1), 173–177; (b) Peng, J.-B.; Wu, F.-P.; Li, D.; Qi, X.; Ying, J.; Wu, X.-F. Nickel-Catalyzed Molybdenum-Promoted Carbonylative Synthesis of Benzophenones. J. Org. Chem. 2018 , 83 (12), 6788–6792; (c) Niakan, M.; Asadi, Z.; Khosrozadeh, F. Palladium Imine-Pyridine-Imine Complex Immobilized on Graphene Oxide as a Recyclable Catalyst for the Carbonylative Homo-Coupling of Aryl Halides. J. Coord. Chem.2021 , 74 (4–6), 850–863; (d) Kobayashi, K.; Nishimura, Y.; Gao, F.; Gotoh, K.; Nishihara, Y.; Takagi, K. Rh-Catalyzed Carbonylation of Arylzinc Compounds Yielding Symmetrical Diaryl Ketones by the Assistance of Oxidizing Agents. J. Org. Chem. 2011 , 76 (6), 1949–1952.
  10. (a) Jackson, R. F. W.; Turner, D.; Block, M. H. Carbonylative Coupling of Organozinc Reagents in the Presence and Absence of Aryl Iodides: Synthesis of Unsymmetrical and Symmetrical Ketones. J. Chem. Soc. Perkin Trans. 1 1997 , No. 6, 865–870; (b) Zhao, H.; Han, W. ChemInform Abstract: Ligand-Free Palladium-Catalyzed Oxidative Carbonylative Homocoupling of Arylboron Reagents at Ambient Pressure.ChemInform 2016 , 47 (52).
  11. (a) Ai, J.-J.; Liu, B.-B.; Li, J.; Wang, F.; Huang, C.-M.; Rao, W.; Wang, S.-Y. Fe–S Catalyst Generated In Situ from Fe(III)- and S 3 •– -Promoted Aerobic Oxidation of Terminal Alkenes. Org. Lett.2021 , 23 (12), 4705–4709; (b) Xie, P.; Xue, C.; Du, D.; Shi, S. Photo-Induced Oxidative Cleavage of C–C Double Bonds for the Synthesis of Biaryl Methanone via CeCl 3 Catalysis. Org. Biomol. Chem. 2021 , 19 (31), 6781–6785; (c) Yang, L.; Zeng, T.; Shuai, Q.; Guo, X.; Li, C.-J. Phosphine Ligand Triggered Oxidative Decarbonylative Homocoupling of Aromatic Aldehydes: Selectively Generating Biaryls and Diarylketones. Chem. Commun.2011 , 47 (7), 2161.
  12. Zhao, F.; Wu, X.-F. The First Bismuth Self-Mediated Oxidative Carbonylative Coupling Reaction via BiIII/BiV Redox Intermediates.J. Catal. 2021 , 397 , 201–204.
  13. Etemadi-Davan, E.; Khalili, D.; Banazadeh, A. R.; Sadri, G.; Arshad, P. Palladium Nanoparticles on Amino-Modified Silica-Catalyzed C–C Bond Formation with Carbonyl Insertion. J. Iran. Chem. Soc.2021 , 18 (8), 1891–1903.
  14. evesque, T. M.; Kinney, R. G.; Arndtsen, B. A. A Palladium-Catalyzed C–H Functionalization Route to Ketones via the Oxidative Coupling of Arenes with Carbon Monoxide. Chem. Sci. 2020 ,11 (11), 3104–3109.
  15. (a) Zhao, H.; Han, W. Ligand-Free Palladium-Catalyzed Oxidative Carbonylative Homocoupling of Arylboron Reagents at Ambient Pressure.European J. Org. Chem. 2016 , 2016 (25), 4279–4283; (b) Ren, L.; Jiao, N. Pd/Cu-Cocatalyzed Aerobic Oxidative Carbonylative Homocoupling of Arylboronic Acids and CO: A Highly Selective Approach to Diaryl Ketones. Chem. - An Asian J.2014 , 9 (9), 2411–2414; (c) Li, Y.; Lu, W.; Xue, D.; Wang, C.; Liu, Z.-T.; Xiao, J. Palladium-Catalyzed Oxidative Carbonylation for the Synthesis of Symmetrical Diaryl Ketones at Atmospheric CO Pressure. Synlett 2014 , 25 (08), 1097–1100; (d) Heck, R. F. A Synthesis of Diaryl Ketones from Arylmercuric Salts. J. Am. Chem. Soc. 1968 , 90(20), 5546–5548.
  16. (a) Tu, Y.; Zhao, J. Recent Advances in the Pd‐Catalyzed Coupling of Arylhydrazines and Ammonium Salts via C−N Bond Cleavage. Chem. Rec. 2021 , 21 (12), 3442–3457; (b) Hosseinian, A.; Mohammadi, R.; Ahmadi, S.; Monfared, A.; Rahmani, Z. Arylhydrazines: Novel and Versatile Electrophilic Partners in Cross-Coupling Reactions. RSC Adv. 2018 , 8 (59), 33828–33844; (c) Balgotra, S.; Verma, P. K.; Vishwakarma, R. A.; Sawant, S. D. Catalytic Advances in Direct Functionalizations Using Arylated Hydrazines as the Building Blocks. Catal. Rev. 2020 ,62 (3), 406–479.
  17. (a) Demers, J. P.; Klaubert, D. H. Addition of Arylmetallics to Azodicarboxylates: A Novel Synthesis of Arylhydrazines by Aromatic Hydrazination. Tetrahedron Lett. 1987 , 28 (42), 4933–4934; (b) Lundgren, R. J.; Stradiotto, M. Palladium-Catalyzed Cross-Coupling of Aryl Chlorides and Tosylates with Hydrazine.Angew. Chemie Int. Ed. 2010 , 49 (46), 8686–8690; (c) Kurandina, D. V.; Eliseenkov, E. V.; Ilyin, P. V.; Boyarskiy, V. P. Facile and Convenient Synthesis of Aryl Hydrazines via Copper-Catalyzed C–N Cross-Coupling of Aryl Halides and Hydrazine Hydrate. Tetrahedron 2014 , 70 (26), 4043–4048.
  18. (a) Kolekar, Y. A.; Bhanage, B. M. Pd-Catalyzed Oxidative Aminocarbonylation of Arylboronic Acids with Unreactive Tertiary Amines via C–N Bond Activation. J. Org. Chem. 2021 ,86 (20), 14028–14035; (b) Mane, R. S.; Bhanage, B. M. Pd/C-Catalyzed Aminocarbonylation of Aryl Iodides via Oxidative C–N Bond Activation of Tertiary Amines to Tertiary Amides. J. Org. Chem. 2016 , 81 (3), 1223–1228; (c)Kolekar, Y. A.; Bhanage, B. M. Pd/C-Catalyzed Synthesis of Oxamates by Oxidative Cross Double Carbonylation of Alcohols and Tertiary Amines through C–N Bond Cleavage. New J. Chem. 2019 , 43 (46), 18072–18078.
  19. Kolekar, Y. A.; Bhanage, B. M. Tunable Pd/C-Catalyzed Oxidative Alkoxycarbonylation/Aminocarbonylation of Aryl Hydrazines with Alcohols/Inert Tertiary Amines through C–N Bond Activation. New J. Chem. 2022 , 46 (30), 14421–14426.
  20. (a) Tu, Y.; Zhang, Z.; Wang, T.; Ke, J.; Zhao, J. A Regioselective Approach to Trisubstituted Pyrazoles via Palladium-Catalyzed Oxidative Sonogashira-Carbonylation of Arylhydrazines. Org. Lett.2017 , 19 (13), 3466–3469; (b) Wang, C.; Zhang, Z.; Tu, Y.; Li, Y.; Wu, J.; Zhao, J. Palladium-Catalyzed Oxidative Cross-Coupling of Arylhydrazines and Arenethiols with Molecular Oxygen as the Sole Oxidant. J. Org. Chem. 2018 , 83(4), 2389–2394.
  21. (a) Pan, Q.; Liu, Y.; Pang, W.; Wu, J.; Ma, X.; Hu, X.; Guo, Y.; Chen, Q.-Y.; Liu, C. Copper-Catalyzed Three-Component Reaction of Arylhydrazine Hydrochloride, DABSO, and NFSI for the Synthesis of Arenesulfonyl Fluorides. Org. Biomol. Chem. 2021 ,19 (41), 8999–9003; (b) Rao, C.; Mai, S.; Song, Q. Cu-Catalyzed Synthesis of 3-Formyl Imidazo[1,2- a ]Pyridines and Imidazo[1,2- a ]Pyrimidines by Employing Ethyl Tertiary Amines as Carbon Sources. Org. Lett. 2017 , 19 (18), 4726–4729; (c) Kibriya, G.; Mondal, S.; Hajra, A. Visible-Light-Mediated Synthesis of Unsymmetrical Diaryl Sulfides via Oxidative Coupling of Arylhydrazine with Thiol. Org. Lett.2018 , 20 (23), 7740–7743.