159
6. Challenge and prospect
Natural products (NPs) have been increasingly attracting attention from
various fields due to their structural diversity and biological
activities.[13] The skeletal types of NPs are
closely related to their biological evolution. As the evolution
progresses, organisms must continuously change their biosynthetic
pathways to adapt the change in the various environment or resist
external threats, which result in changes in the skeletal types of NPs.
This relationship between NPs structure and evolution makes NPs an
important area in the fields of chemistry and
biology.[167]
The discovery of new carbon skeletons in NPs is often accompanied by the
discovery of new biological activities. For example, the famous
sesquiterpenoid artemisinin and diterpenoid taxol show notable
antimalarial and antitumor activities respectively, which highlights the
significance of the discovery of novel skeletal NPs and their potential
impact on the development of new drugs.
However, the quantity of novel skeletal NPs is generally limited,
makeing it difficult to evaluate
the biological activities of novel skeleton
compounds,[168] which might limit the potential of
NPs or hinder the development of new drugs based on these compounds.
Therefore, these challenges may inspire strong interests among organic
chemists, biologists, and pharmacologists. As terpenoids are one of the
largest classes of NPs, this review focuses on 166 natural terpenoids
with intriging structures from 2017−2022, including the isolation,
structural determination, plausible biosynthetic pathways, and
biological activities. Hopefully, this
review would provide a new
perspective for the scholars who are interested in NPs.
References
[1] Medicinal Natural Products: a biosynthetic approaach ,
Ed.: Dewick, P. M.; John Wiley &
Sons, Chichester, 2009 .
[2] Zhao, H.; Sun, L.; Kong, C.; Mei, W.; Dai, H.; Xu, F.; Huang, S.
Phytochemical and pharmacological review of diterpenoids from the genusEuphorbia Linn(2012–2021). J.
Ethnopharmacol . 2022 , 298, 115574.
[3] Zhan, Z. J.; Li, S.; Chu, W.; Yin, S. Euphorbia diterpenoids:
isolation, structure, bioactivity, biosynthesis, and synthesis
(2013–2021). Nat. Prod. Rep. 2022 , 39, 2132–2174.
[4] Hu, L.; Wang, Z.; Tong, Z.; Hu, P.; Kong, L.; Luo, M.; Li, X.
N.; Zhang, Y.; Huang Z.; Zhang, Y. Undescribed Meroterpenoids fromHypericum japonicum with Neuroprotective Effects on
H2O2 Insult SH-SY5Y Cells Targeting
Keap1-Nrf2. Chin. J. Chem. 2022 , 40, 1321–1330.
[5] Liu, M.; Zhang, X.; Shen, L.; Lin, S.; Ye, Y.; Qi, C.; Wang, J.;
Hu, Z.; Zhang, Y.; Meroterpenoids with Potent Immunosuppressive Activity
from Fungus Bipolaris zeicola . Chin. J. Chem.2021 , 39, 2460–2466.
[6] Zhang, Y. Y.; Yan, Y.; Zhang, J.; Xia, C. Y.; Lian, W. W.; Wang,
W. P.; He, J.; Zhang, W. K.; Xu, J. K. Jolkinolide B: A comprehensive
review of its physicochemical properties, analytical methods, synthesis
and pharmacological activity. Phytochemistry . 2022 , 204,
113448.
[7] Huang, J. W.; Li, C. J.; Yang, J. Z.; Li, C.; Zhang, Y.; Liu,
K.; Yu, Y.; Jiang, J. D.; Zhang, D. M. Guajamers A−I, Rearranged
Polycyclic Phloroglucinol Meroterpenoids from Psidium guajavaLeaves and Their Antibacterial Activity. Chin. J. Chem.2021 , 39, 1129–1137.
[8] Chen, F.; Wang, J.; Luo, Y.; Li, C.; Huang, J.; Ma, J.; Zhang,
D. Characteristic Dihydroagarofuran Sesquiterpenoids with
Neuroprotective Effects from the Celastraceae Plant Tripterygium
wilfordii . Chin. J. Chem. 2021 , 39, 2547–2554.
[9] Cheng, X.; Micalizio, G. C.; Synthesis of Neurotrophic
Seco-prezizaane Sesquiterpenes (1R,10S)-2-Oxo-3,4-dehydroneomajucin,
(2S)-Hydroxy-3,4-dehydroneomajucin, and (-)-Jiadifenin. J. Am.
Chem. Soc. 2016 , 138, 1150–1153.
[10] Dong, S.; Lin, B; Xue, X.; Bai, M.; Huang, X.; Song, S.
Discovery of β‐Dihydroagarofuran‐Type Sesquiterpenoids from the Leaves
of Tripterygium wilfordii with Neuroprotective Activities.Chin. J. Chem. 2021 , 39, 337–344.
[11] Fraga, B. M. Natural sesquiterpenoids. Nat. Prod. Rep.2012 , 29, 1334–1366.
[12] Fraga, B. M. Natural sesquiterpenoids. Nat. Prod. Rep.2013 , 30, 1226–1264.
[13] Newman D. J.; Cragg, G. M. Natural Products as Sources of New
Drugs from 1981 to 2014. J. Nat. Prod. 2016 , 79,
629–661.
[14] Wang, G. K.; Zhang, N.; Yao, J. N.; Yu, Y.; Wang, G.; Hung, C.
C.; Cheng, Y. Y.; S. L. Morris-Natschke, S. L.; Zhou, Z. Y.; Liu, J. S.;
Lee, K. H. Kalshinoids A–F, Anti-inflammatory Sesquiterpenes fromKalimeris shimadae . J. Nat. Prod. 2019 , 82,
3372–3378.
[15] Zhan, Z. C.; Wu, Z. N.; Tang, Q.; Li, C. J.; Wang, W. Z.;
Zhang, J. H.; Zhuo, X. F.; Zhang, Y. B.; Wang, G. C.; Li, Y. L.
Sesquiterpenoids from the Whole Plants of Chloranthus holostegiusand Their Anti-inflammatory Activities, Chin. J. Chem.2021 , 39, 1168–1174.
[16] Yokoyama, R.; Huang, J.; Yang, C.; Fukuyama, Y. New
seco-Prezizaane-Type Sesquiterpenes, Jiadifenin with Neurotrophic
Activity and 1,2-Dehydroneomajucin from Illicium jiadifengpi .J. Nat. Prod. 2002 , 65, 527–531.
[17] Huang, J.; Yokoyama, R.; Yang, C.; Fukuyama, Y. Structure and
Neurotrophic Activity of seco-Prezizaane-Type Sesquiterpenes fromIllicium merrillianum . J. Nat. Prod. 2001 , 64,
428–431.
[18] Liu, J. F.; Wang, L.; Wang, Y. F.; Song, X.; Yang L. J.;.
Zhang, Y. B. Sesquiterpenes from the fruits of Illicium
jiadifengpi and their anti-hepatitis B virus activities,Fitoterapia , 2015 , 104, 41–44.
[19] Kubo, M.; Okada, C.; Huang, J.; Harada, K.; Hioki, H.;
Fukuyama, Y. Novel Pentacyclic seco-Prezizaane-Type Sesquiterpenoids
with Neurotrophic Properties from Illicium jiadifengpi .Org. Lett. 2009 , 11, 5190–5193.
[20] Zhu, Q.; Tang, C.; Ke, C.; Wang, W.; Zhang, H.; Ye, Y.
Sesquiterpenoids and Phenylpropanoids from Pericarps of Illicium
oligandrum . J. Nat. Prod. 2009 , 72, 238–242.
[21] Ma, S. G.; Li, M.; Lin, M. B.; Li, L.; Liu, Y. B.; Qu, J.; Li,
Y.; Wang, X. J.; Wang, R. B.; Xu, S.; Hou, Q.; Yu, S. S. Illisimonin A,
a Caged Sesquiterpenoid with a
Tricyclo[5.2.1.01,6]decane Skeleton from the
Fruits of Illicium simonsii . Org. Lett. 2017 , 19,
6160–6163.
[22] Yong, J. Y.; Li, W. R.; Wang, X. J.; Su, G. Z.; Li, M.; Zhang,
J. P.; Jia, H. L.; Li, Y. H.; Wang, R. B.; Gan, M.; Ma, S. G. Illihenin
A: An Antiviral Sesquiterpenoid with a Cage-like
Tricyclo[6.2.2.01,5]dodecane Skeleton fromIllicium henryi . J. Org. Chem. 2021 , 86,
2017–2022.
[23] Otaka, J.; Hashizume, D.; Masumoto, Y.; Muranaka, A.; Uchiyama,
M.; Koshino, H.; Futamura, Y.; Osada, H. Hitoyol A and B, Two
Norsesquiterpenoids from the Basidiomycete Coprinopsis cinerea .Org. Lett. 2017 , 19, 4030–4033.
[24] Bu’Lock. J. D.; Darbyshire, J. lagopodin metabolites and
artefacts in cultures of coprinus. Phytochem. Lett.1976 , 15, 1433–1433.
[25] Muraguchi, H.; Umezawa, K.; Niikura, M.; Yoshida, M.; Kozaki,
T.;Ishii, K.; Sakai, K.; Shimizu, M.; Nakahori, K.; Sakamoto, Y.; Choi,
C.; Ngan, C. Y.; Lindquist, E.; Lipzen, A.; Tritt, A.; Haridas, S.;
Barry, K.; Grigoriev, I. V.; Pukkila, P. J. Strand-Specific RNA-Seq
Analyses of Fruiting Body Development in Coprinopsis cinerea ,PLoS One , 2015 , 10, e0141586.
[26] Lopez-Gallego, F.; Agger, S. A.; Abate-Pella, D.; Distefano, M.
D.; Schmidt-Dannert, C. Sesquiterpene synthases Cop4 and Cop6 fromCoprinus cinereus : catalytic promiscuity and cyclization of
farnesyl pyrophosphate geometric isomers, Chembiochem.2010 , 11, 1093–1106.
[27] Yang, H. X.; Ai, H. L.; Feng, T.; Wang, W. X.; Wu, B.; Zheng,
Y. S.; Sun, H.; He, J.; Li, Z. H.; Liu, J. K. Trichothecrotocins A–C,
Antiphytopathogenic Agents from Potato Endophytic FungusTrichothecium crotocinigenum . Org. Lett. 2018 ,
20, 8069–8072.
[28] Bunyapaiboonsri, T.; Yoiprommarat, S.; Lapanun, S.; Balram, U.;
Chanthaket, R.; Klaysuban, A.; Suetrong, S. Trichothecenes from the
fungus Acremonium crotocinigenum BCC 20012. Phytochem.
Lett. 2016 , 18, 39–43.
[29] McCormick, S. P.; Stanley, A. M.; Stover, N. A.; Alexander, N.
J. Trichothecenes: from simple to complex mycotoxins. Toxins
(Basel) . 2011 , 3 , 802–814.
[30] Pipas Saha, U. C.; Reddy, S. Bondalapati and A. K. Saikia, A
Novel Synthesis of Oxabicyclo[3.3.1]nonanone via (3,5)-Oxonium-Ene
Reaction. Org. Lett. 2010 , 12, 1824–1826.
[31] Ding, J. H.; Feng, T.; Li, Z. H.; Yang, X. Y.; Guo, H.; Yin,
X.; Wang, G. Q.; . Liu, J. K. Trefolane A, a Sesquiterpenoid with a New
Skeleton from Cultures of the Basidiomycete Tremella foliacea .Org. Lett. 2012 , 14, 4976–4978.
[32] Yang, X. Y.; Feng, T.; Li, Z. H.; Sheng, Y.; Yin, X.; Leng, Y.;
Liu, J. K. Conosilane A, an Unprecedented Sesquiterpene from the
Cultures of Basidiomycete Conocybe siliginea . Org. Lett.2012 , 14, 5382–5384.
[33] Yuan, H. S.; Dai, Y. C.; Steffen, K. Screening and evaluation
of white rot fungi to decolourise synthetic dyes, with particular
reference to Antrodiella albocinnamomea . Mycology .2012 , 3, 100–108.
[34] Li, W.; He, J.; Feng, T.; Yang, H. X.; Ai, H. L.; Li, Z. H.;
Liu, J. K. Antroalbocin A, an Antibacterial Sesquiterpenoid from Higher
Fungus Antrodiella albocinnamomea . Org. Lett.2018 , 20, 8019–8021.
[35] Xie, S.; Wu, Y.; Qiao, Y.; Guo, Y.; Wang, J.; Hu, Z.; Zhang,
Q.; Li, X.; Huang, J.; Zhou, Q.; Luo, Z.; Liu, J.; Zhu, H.; Xue, Y.;
Zhang, Y. Protoilludane, Illudalane, and Botryane Sesquiterpenoids from
the Endophytic Fungus Phomopsis sp. TJ507A. J. Nat. Prod.2018 , 81, 1311–1320.
[36] Liu, H.; Tan, H.; Chen, K.; Chen, Y.; Li, S.; Li, H.; Zhang, W.
Cerrenins A–C, cerapicane and isohirsutane sesquiterpenoids from the
endophytic fungus Cerrena sp. Fitoterapia . 2018 ,
129, 173–178.
[37] Jiao, S.; Su, G.; Zhou, X.; Ge , F.; Liu, C.; Zhang, R.; Peng,
B.; Chen, S.; Huang, L.; Tu, P.; Chai, X. Three Pairs of Enantiomeric
Sesquiterpenoids from Syringa pinnatifolia . J. Org. Chem.2021 , 86, 7263–7270.
[38] Zhao, H. Y.; Zhou, Q. M.; Zhu, H.; Zhou, F.; Meng, C. W.; Shu,
H. Z.; Liu, Z. H.; Peng, C.; Xiong, L. Anisotanols A−D, Four
Norsesquiterpenoids with an Unprecedented Sesquiterpenoid Skeleton fromAnisodus tanguticus . Chin. J. Chem. 2021 , 39,
3375–3380.
[39] Guo, Z. K.; Wang, B.; Cai, C. H.; Huang, S. Z.; Yuan, J. Z.;
Mei, W. L.; Dai, H. F. Tomenphantadenine, an unprecedented
germacranolide-adenine hybrid heterodimer from the medicinal plantElephantopus tomentosus L. Fitoterapia . 2018 ,
125, 217–220.
[40] Chen, M.; Cao, J. Q.; Ang, S.; Zeng, T. N.; Li, N. P.; Yang, T.
J.; Liu, J. S.; Wu, Y.; Ye, W. C.; Wang, L. Eugenunilones A–H:
rearranged sesquiterpenoids from Eugenia uniflora , Org.
Chem. Front. 2022. 9 , 667–675.
[41] de Paulo Farias, D.; Neri-Numa, I. A.; de Araujo, F. F.;
Pastore, G. M. A critical review of some fruit trees from theMyrtaceae family as promising sources for food applications with
functional claims. Food Chem. 2020 , 306, 125630.
[42] Pereira, M. C.; Steffens, R. S.; Jablonski, A.; Hertz, P. F.;
Rios Ade, O.; Vizzotto, M.; Flores, S. H. Characterization and
antioxidant potential of Brazilian fruits from the Myrtaceaefamily. J. Agric. Food Chem. 2012 , 60, 3061–3067.
[43] Reynertson, K. A.; Yang, H.; Jiang, B.; Basile, M. J.;
Kennelly, E. J. Quantitative analysis of antiradical phenolic
constituents from fourteen edible Myrtaceae fruits. Food
Chem. 2008 , 109, 883–890.
[44] Cai, Y. S.; Wu, Z.; Wang, J. R.; Zheng, X. Q.; Xu, J.; Qiu, G.;
Yu, J. Spiroalanfurantones A–D, Four Eudesmanolide-Furan Sesquiterpene
Adducts with a Pentacyclic 6/6/5/5/5 Skeleton from Inula
helenium . Org. Lett. 2019 , 21, 9478–9482.
[45] Jin, Q.; Lee, J. W.; Jang, H.; Lee, H. L.; Kim, J. G.; Wu, W.;
Lee, D.; Kim, E. H.; Kim, Y.; Hong, J. T.; Lee, M. K.; Hwang, B. Y.
Dimeric- and trimeric sesquiterpenes from the flower of Inula
japonica . Phytochemistry . 2018 , 155, 107–113.
[46] Qin, J. J.; Jin, H. Z.; Huang, Y.; Zhang, S. D.; Shan, L.;
Voruganti, S.; Nag, S.; Wang, W.; Zhang, W. D.; Zhang, R.; Selective
cytotoxicity, inhibition of cell cycle progression, and induction of
apoptosis in human breast cancer cells by sesquiterpenoids fromInula lineariifolia Turcz. Eur. J. Med. Chem.2013 , 68, 473–481.
[47] Qin, J. J.; Wang, L. Y.; Zhu, J. X.; Jin, H. Z.; Fu, J. J.;
Liu, X. F.; Li, H. L.; Zhang, W. D. Neojaponicone A, a bioactive
sesquiterpene lactone dimer with an unprecedented carbon skeleton fromInula japonica . Chem. Commun. (Camb) , 2011 , 47,
1222–1224.
[48] Qin, J. J.; Huang, Y.; Wang, D.; Cheng, X. R.; Zeng, Q.; Zhang,
S. D.; Hu, Z. L.; Jin, H. Z.; Zhang, W. D. Lineariifolianoids A–D, rare
unsymmetrical sesquiterpenoid dimers comprised of xanthane and guaiane
framework units from Inula lineariifolia . RSC Advances .2012 , 2, 1307–1309.
[49] Zhang, X. F.; Ren, J.;. Cheng, X. R; Jin, H. Z.; Zhang, W. D.
One new unusual sesterterpenoid and four new sesquiterpene dimers fromInula britannica . RSC Advances . 2015 , 5,
1979–1982.
[50] Ding, L. F.; Peng, L. Y.; Zhou, H. F.; Song, L. D.; Wu, X. D.;
Zhao, Q. S. Artemilavanolides A and B, two sesquiterpenoids with a
6-oxabicyclo[3.2.1]octane scaffold from Artemisia
lavandulaefolia . Tetrahedron Lett. 2020, 61 .
[51] Sun, Z.; Zhang, Y.; Peng, X.; Huang, S.; Zhou, H.; Xu, J.; Gu,
Q. Diverse Sesquiterpenoids and Polyacetylenes from Atractylodes
lancea and Their Anti-Osteoclastogenesis Activity. J. Nat. Prod.2022 , 85, 866–877.
[52] Efferth, T. Willmar Schwabe Award 2006: antiplasmodial and
antitumor activity of artemisinin-from bench to bedside. Planta
Med. 2007 , 73, 299–309.
[53] Tu, Y. Artemisinin-A Gift from Traditional Chinese Medicine to
the World (Nobel Lecture). Angew. Chem. Int. Ed. Engl.2016 , 55, 10210–10226.
[54] Wu, Q. X.; Shi, Y. P.; Jia, Z. J. Eudesmane sesquiterpenoids
from the Asteraceae family. Nat. Prod. Rep. 2006 ,
23, 699–734.
[55] Wu, Z. J.; Xu, X. K.; Shen, Y. H.; Su, J.; Tian, J. M.; Liang,
S.; Li, H. L.; Liu, R. H.; Zhang, W. D. Ainsliadimer A, A New
Sesquiterpene Lactone Dimer with an Unusual Carbon Skeleton fromAinsliaea macrocephala . Org. Lett. 2008 . 10,
2397–2400.
[56] Su, L. H.; Geng, C. A.; Li, T. Z.; Ma, Y. B.; Huang, X. Y.;
Zhang, X. M.; Chen, J. J. Artatrovirenols A and B: Two Cagelike
Sesquiterpenoids from Artemisia atrovirens . J. Org. Chem.2020 , 85, 13466–13471.
[57] Zhao, P.; Li, Z. Y.; Qin, S. Y.; Xin, B. S.; Liu, Y. Y.; Lin,
B.; Yao, G. D.; Huang, X. X.; Song, S. J. Three Unusual Sesquiterpenes
with Distinctive Ring Skeletons from Daphne penicillata Uncovered
by Molecular Networking Strategies. J. Org. Chem. 2021 ,
86, 15298–15306.
[58] Liu, Y.; Liu, F.; Qiao, M. M.; Guo, L.; Chen, M. H.; Peng, C.;
Xiong, L. Curcumanes A and B, Two Bicyclic Sesquiterpenoids with
Significant Vasorelaxant Activity from Curcuma longa . Org.
Lett. 2019 , 21, 1197–1201.
[59] Sun, W.; Wang, S.; Zhao, W.; Wu, C.; Guo, S.; Gao, H.; Tao, H.;
Lu, J.; Wang, Y.; Chen, X. Chemical constituents and biological research
on plants in the genus Curcuma . Crit. Rev. Food Sci. Nutr.2017 , 57, 1451–1523.
[60] Xu, L. L.; Chen, H. L.; Hai, P.; Gao, Y.; Xie, C. D.; Yang, X.
L.; Abe, I. (+)- and (-)-Preuisolactone A: A Pair of Caged
Norsesquiterpenoidal Enantiomers with a
Tricyclo[4.4.01,6.02,8]decane
Carbon Skeleton from the Endophytic Fungus Preussia isomera .Org. Lett. 2019 , 21, 1078–1081.
[61] Gonzalez-Menendez, V.; Martin, J.; Siles, J. A.;
Gonzalez-Tejero, M. R.; Reyes, F.; Platas, G.; Tormo, J. R.; Genilloud,
O. Biodiversity and chemotaxonomy of Preussia isolates from theIberian Peninsula . Mycol. Prog. 2017 , 16,
713–728.
[62] Khan, A. L.; Asaf, S.; Khan, A. R.; Al-Harrasi, A.; Al-Rawahi,
A.;. Lee, I. J. First draft genome sequencing of indole acetic acid
producing and plant growth promoting fungus Preussia sp. BSL10.J. Biotechnol. 2016 , 225, 44–45.
[63] Zhang, Y. L.; Zhou, X. W.; Wang, X. B.; Wu, L.; Yang, M. H.;
Luo, J.; Yin, Y.; Luo, J. G.; Kong, L. Y. Xylopiana A, a Dimeric Guaiane
with a Case-Shaped Core from Xylopia vielana : Structural
Elucidation and Biomimetic Conversion. Org. Lett. 2017 ,
19, 3013–3016.
[64] Fan, Y. Y.; Sun, Y. L.; Zhou, B.; Zhao, J. X.; Sheng, L.; Li,
J. Y.; Yue, J. M. Hedyorienoids A and B, Two Sesquiterpenoid Dimers
Featuring Different Polycyclic Skeletons from Hedyosmum
orientale . Org. Lett. 2018 , 20, 5435–5438.
[65] Su, L. H.; Li, T. Z.; Ma, Y. B.; Geng, C. A.; Huang, X. Y.;
Zhang, X.; Gao, Z.; Chen, J. J. Artematrovirenolides A–D and
Artematrolides S–Z, Sesquiterpenoid Dimers with Cytotoxicity against
Three Hepatoma Cell Lines from Artemisia atrovirens . Chin.
J. Chem. 2021 , 40, 104–114.
[66] Wu, Z. L.; Wang, Q.; Wang, J. X.; Dong, H. Y.; Xu, X. K.; Shen,
Y. H.; Li, H. L.; Zhang, W. D. Vlasoulamine A, a Neuroprotective
[3.2.2]Cyclazine Sesquiterpene Lactone Dimer from the Roots ofVladimiria souliei . Org. Lett. 2018 , 20,
7567–7570.
[67] Zheng, Z. Q.; Wei, W. J.; Zhang, J.; Li, H. Y.; Xu, K.; Xu, J.;
Tang, B.; Li, Y.; Gao, K. Heliaquanoids A–E, Five Sesquiterpenoid
Dimers from Inula helianthus-aquatica. J. Org. Chem.2019 , 84, 4473–4477.
[68] Li, J.; Chi, J.; Tang, P.; Sun, Y.; Lu, W.; Xu, W.; Wang, Y.;
Luo, J.; Kong, L.; Spirolindemers A and B, Lindenane Sesquiterpenoid
Oligomers Equipped with Oxaspiro[4.5]decane from Chloranthus
henryi . Chin. J. Chem. 2022 , 40, 603–608.
[69] Chi, J.; Xu, W.; Wei, S.; Wang, X.; Li, J.; Gao, H.; Kong, L.;
Luo, J. Chlotrichenes A and B, Two Lindenane Sesquiterpene Dimers with
Highly Fused Carbon Skeletons from Chloranthus holostegius .Org. Lett. 2019 , 21, 789–792.
[70] Zhou, B.; Liu, Q. F.; Dalal, S.; Cassera, M. B.; Yue, J. M.
Fortunoids A–C, Three Sesquiterpenoid Dimers with Different Carbon
Skeletons from Chloranthus fortunei . Org. Lett.2017 , 19, 734–737.
[71] Liu, J. W.; Liu, Y.; Yan, Y. M.; Yang, J.; Lu, X. F.; Cheng, Y.
X. Commiphoratones A and B, Two Sesquiterpene Dimers from Resina
Commiphora , Org. Lett. 2018 , 20, 2220–2223.
[72] Qin, D. P.; Pan, D. B.; Xiao, W.; Li, H. B.; Yang, B.; Yao, X.
J.; Dai, Y.; Yu, Y.; Yao, X. S. Dimeric Cadinane Sesquiterpenoid
Derivatives from Artemisia annua . Org. Lett.2018 , 20, 453–456.
[73] Zhang, F. L.; Feng, T. Diterpenes Specially Produced by Fungi:
Structures, Biological Activities, and Biosynthesis (2010–2020).J. Fungi (Basel) . 2022 , 8, 244.
[74] Zhang, X.; Yin, Y.; Zhou, Y.; Zhu, T.; Wang, M.; Gao, H.
Distinctive Cassane Diterpenoids Corroborated Biogenetic Evolutionary
Process from Caesalpinia mimosoides with Anti-renal Fibrosis
Activity. Chin. J. Chem. 2021 , 40, 617–627.
[75] Wang, Z.; Han, X.; Liu, G.; Zhang, D.; Hou, H.; Xiao, L.; de
Voogd, N. J.; Tang, X.; Li, P.; Li, G. Kalihioxepanes A−G: Seven
Kalihinene Diterpenoids from Marine Sponge Acanthella cavernosaCollected off the South China Sea. Chin. J. Chem. 2022 ,
40, 1785–1792.
[76] Qi, J.; Zhang, Y.; Liu, Q.; Liu, H.; Fan, Y.; Yue, J.;
Clerodenoids A–F: C–ring Aromatized and/or Rearranged Abietane
Diterpenoids from Clerodendrum chinense var. simplex .Chin. J. Chem. 2021 , 39, 1891–1897.
[77] Hou, X.; Chen, J.; Hou, X.; Gao, P.; Wang, J.; Song, S.; Li, L.
Genkwadane F−I, New Daphnane-type Diterpenes from the Flower Buds of
Daphne genkwa Sieb.et Zucc. Exhibit Anti-tumor Activities via Inducing
Apoptosis. Chin. J. Chem. 2020 , 38, 1600–1606.
[78] Qi, J.; Zhang, Y.; Liu, Q.; Liu, H.; Fan, Y.; Yue, J.
Clerodenoids A−F: C-ring Aromatized and/or Rearranged Abietane
Diterpenoids from Clerodendrum chinense var. simplex. Chin.
J. Chem. 2021 , 39, 1891–1897.
[79] Gonzalez, M. A. Aromatic abietane diterpenoids: their
biological activity and synthesis. Nat Prod Rep . 2015 ,
32, 684-704.
[80] Lai, J. Z.; Zhang, M. H.; Wu, Y. C.; Zhang, D. Y.; Wu, X. M.;
Hua, W. Y. ent-Abietane Lactones from Euphorbia . Mini-Rev.
Med. Chem. 2017 , 17, 380–397.
[81] Liu, M.; Wang, W. G.; Sun, H. D.; Pu, J. X. Diterpenoids from
Isodon species: an update. Nat. Prod. Rep. 2017 , 34,
1090–1140.
[82] Wang, B.; Jiang, H. Y.; Yang, J.; Li, J.; Yan, B. C.; Chen, X.;
Hu, K.; Li, X. R.; Sun, H. D.; Deng, J.; Puno, P. T. Isolation and
Bioinspired Total Synthesis of Rugosiformisin A, A Skeleton-Rearranged
Abietane-Type Diterpenoid from Isodon rugosiformis . Org.
Lett. 2022 , 24, 8104–8108.
[83] Li, L.; Liu, X.; Zhu, D.; Chen, C.; Lin, Y.; Wang, W.; Zhu, L.;
Luo, J.; Kong, L. Officinalins A and B, a pair of C23terpenoid epimers with a tetracyclic 6/7/5/5 system from Salvia
officinalis . Org. Chem. Front. 2019 , 6,3369–3373.
[84] Xia, F.; Zhang, D.; Wu, C.; Geng, H.; Xu, W.; Zhang, Y.; Yang,
X.; Qin, H.; Xu, G. Isolation, structural elucidation, and synthetic
study of salviyunnanone A, an abietane derived diterpenoid with a
7/5/6/3 ring system from Salvia yunnanensis . Org. Chem.
Front. 2018 , 5, 1262–1266.
[85] Wei, J.; Gao, Y.; Wang, D.; Zhang, X.; Fan, S.; Bao, T.; Gao,
X.; Hu, G.; Wang, A.; Jia, J. Discovery of Highly Oxidized Abietane
Diterpenoids from the Roots of Euphorbia fischeriana with
Anti‐tumor Activities. Chin. J. Chem. 2021 , 39,
2973–2982.
[86] He, J.; Xu, J.; Guo, L.; Xia, C.; Lian, W.; Tian, H.; Zhang,
J.; Shi, Y.; Zhang, W. Fischdiabietane A, an Antitumoral Diterpenoid
Dimer Featuring an Unprecedented Carbon Skeleton from Euphorbia
fischeriana . J. Org. Chem. 2021 , 86, 5894–5900.
[87] Quitt, P.; Mosettig, E.; Cambie, R.; Rutledge, P.; Briggs, L.
optical rotary dispersion studies. lviii. The complete absolute
configurations of steviol, kaurene and the diterpene alkaloids of the
garryfoline and atisine groups, J. Am. Chem. Soc. 1961 ,
83, 3720–3722.
[88] Zhao, X.; Cacherat, B.; Hu, Q.; Ma, D. Recent advances in the
synthesis of ent –kaurane diterpenoids. Nat. Prod. Rep .2022 , 39, 119–138.
[89] Sun, H.; Huang, S.; Han,
Q. Diterpenoids from Isodon species and their biological activities.Nat. Prod. Rep. 2006 , 23, 673–698.
[90] Yang, Q.; Hu, K.; Yan, B.; Liu, M.; Li, X.; Sun, H.; Puno, P.
Maoeriocalysins A–D, four novelent–kaurane diterpenoids fromIsodon eriocalyx and their structure determination utilizing
quantum chemical calculation in conjunction with quantitative
interproton distance analysis. Org. Chem. Front. 2019 ,
6, 45–53.
[91] Fan, Y.; Shi, S.; Deng, G.; Liu, H.; Xu, C.; Ding, J.; Wang,
G.; Yue, J. Crokonoids A–C, A Highly Rearranged and Dual-Bridged Spiro
Diterpenoid and Two Other Diterpenoids from Croton kongensis .Org. Lett. 2020 , 22, 929–933.
[92] Niu, C.; Li, Y.; Liu, Y.; Ma, S.; Liu, F.; Li, L.; Xu, S.;
Wang, X.; Wang, R.; Qu, J.; Yu, S. Pierisketolide A and Pierisketones B
and C, Three Diterpenes with an Unusual Carbon Skeleton from the Roots
of Pieris formosa . Org. Lett. 2017 , 19, 906–909.
[93] Li, Y.; Liu, Y.; Yu, S. Grayanoids from the Ericaceaefamily: structures, biological activities and mechanism of action.Phytochem. Rev. 2013 , 12, 305–325.
[94] Li, C.; Zhang, J.; Zhang, X.; Li, S.; Gao, J. An overview of
grayanane diterpenoids and their biological activities from theEricaceae family in the last seven years. Eur. J. Med.
Chem. 2019 , 166, 400–416.
[95] Zhou, J.; Zhan, G.; Zhang, H.; Zhang, Q.; Li, Y.; Xue, Y.; Yao,
G. Rhodomollanol A, a Highly Oxygenated Diterpenoid with a 5/7/5/5
Tetracyclic Carbon Skeleton from the Leaves of Rhododendron
molle . Org. Lett. 2017 , 19, 3935–3938.
[96] Zhou, J.; Zhan, G.; Zhang, H.; Zhang, Q.; Li, Y.; Xue, Y.; Yao,
G. Rhodomollanol A, a Highly Oxygenated Diterpenoid with a 5/7/5/5
Tetracyclic Carbon Skeleton from the Leaves of Rhododendron
molle . Org. Lett. 2017 , 19, 3935–3938.
[97] Zhou, J.; Liu, J.; Dang, T.; Zhou, H.; Zhang, H.; Yao, G.
Mollebenzylanols A and B, Highly Modified and Functionalized
Diterpenoids with a
9-Benzyl-8,10-dioxatricyclo[5.2.1.01,5]decane Core
from Rhododendron molle . Org. Lett. 2018 , 20,
2063–2066.
[98] Zhou, J.; Zuo, Z.; Liu, J.; Zhang, H.; Zheng, G.; Yao, G.
Discovery of highly functionalized 5,6-seco-grayanane diterpenoids as
potent competitive PTP1B inhibitors. Org. Chem. Front.2020 , 7, 820–828.
[99] Jin, P.; Yuan, X.; Ma, X.; Zheng, G.; Wang, R.; Sun, N.; Yao,
G.; Epoxymicranthols A–N, 5,9‐Epoxygrayanan Diterpenoids as Potent
Analgesics from Rhododendron micranthum . Chin. J. Chem.2021 , 39, 1997–2008.
[100] Huang, L.; Zheng, G.; Feng, Y.; Jin, P.; Gao, B.; Zhang, H.;
Ma, X.; Zhou, J.; Yao, G. Highly Oxygenated Dimeric Grayanane
Diterpenoids as Analgesics: TRPV1 and TRPA1 Dual Antagonists fromRhododendron molle . Chin. J. Chem. 2022 , 40,
2285–2295.
[101] Li, Y.; Zhu, Y.; Zhang, Z.; Li, L.; Liu, Y.; Qu, J.; Ma, S.;
Yu, S.; Antinociceptive grayanane-derived diterpenoids from flowers ofRhododendron molle . Acta Pharm. Sin. B . 2020 , 10,
1073–1082.
[102] Schmidt, R. The biosynthesis of tigliane and related
diterpenoids; an intriguing problem. Bot. J. Linn. Soc.1987 , 94, 221–230.
[103] Zhang, W.; Zhao, J.; Sheng, L.; Fan, Y.; Li, J.; Gao, K.; Yue,
J. Mangelonoids A and B, Two Pairs of Macrocyclic Diterpenoid
Enantiomers from Croton mangelong . Org. Lett.2018 , 20, 4040–4043.
[104] Yang, M.; Li, X.; Wang, J.; Lei, X.; Tang, W.; Li, X.; Sun,
H.; Guo, Y. Sarcomililate A, an Unusual Diterpenoid with
Tricyclo[11.3.0.02,16]hexadecane Carbon Skeleton,
and Its Potential Biogenetic Precursors from the Hainan Soft CoralSarcophyton mililatensis . J. Org. Chem . 2019 , 84,
2568–2576.
[105] Chen, F. L.; Liu, D. L.; Fu, J.; Yang, J.; Bai, L. P.; Zhang,
W.; Jiang, Z. H.; Zhu, G. Y. (±)-Atrachinenins A–C, Three Pairs of
Caged C27 Meroterpenoids from the Rhizomes of Atractylodeschinensis. Chin. J. Chem. 2021 , 40, 460–466.
[106] Wang, C.; Jin, T.; Liu, X.; Zhang, J.; Shi, X.; Wang, M.;
Huang, R.; Zhang, Y.; Liu, K.; Li, G. Sinudenoids A–E,
C(19)–Norcembranoid Diterpenes with Unusual Scaffolds from the Soft
Coral Sinularia densa. Org. Lett. 2022 , 24,
9007–9011.
[107] Zeng, Z.; Li, W.; Nay, B.; Hu, P.; Zhang, H.; Wang, H.; Li,
X.; Guo, Y. Sinunanolobatone A, an Anti-inflammatory Diterpenoid with
Bicyclo[13.1.0]pentadecane Carbon Scaffold, and Related Casbanes
from the Sanya Soft Coral Sinularia nanolobata . Org. Lett.2021 , 23, 7575–7579.
[108] Wu, M.; Liu, J.; Wang, J.; Zhang, J.; Wang, H.; Jiang, C.;
Guo, Y. Sinucrassins A–K, Casbane‐type Diterpenoids from the South
China Sea Soft Coral Sinularia crassa . Chin. J. Chem.2021 , 39, 2367–2376.
[109] Liu, J.; Wu, M.; Li, H.; Wang, H.; Tang, W.; Gu, Y.; Li, X.;
Guo, Y. Unusual polyoxygenated casbane diterpenoids from the South China
Sea soft coral Sinularia erecta . Bioorg. Chem.2021 , 114, 105028.
[110] Liu, J.; Li, H.; Wu, M. J.; Tang, W.; Wang, J. R.; Gu, Y. C.;
Wang, H.; Li, X. W.; Guo, Y. W. Sinueretone A, a Diterpenoid with
Unprecedented Tricyclo[12.1.0.05,9]pentadecane
Carbon Scaffold from the South China Sea Soft Coral Sinularia erecta.J. Org. Chem. 2021 , 86, 10975–10981.
[111] Maslovskaya, L.; Savchenko, A.; Krenske, E.; Chow, S.; Gordon,
V.; Reddell, P.; Pierce, C.; Parsons, P.; Boyle, G.; Williams, C.
EBC–342: A Novel Tetrahydrofuran Moiety Containing Casbane from theAustralian Rainforest . Eur. J. Org. Chem. 2020 ,
2020, 1042–1045.
[112] Maslovskaya, L.; Savchenko, A.; Pierce, C.; Boyle, G.; Gordon,
V.; Reddell, P.; Parsons, P.; Williams, C. New Casbanes and the Firsttrans -Cyclopropane seco -Casbane from the Australian
Rainforest Plant Croton insularis . Chemistry.2019 , 25, 1525–1534.
[113] Ye, K.; Ai, H. Pimarane Diterpenes from Fungi.Pharmaceuticals . 2022 , 15, 1291.
[114] Reveglia, P.; Cimmino, A.; Masi, M.; Nocera, P.; Berova, N.;
Ellestad, G.; Evidente, A. Pimarane diterpenes: Natural source,
stereochemical configuration, and biological activity. Chirality .2018 , 30, 1115–1134.
[115] Zhou, J.; Wu, Z.; Guo, B.; Sun, M.; Onakpa, M.; Yao, G.; Zhao,
M.; Che, C. Modified diterpenoids from the tuber of Icacina
oliviformis as protein tyrosine phosphatase 1B inhibitors. Org.
Chem. Front. 2020 , 7, 355–367.
[116] Pu, D.; Du, B.; Chen,
W.; Gao, J.; Hu, K.; Shi, N.; Li, Y.; Zhang, X.; Zhang, R.; Li, X.;
Zhang, H.; Wang, F.; Xiao, W. Premnafulvol A: A Diterpenoid with a
6/5/7/3–Fused Tetracyclic Core and Its Biosynthetically Related
Analogues from Premna fulva . Org. Lett. 2018 , 20,
6314–6317.
[117] Gao, X.; Zheng, Y.; Zhang, X.; Hu, G.; Jia, J.; Wang, A.
ent‐Pimaran Diterpenoid Dimers from Sigesbeckia glabrescens with
Potent Anti‐inflammatory Activities. Chin. J. Chem.2021 , 39, 3315–3321.
[118] Hu, Z.; Sun, W.; Li, F.; Guan, J.; Lu, Y.; Liu, J.; Tang, Y.;
Du, G.; Xue, Y.; Luo, Z.; Wang, J.; Zhu, H.; Zhang, Y.
Fusicoccane-Derived Diterpenoids from Alternaria brassicicola :
Investigation of the Structure-Stability Relationship and Discovery of
an IKKbeta Inhibitor. Org. Lett. 2018, 20, 5198–5202.
[119] Li, F.; Sun, W.; Guan, J.; Lu, Y.; Zhang, S.; Lin, S.; Liu,
J.; Gao, W.; Wang, J.; Hu, Z.; Zhang, Y. Alterbrassicicene A, a Highly
Transformed Fusicoccane-Derived Diterpenoid with Potent
PPAR-γ Agonistic Activity from Alternaria brassicicola .Org. Lett. 2018 , 20, 7982–7986.
[120] Li, F.; Lin, S.; Zhang, S.; Hao, X.; Li, X.; Yang, B.; Liu,
J.; Wang, J.; Hu, Z.; Zhang, Y. Alterbrassinoids A–D:
Fusicoccane-Derived Diterpenoid Dimers Featuring Different Carbon
Skeletons from Alternaria brassicicola . Org. Lett.2019 , 21, 8353–8357.
[121] Zhou, P.;. Zhang, X; Dai, C.; Yan, S.; Wei, M.; Feng, W.; Li,
Q.; Liu, J.; Zhu, H.; Hu, Z.; Chen, C.; Zhang, Y. Talaromynoids A–E:
Five New Fusicoccane Diterpenoids from the Endop hytic FungusTalaromyces sp. DC-26. J. Org. Chem. 2022 , 87,
7333–7341.
[122] Fattahian, M.; Ghanadian, M.; Ali, Z.; Khan, I. Jatrophane and
rearranged jatrophane–type diterpenes: biogenesis, structure,
isolation, biological activity and SARs (1984–2019). Phytochem
Rev. 2020 , 19, 265–336.
[123] Xiang, Z.; Tong, Q.; Su, J.; Hu, Z.; Zhao, N.; Xia, R.; Wu,
J.; Chen, C.; Chen, J.; Wan, L. Diterpenoids with Rearranged
9(10→11)-abeo -10,12-Cyclojatrophane Skeleton and the First
(15S)-Jatrophane from Euphorbia helioscopia : Structural
Elucidation, Biomimetic Conversion, and Their Immunosuppressive Effects.Org. Lett. 2022 , 24, 697–701.
[124] Li, W.; Tang, Y.; Chen, S.; Tang, G.; Gan, L.; Li, C.; Rao,
Y.; Huang, Z. ; Yin, S. Euphorhelipanes A and B, Triglyceride-LoweringEuphorbia Diterpenoids with a Bicyclo[4.3.0]nonane Core fromEuphorbia helioscopia . J. Nat. Prod. 2019 , 82,
412–416.
[125] Li, W.; Tang, Y.; Sang, J.; Fan, R.; Tang, G.; Yin, S.
Jatrofolianes A and B: Two Highly Modified Lathyrane Diterpenoids fromJatropha gossypiifolia . Org. Lett. 2020 , 22,
106–109.
[126] Wu, S.; Fan, R.; Yuan, F.; Li, W.; Huang, D.; Li, S.; Tang,
G.; Huang, Z.; Yin, S. Euphylonoids A and B, Two Highly Modified
Jatrophane Diterpenoids with Potent Lipid-Lowering Activity fromEuphorbia hylonoma . Org. Lett. 2022 , 24,
8854–8858
[127] Máximoa, P.; Lourenço, A. Marine Sesterterpenes: An Overview,Curr. Org. Chem. 2018 , 22, 2381–2393.
[128] Guo, K.; Liu, Y.; Li, S. The untapped potential of plant
sesterterpenoids: chemistry, biological activities and biosynthesis.Nat. Prod. Rep. 2021 , 38, 2293–2314.
[129] Guo, K.; Luo, S.; Guo, D.; Li, D.; Hua, J.; Liu, Y.; Liu, Y.;
Li, S. A monocarbocyclic sesterterpenoid biosynthetic precursor of
leucosceptroids from Leucosceptrum canum and its metabolic
isomerization by a specialist insect. Org. Chem. Front.2022 , 9, 2209–2214.
[130] Jiao, W.; Hong, L.;
Sun, J.; Piao, S.; Chen, G.; Deng, H.; Wang, S.; Yang, F.; Lin, H.
(±)-Hippolide J, a Pair of Unusual Antifungal Enantiomeric
Sesterterpenoids from the Marine Sponge Hippospongia lachne .Eur. J. Org. Chem. 2017 , 2017, 3421–3426.
[131] Chen, Z.; Chen, X.; Tang, Y.; Zhou, Y.; Deng, H.; He, J.; Liu,
Y.; Zhao, Z.; Cui, H. Linderasesterterpenoids A and B: Two
7-Cyclohexyldecahydroazulene Carbon Skeleton Sesterterpenoids Isolated
from the Root of Lindera glauca . Org. Lett. 2022 ,
24, 3717–3720.
[132] Guo, K.; Liu, X.; Zhou, T.; Liu, Y.; Liu, Y.; Shi, Q.; Li, X.;
Li, S. Gentianelloids A and B: Immunosuppressive
10,11-seco -Gentianellane Sesterterpenoids from the Traditional
Uighur Medicine Gentianella turkestanorum . J. Org. Chem.2020 , 85, 5511–5515.
[133] Teng, L.; Mu, R.; Liu, Y.; Xiao, C.; Li, D.; Gao, J.; Guo, K.;
Li, X.; Liu, Y.; Zeng, F.; Li, S. Immunosuppressive and Adipogenesis
Inhibitory Sesterterpenoids with a Macrocyclic Ether System fromEurysolen gracilis , Org. Lett. 2021 , 23,
2232–2237.
[134] Wang, J.; Yu, J.; Shu, Y.; Shi, Y.; Luo, P.; Cai, L.; Ding, Z.
Peniroquesines A-C: Sesterterpenoids Possessing a 5-6-5-6-5-Fused
Pentacyclic Ring System from Penicillium roqueforti YJ-14.Org. Lett. 2018 , 20, 5853–5856.
[135] Li, Q.; Chen, C.; Wei, M.; Dai, C.; Cheng, L.; Tao, J.; Li,
X.; Wang, J.; Sun, W.; Zhu, H.; Zhang, Y. Niduterpenoids A and B: Two
Sesterterpenoids with a Highly Congested Hexacyclic 5/5/5/5/3/5 Ring
System from the Fungus Aspergillus nidulans . Org. Lett.2019 , 21, 2290–2293.
[136] Hill, R. A.; Connolly, J. D. Triterpenoids. Nat. Prod.
Rep. 2017 , 34, 90–122.
[137] Hill, R. A.; Connolly, J. D. Triterpenoids. Nat. Prod.
Rep. 2018 , 35, 1294–1329.
[138] Hill, R. A.; Connolly, J. D. Triterpenoids. Nat. Prod.
Rep. 2020 , 37, 962–998.
[139] Jiang, W.; Fei, Y.; Du, X.; Mu, Z.; Li, B.; Zhang, S.; Zhong,
G. Saxifraganoids A and B, two novel cucurbitane triterpenoid glycosides
from Saxifraga umbellulata var. pectinata. Tetrahedron
Lett. 2017 , 58, 3541–3544.
[140] Zhang, Y.; Zhao, L.; Huang, S. W.; Wang, W.; Song, S. J.
Triterpene saponins with neuroprotective effects from the leaves ofDiospyros kaki Thunb . Fitoterapia . 2018 , 129,
138–144.
[141] Chen, X. Q.; Chen, L. X.; Zhao, J.; Tang, Y. P.; Li, S. P.
Nortriterpenoids from the Fruiting Bodies of the Mushroom Ganoderma
resinaceum. Molecules . 2017 , 22, 1073.
[142] Zhao, K.; Sun, S.; Wang, H.; Wang, L.; Qin, G.; Fan, J.; Guo,
M.; Wang, W. alpha-Glucosidase inhibitory triterpenoids fromEuonymus fortunei . Bioorg. Chem. 2021 , 111,
104980.
[143] Luo, S. Y.; Pu, R.; Tang, Y. Q.; Fan, R. Z.; Yin, S.; Tang, G.
H. Euphane- and 19(10→9)abeo-euphane-type triterpenoids from Jatropha
gossypiifolia. Fitoterapia . 2020 , 143, 104582.
[144] Song, M.; Chan, G.; Lin, L.; Li, D.; Zhang, K.; Zhang, X.; Ye,
W.; Li, N.; Zhang, Q. Triterpenoids from the fruits of Melia
azedarach L. and their cytotoxic activities. Phytochemistry .2022 , 201, 113280.
[145] Novakovic, M.; Nikodinovic-Runic, J.; Veselinovic, J.;
Ilic-Tomic, T.; Vidakovic, V.; Tesevic, V.; Milosavljevic, S. Bioactive
Pentacyclic Triterpene Ester Derivatives from Alnus viridis ssp.viridis Bark. J. Nat. Prod. 2017 , 80, 1255–1263.
[146] Li, Z.; Qi, F.; Zhi,
D.; Hu, Q.; Liu, Y.; Zhang, Z.; Fei, D. A novel spirocyclic triterpenoid
and a new taraxerane triterpenoid from Teucrium viscidum .Org. Chem. Front. 2017 , 4, 42–46.
[147] Han, Q.; Qian, Y.; Wang, X.; Zhang, Q.; Cui, J.; Tu, P.;
Liang, H. Cytotoxic oleanane triterpenoid saponins from Albizia
julibrissin . Fitoterapia . 2017 , 121, 183–193.
[148] Sakai, Y.; Shinozaki, J.; Takano, A.; Masuda, K.; Nakane, T.
Three novel 14-epiarborane triterpenoids from Imperata cylindrica Beauv.
var. major. Phytochem. Lett. 2018 , 26, 74–77.
[149] Ur Rehman, N.; Khan, A.; Al-Harrasi, A.; Hussain, H.; Wadood,
A.; Riaz, M. ; Al-Abri, Z. New alpha-Glucosidase inhibitors from the
resins of Boswellia species with structure-glucosidase activity
and molecular docking studies. Bioorg. Chem. 2018 , 79,
27–33.
[150] Dinku, W.; Isaksson, J.; Rylandsholm, F.; Bouř, P.; Brichtová,
E.; Choi, S.; Lee, S.; Jung, Y.; No, Z.; Svendsen, J.; Aasen, A.;
Dekebo, A. Anti–proliferative activity of a novel tricyclic
triterpenoid acid from Commiphora africana resin against four
human cancer cell lines. Appl. Biol. Chem. 2020 , 63, 16.
[151] Ni, G.; Li, J.; Yu, D. Belamchinenin A, an unprecedented
tricyclic–fused triterpenoid with cytotoxicity from Belamcanda
chinensis . Org. Biomol. Chem. 2018 , 16, 3754–3759.
[152] Liu, X.; Li, C.; Chen, F.; Ma, J.; Wang, S.; Yuan, Y.; Li, L.;
Zhang, D. Nototronesides A−C, Three Triterpene Saponins with a 6/6/9
Fused Tricyclic Tetranordammarane Carbon Skeleton from the Leaves ofPanax notoginseng . Org. Lett. 2018 , 20,
4549–4553.
[153] Sidjui, L.; Eyong, K.; Hull, K.; Folefoc, G.; Leddet, V.;
Herbette, G.; Ollivier, E.; Taube, J.; Klausmeyer, K.; Romo, D.
Bioactive Seco-Lanostane-Type Triterpenoids from the Roots ofLeplaea mayombensis . J. Nat. Prod. 2017 , 80,
2644–2651.
[154] Meng, L.; Wang, Q.; Tang, T.; Xiao, S.; Zhang, L.; Zhou, D.;
Yu, F. Design, Synthesis and Biological Evaluation of Pentacyclic
Triterpene Dimers as HCV Entry Inhibitors. Chin. J. Chem.2017 , 35, 1322–1328.
[155] Peng, X.; Huang, Y.; Lu, S.; Yang, J.; Qiu, M. Ganolearic Acid
A, a Hexanorlanostane Triterpenoid with a 3/5/6/5-Fused Tetracyclic
Skeleton from Ganoderma cochlear . J. Org. Chem.2018 , 83, 13178–13183.
[156] Wang, C.; Huo, X.; Luan, Z.; Cao, F.; Tian, X.; Zhao, X.; Sun,
C.; Feng, L.; Ning, J.; Zhang, B.; Ma, X. Alismanin A, a Triterpenoid
with a C34 Skeleton from Alisma orientale as a
Natural Agonist of Human Pregnane X Receptor. Org. Lett.2017 , 19, 5645–5648.
[157] Hua, J.; Liu, Y. C.; Luo, S. H.; Liu, Y.; Xiao, C. J.; Li, X.
N.; Li, S. H. Immunostimulatory 6/6/6/6 Tetracyclic Triterpenoid
Saponins with the Methyl-30 Incorporated Cyclization from the Root ofColquhounia elegans . Org. Lett. 2021 , 23,
7462–7466.
[158] Su, H.; Liang, H.; Hu, G.; Zhou, L.; Peng, X.; Bi, H.; Qiu, M.
Applanoids A−E as the First Examples of C‐15/C‐20 Michael Adducts in
Ganoderma Triterpenoids and Their PXR Agonistic Activity. Chin. J.
Chem. 2022 , 40, 2633–2641.
[159] Tang, Y.; Zhao, Z. Z.; Hu, K.; Feng, T.; Li, Z. H.; Chen, H.
P.; Liu, J. K. Irpexolidal Represents a Class of Triterpenoid from the
Fruiting Bodies of the Medicinal Fungus Irpex lacteus . J.
Org. Chem. 2019 , 84, 1845–1852.
[160] Song, Y.; Miao, J.; Qin, F.; Yan, Y.; Yang, J.; Qin, D.; Hou,
F.; Zhou, L.; Cheng, Y. Belamchinanes A−D from Belamcanda
chinensis : Triterpenoids with an Unprecedented Carbon Skeleton and
Their Activity against Age-Related Renal Fibrosis. Org. Lett.2018 , 20, 5506–5509.
[161] Hu, B. Y.; Zhao, Y. L.; Xiong, D. S.; He, Y. J.; Zhou, Z. S.;
Zhu, P. F.; Wang, Z. J.; Wang, Y. L.; Zhao, L. X.; Luo, X. D. Potent
Antihyperuricemic Triterpenoids Based on Two Unprecedented Scaffolds
from the Leaves of Alstonia scholaris . Org. Lett.2021 , 23, 4158–4162.
[162] Song, J.; Zhou, M.; Zhou, J.; Liang, J. J.; Peng, X. G.; Liu,
J.; Ruan, H. L. Schincalactones A and B, Two 5/5/6/11/3 Fused
Schinortriterpenoids with a 13-Membered Carbon Ring System fromSchisandra incarnata . Org. Lett. 2018 , 20,
2499–2502.
[163] Shi, Y. M.; Hu, K.; Pescitelli, G.; Liu, M.; Li, X. N.; Du,
X.; Xiao, W. L.; Sun, H. D.; Puno, P. T. Schinortriterpenoids with
Identical Configuration but Distinct ECD Spectra Generated by
Nondegenerate Exciton Coupling. Org. Lett. 2018 , 20,
1500–1504.
[164] Huang, S.; Li, R.; Liu, J.; Lu, Y.; Chang, Y.; Lei, C.; Xiao,
W.; Yang, L.; Zheng, Q.; Sun, H. Isolation and Characterization of
Biogenetically Related Highly Oxygenated Nortriterpenoids fromSchisandra chinensis . Org. Lett. 2007 , 9,
2079–2082.
[165] Gao, X.; Wang, X.; Zhou, J.; Zhang, Y.; Liu, H.; Zhou, B.;
Yue, J. Rearranged Dichapetalin‐Type Triterpenoids with Cytotoxic
Activity from Dichapetalum gelonioides . Chin. J. Chem.2022 , 40, 2531–2538.
[166] Fan, Y.; Gan, L.; Liu, H.; Li, H.; Xu, C.; Zuo, J.; Ding, J.;
Yue, J. Phainanolide A, Highly Modified and Oxygenated Triterpenoid fromPhyllanthus hainanensis . Org. Lett. 2017 , 19,
4580–4583.
[167] Grigalunas, M.; Brakmann, S.; Waldmann, H. Chemical Evolution
of Natural Product Structure. J. Am. Chem. Soc. 2022 ,
144, 3314–3329.
[168] Hu, Z.; Ye, Y.; Zhang, Y. Large-scale culture as a
complementary and practical method for discovering natural products with
novel skeletons. Nat. Prod. Rep . 2021 , 38, 1775–1793.