DATA AVAILABILITY STATEMENT
All data is available in the main text and the supplementary materials.
References
ARWENYO, B., VARCO, J. J., DYGERT, A. & MLSNA, T. 2022. Phosphorus
availability from magnesium-modified P-enriched Douglas fir biochar as a
controlled release fertilizer. Soil Use and Management,38, 691-702.http://dx.doi.org/10.1111/sum.12751
BAI, Y., LI, F., YANG, G., SHI, S., DONG, F., LIU, M., NIE, X. & HAI,
J. 2017. Meta-analysis of experimental warming on soil invertase and
urease activities. Acta Agriculturae Scandinavica, Section B —
Soil & Plant Science, 68, 104-109.http://dx.doi.org/10.1080/09064710.2017.1375140
BENGTSON, P., BARKER, J. & GRAYSTON, S. J. 2012. Evidence of a strong
coupling between root exudation, C and N availability, and stimulated
SOM decomposition caused by rhizosphere priming effects. Ecol
Evol, 2, 1843-52.http://dx.doi.org/10.1002/ece3.311
BOJKO, O. & KABALA, C. 2016. Transformation of physicochemical soil
properties along a mountain slope due to land management and climate
changes - A case study from the Karkonosze Mountains, SW Poland.Catena, 140, 43-54.http://dx.doi.org/10.1016/j.catena.2016.01.015
CALVO, O. C., FRANZARING, J., SCHMID, I., MULLER, M., BROHON, N. &
FANGMEIER, A. 2017. Atmospheric CO(2) enrichment and drought stress
modify root exudation of barley. Glob Chang Biol, 23,1292-1304.http://dx.doi.org/10.1111/gcb.13503
CARVALHAIS, L. C., DENNIS, P. G., FEDOSEYENKO, D., HAJIREZAEI, M. R.,
BORRISS, R. & VON WIRéN, N. 2010. Root exudation of sugars, amino
acids, and organic acids by maize as affected by nitrogen, phosphorus,
potassium, and iron deficiency. Journal of Plant Nutrition and
Soil Science, 174, 3-11.http://dx.doi.org/10.1002/jpln.201000085
CHAI, Y. N. & SCHACHTMAN, D. P. 2022. Root exudates impact plant
performance under abiotic stress. Trends Plant Sci, 27,80-91.http://dx.doi.org/10.1016/j.tplants.2021.08.003
COSKUN, D., BRITTO, D. T., SHI, W. & KRONZUCKER, H. J. 2017. How Plant
Root Exudates Shape the Nitrogen Cycle. Trends Plant Sci,22, 661-673.http://dx.doi.org/10.1016/j.tplants.2017.05.004
CUSACK, D. F., SILVER, W. L., TORN, M. S., BURTON, S. D. & FIRESTONE,
M. K. 2011. Changes in microbial community characteristics and soil
organic matter with nitrogen additions in two tropical forests.Ecology, 92, 621-32.http://dx.doi.org/10.1890/10-0459.1
DONG, H. Y., SUN, H. Y., FAN, S. X., JIANG, L. L. & MA, D. R. 2021.
Rhizobacterial communities, enzyme activity, and soil properties affect
rice seedling’s nitrogen use. Agronomy Journal, 113,633-644.http://dx.doi.org/10.1002/agj2.20538
FISHER, K. A., YARWOOD, S. A. & JAMES, B. R. 2017. Soil urease activity
and bacterial ureC gene copy numbers: Effect of pH. Geoderma,285, 1-8.http://dx.doi.org/10.1016/j.geoderma.2016.09.012
GLAESNER, N., BAELUM, J., JACOBSEN, C. S., RITZ, C., RUBAEK, G. H.,
KJAERGAARD, C. & MAGID, J. 2016. Bacteria as transporters of phosphorus
through soil. European Journal of Soil Science, 67,99-108.http://dx.doi.org/10.1111/ejss.12314
GUAN HUI-LIN, YANG JIAN-ZHONG, CHEN YI-JUN, CUI XIU-MING, WANG YONG &
ZHANG YUN-FENG 2010. Change of Rhizospheric Microbe Colony in Cultivated
Soil and Its Correlation to Root Rot Disease in Panax Notoginseng.soils, 42, 378-384.http://dx.doi.org/10.13758/j.cnki.tr.2010.03.019
HAOLI, L., JIALIN, L. & XUEFEI, Z. 2014. Orcinol Hydrochloric Acid
Method for Determination of Pentosans in Oat β-glucan. Guangdong
Chemical Industry, 41, 179-180.http://dx.doi.org/10.3969/j.issn.1007-1865.2014.17.096
HOSSEINI, S. S., LAKZIAN, A. & RAZAVI, B. S. 2022. Reduction in root
active zones under drought stress controls spatial distribution and
catalytic efficiency of enzyme activities in rhizosphere of wheat.Rhizosphere, 23.http://dx.doi.org/ARTN 100561
10.1016/j.rhisph.2022.100561
JIA, X. Y., ZHONG, Y. Q. W., LIU, J., ZHU, G. Y., SHANGGUAN, Z. P. &
YAN, W. M. 2020. Effects of nitrogen enrichment on soil microbial
characteristics: From biomass to enzyme activities. Geoderma,366. http://dx.doi.org/ARTN 114256
10.1016/j.geoderma.2020.114256
JIAN-GUO, L. & WEI-GUO, L. 2018. Advances in Microbial-mediated
Nitrogen Cycling. Acta Agrestia Sinica, 26, 277-283.http://dx.doi.org/10.11733/j.issn.1007-0435.2018.02.002
KE, L., XIAOHONG, Z., FENGJIAO, L., DONGNAN, H., XIAOMIN, G. & SUQIN,
Y. 2020. Response of growth and nitrogen balance of Camellia oleifera
seedlings under different nitrogen concentrations. South China
Forestry Science, 48, 1-6+48.http://dx.doi.org/10.16259/j.cnki.36-1342/s.2020.05.001
LIANG, G. P., HOUSSOU, A. A., WU, H. J., WU, X. P., CAI, D. X., GAO, L.
L., LI, J., WANG, B. S. & LI, S. P. 2016. [Soil nitrogen content and
enzyme activities in rhizosphere and non-rhizosphere of summer maize
under different nitrogen application rates.]. Ying Yong Sheng
Tai Xue Bao, 27, 1917-1924.http://dx.doi.org/10.13287/j.1001-9332.201606.031
LIN, Z., YUXI, L., YIN, W., YUANYI, W., XINYUE, Z., ANJI, C., WENFENG,
H. & QIANG, G. 2021. Effects of Nitrogen Application on Maize Nitrogen
Uptake and Soil Biological and Chemical Properties Under Drought
Stresses at Seedling Stage. Journal of Soil and Water
Conservation, 35, 267-274.http://dx.doi.org/10.13870/j.cnki.stbcxb.2021.04.037
LIU, H. Y., WANG, X. D., WANG, D. H., ZOU, Z. R. & LIANG, Z. S. 2011.
Effect of drought stress on growth and accumulation of active
constituents in Salvia miltiorrhiza Bunge. Industrial Crops and
Products, 33, 84-88.http://dx.doi.org/10.1016/j.indcrop.2010.09.006
LU, T., ZHANG, Z., LI, Y., ZHANG, Q., CUI, H., SUN, L., PEIJNENBURG, W.,
PENUELAS, J., ZHU, L., ZHU, Y. G., CHEN, J. & QIAN, H. 2021. Does
biological rhythm transmit from plants to rhizosphere microbes?Environ Microbiol, 23, 6895-6906.http://dx.doi.org/10.1111/1462-2920.15820
MALEK, S., WAZNY, R., BLONSKA, E., JASIK, M. & LASOTA, J. 2021. Soil
fungal diversity and biological activity as indicators of fertilization
strategies in a forest ecosystem after spruce disintegration in the
Karpaty Mountains. Sci Total Environ, 751, 142335.http://dx.doi.org/10.1016/j.scitotenv.2020.142335
MENG, H., SICONG, L., YIMIN, C., XIAOGUANG, J. & YUEYU, S. 2021.
Effects of irrigation and fertilizers management on nitrate reductase
activities in Mollisols under facility eggplant field. Soils and
Crops, 10, 187-193.http://dx.doi.org/10.11689/j.issn.2095-2961.2021.02.007
MITTLER, R., ZANDALINAS, S. I., FICHMAN, Y. & VAN BREUSEGEM, F. 2022.
Reactive oxygen species signalling in plant stress responses. Nat
Rev Mol Cell Biol, 23, 663-679.http://dx.doi.org/10.1038/s41580-022-00499-2
MORCILLO, R. J. L. & MANZANERA, M. 2021. The Effects of
Plant-Associated Bacterial Exopolysaccharides on Plant Abiotic Stress
Tolerance. Metabolites, 11, 337.http://dx.doi.org/ARTN 337
10.3390/metabo11060337
PANCHAL, P., PREECE, C., PENUELAS, J. & GIRI, J. 2022. Soil carbon
sequestration by root exudates. Trends Plant Sci, 27,749-757.http://dx.doi.org/10.1016/j.tplants.2022.04.009
PANSU, M. & GAUTHEYROU, J. 2006. Handbook of soil analysis volume 449
|| exchange complex.
10.1007/978-3-540-31211-6, 629-643.http://dx.doi.org/10.1007/978-3-540-31211-6_19
PRAMANIK, P. & PHUKAN, M. 2020. Potential of tea plants in carbon
sequestration in North-East India. Environ Monit Assess,192, 211.http://dx.doi.org/10.1007/s10661-020-8164-y
QI BING-LIN, CAO CUI-LING, WANG FEI, LEI ZHONG-PING, ZHAO QIAN-RU & LI
JUN 2010. Influence of low phosphorus on nitrate reductive activity and
NO3-N content in cowpea seedling. Agricultural Research in the
Arid Areas, 28, 147-151.http://dx.doi.org/CNKI:SUN:GHDQ.0.2010-01-029
QIANG, L., YUN, R., YONG, Z., JING, L. & JICHAO, Y. 2021. Differences
in Nitrogen Metabolism and Dry Matter Production between Maize Cultivars
and Different Nitrogen Efficiencies under Low Nitroger Stress.Acta Agriculturae Boreali-occidentalis Sinica, 30,672-680.http://dx.doi.org/10.7606/ji.ssn.1004-1389.2021.05.006
SONG, F. B., HAN, X. Y., ZHU, X. C. & HERBERT, S. J. 2012. Response to
water stress of soil enzymes and root exudates from drought and
non-drought tolerant corn hybrids at different growth stages.Canadian Journal of Soil Science, 92, 501-507.http://dx.doi.org/10.4141/Cjss2010-057
STASZEL, K., LASOTA, J. & BLONSKA, E. 2022. Effect of drought on root
exudates from Quercus petraea and enzymatic activity of soil. Sci
Rep, 12, 7635.http://dx.doi.org/10.1038/s41598-022-11754-z
TORRES-RODRIGUEZ, J. V., SALAZAR-VIDAL, M. N., CHAVEZ MONTES, R. A.,
MASSANGE-SANCHEZ, J. A., GILLMOR, C. S. & SAWERS, R. J. H. 2021. Low
nitrogen availability inhibits the phosphorus starvation response in
maize (Zea mays ssp. mays L.). BMC Plant Biol, 21, 259.http://dx.doi.org/10.1186/s12870-021-02997-5
TWINING, C. W., SHIPLEY, J. R. & MATTHEWS, B. 2022. Climate change
creates nutritional phenological mismatches. Trends Ecol Evol,37, 736-739.http://dx.doi.org/10.1016/j.tree.2022.06.009
ULRICH, D. E. M., CLENDINEN, C. S., ALONGI, F., MUELLER, R. C., CHU, R.
K., TOYODA, J., GALLEGOS-GRAVES, V., GOEMANN, H. M., PEYTON, B.,
SEVANTO, S. & DUNBAR, J. 2022. Root exudate composition reflects
drought severity gradient in blue grama (Bouteloua gracilis). Sci
Rep, 12, 12581.http://dx.doi.org/10.1038/s41598-022-16408-8
WANG, N. Q., KONG, C. H., WANG, P. & MEINERS, S. J. 2021. Root exudate
signals in plant-plant interactions. Plant Cell Environ,44, 1044-1058.http://dx.doi.org/10.1111/pce.13892
WEI-JIE, Z. 1999. Techniques for biochemical studies of
glycocalyxes , Techniques for biochemical studies of glycocalyxes.
WIDDIG, M., HEINTZ-BUSCHART, A., SCHLEUSS, P.-M., GUHR, A., BORER, E.
T., SEABLOOM, E. W. & SPOHN, M. 2020. Effects of nitrogen and
phosphorus addition on microbial community composition and element
cycling in a grassland soil. Soil Biology and Biochemistry,151, 108041.http://dx.doi.org/10.1016/j.soilbio.2020.108041
WOHLGEMUTH, R., LIESE, A. & STREIT, W. 2017. Biocatalytic
Phosphorylations of Metabolites: Past, Present, and Future. Trends
Biotechnol, 35, 452-465.http://dx.doi.org/10.1016/j.tibtech.2017.01.005
XIA, Z., HE, Y., YU, L., LV, R., KORPELAINEN, H. & LI, C. 2020.
Sex-specific strategies of phosphorus (P) acquisition in Populus
cathayana as affected by soil P availability and distribution. New
Phytol, 225, 782-792.http://dx.doi.org/10.1111/nph.16170
XIHUAN, L., SIYU, G., JINYU, N., SHUAIQIANG, Y., ZIXUAN, W., JUN, W. &
QIYUAN, L. 2020. Response of Key Enzymes Activity of Nitrogen Metabolism
to Low Nitrogen Stress in Different Genotypes Tobacco. Molecular
Plant Breeding, 18, 7554-7561.http://dx.doi.org/10.13271/j.mpb.018.007554
XU, G., FAN, X. & MILLER, A. J. 2012. Plant nitrogen assimilation and
use efficiency. Annu Rev Plant Biol, 63, 153-82.http://dx.doi.org/10.1146/annurev-arplant-042811-105532
YADAV, S., KANWAR, R. S., PATIL, J. A. & TOMAR, D. 2020. Effects of
Heterodera avenae on the absorption and translocation of N, P, K, and Zn
from the soil in wheat. Journal of Plant Nutrition, 43,2549-2556.http://dx.doi.org/10.1080/01904167.2020.1783296
YUAN, J. S., HIMANEN, S. J., HOLOPAINEN, J. K., CHEN, F. & STEWART, C.
N., JR. 2009. Smelling global climate change: mitigation of function for
plant volatile organic compounds. Trends Ecol Evol, 24,323-31.http://dx.doi.org/10.1016/j.tree.2009.01.012
ZANDALINAS, S. I., SENGUPTA, S., FRITSCHI, F. B., AZAD, R. K.,
NECHUSHTAI, R. & MITTLER, R. 2021. The impact of multifactorial stress
combination on plant growth and survival. New Phytol,230, 1034-1048.http://dx.doi.org/10.1111/nph.17232
ZHAO, D., REDDY, K. R., KAKANI, V. G. & REDDY, V. R. 2005. Nitrogen
deficiency effects on plant growth, leaf photosynthesis, and
hyperspectral reflectance properties of sorghum. European Journal
of Agronomy, 22, 391-403.http://dx.doi.org/10.1016/j.eja.2004.06.005
ZHU, S., VIVANCO, J. M. & MANTER, D. K. 2016. Nitrogen fertilizer rate
affects root exudation, the rhizosphere microbiome and
nitrogen-use-efficiency of maize. Applied Soil Ecology,107, 324-333.http://dx.doi.org/10.1016/j.apsoil.2016.07.009