DATA AVAILABILITY STATEMENT
All data is available in the main text and the supplementary materials.
References
ARWENYO, B., VARCO, J. J., DYGERT, A. & MLSNA, T. 2022. Phosphorus availability from magnesium-modified P-enriched Douglas fir biochar as a controlled release fertilizer. Soil Use and Management,38, 691-702.http://dx.doi.org/10.1111/sum.12751
BAI, Y., LI, F., YANG, G., SHI, S., DONG, F., LIU, M., NIE, X. & HAI, J. 2017. Meta-analysis of experimental warming on soil invertase and urease activities. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 68, 104-109.http://dx.doi.org/10.1080/09064710.2017.1375140
BENGTSON, P., BARKER, J. & GRAYSTON, S. J. 2012. Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecol Evol, 2, 1843-52.http://dx.doi.org/10.1002/ece3.311
BOJKO, O. & KABALA, C. 2016. Transformation of physicochemical soil properties along a mountain slope due to land management and climate changes - A case study from the Karkonosze Mountains, SW Poland.Catena, 140, 43-54.http://dx.doi.org/10.1016/j.catena.2016.01.015
CALVO, O. C., FRANZARING, J., SCHMID, I., MULLER, M., BROHON, N. & FANGMEIER, A. 2017. Atmospheric CO(2) enrichment and drought stress modify root exudation of barley. Glob Chang Biol, 23,1292-1304.http://dx.doi.org/10.1111/gcb.13503
CARVALHAIS, L. C., DENNIS, P. G., FEDOSEYENKO, D., HAJIREZAEI, M. R., BORRISS, R. & VON WIRéN, N. 2010. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. Journal of Plant Nutrition and Soil Science, 174, 3-11.http://dx.doi.org/10.1002/jpln.201000085
CHAI, Y. N. & SCHACHTMAN, D. P. 2022. Root exudates impact plant performance under abiotic stress. Trends Plant Sci, 27,80-91.http://dx.doi.org/10.1016/j.tplants.2021.08.003
COSKUN, D., BRITTO, D. T., SHI, W. & KRONZUCKER, H. J. 2017. How Plant Root Exudates Shape the Nitrogen Cycle. Trends Plant Sci,22, 661-673.http://dx.doi.org/10.1016/j.tplants.2017.05.004
CUSACK, D. F., SILVER, W. L., TORN, M. S., BURTON, S. D. & FIRESTONE, M. K. 2011. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.Ecology, 92, 621-32.http://dx.doi.org/10.1890/10-0459.1
DONG, H. Y., SUN, H. Y., FAN, S. X., JIANG, L. L. & MA, D. R. 2021. Rhizobacterial communities, enzyme activity, and soil properties affect rice seedling’s nitrogen use. Agronomy Journal, 113,633-644.http://dx.doi.org/10.1002/agj2.20538
FISHER, K. A., YARWOOD, S. A. & JAMES, B. R. 2017. Soil urease activity and bacterial ureC gene copy numbers: Effect of pH. Geoderma,285, 1-8.http://dx.doi.org/10.1016/j.geoderma.2016.09.012
GLAESNER, N., BAELUM, J., JACOBSEN, C. S., RITZ, C., RUBAEK, G. H., KJAERGAARD, C. & MAGID, J. 2016. Bacteria as transporters of phosphorus through soil. European Journal of Soil Science, 67,99-108.http://dx.doi.org/10.1111/ejss.12314
GUAN HUI-LIN, YANG JIAN-ZHONG, CHEN YI-JUN, CUI XIU-MING, WANG YONG & ZHANG YUN-FENG 2010. Change of Rhizospheric Microbe Colony in Cultivated Soil and Its Correlation to Root Rot Disease in Panax Notoginseng.soils, 42, 378-384.http://dx.doi.org/10.13758/j.cnki.tr.2010.03.019
HAOLI, L., JIALIN, L. & XUEFEI, Z. 2014. Orcinol Hydrochloric Acid Method for Determination of Pentosans in Oat β-glucan. Guangdong Chemical Industry, 41, 179-180.http://dx.doi.org/10.3969/j.issn.1007-1865.2014.17.096
HOSSEINI, S. S., LAKZIAN, A. & RAZAVI, B. S. 2022. Reduction in root active zones under drought stress controls spatial distribution and catalytic efficiency of enzyme activities in rhizosphere of wheat.Rhizosphere, 23.http://dx.doi.org/ARTN 100561
10.1016/j.rhisph.2022.100561
JIA, X. Y., ZHONG, Y. Q. W., LIU, J., ZHU, G. Y., SHANGGUAN, Z. P. & YAN, W. M. 2020. Effects of nitrogen enrichment on soil microbial characteristics: From biomass to enzyme activities. Geoderma,366. http://dx.doi.org/ARTN 114256
10.1016/j.geoderma.2020.114256
JIAN-GUO, L. & WEI-GUO, L. 2018. Advances in Microbial-mediated Nitrogen Cycling. Acta Agrestia Sinica, 26, 277-283.http://dx.doi.org/10.11733/j.issn.1007-0435.2018.02.002
KE, L., XIAOHONG, Z., FENGJIAO, L., DONGNAN, H., XIAOMIN, G. & SUQIN, Y. 2020. Response of growth and nitrogen balance of Camellia oleifera seedlings under different nitrogen concentrations. South China Forestry Science, 48, 1-6+48.http://dx.doi.org/10.16259/j.cnki.36-1342/s.2020.05.001
LIANG, G. P., HOUSSOU, A. A., WU, H. J., WU, X. P., CAI, D. X., GAO, L. L., LI, J., WANG, B. S. & LI, S. P. 2016. [Soil nitrogen content and enzyme activities in rhizosphere and non-rhizosphere of summer maize under different nitrogen application rates.]. Ying Yong Sheng Tai Xue Bao, 27, 1917-1924.http://dx.doi.org/10.13287/j.1001-9332.201606.031
LIN, Z., YUXI, L., YIN, W., YUANYI, W., XINYUE, Z., ANJI, C., WENFENG, H. & QIANG, G. 2021. Effects of Nitrogen Application on Maize Nitrogen Uptake and Soil Biological and Chemical Properties Under Drought Stresses at Seedling Stage. Journal of Soil and Water Conservation, 35, 267-274.http://dx.doi.org/10.13870/j.cnki.stbcxb.2021.04.037
LIU, H. Y., WANG, X. D., WANG, D. H., ZOU, Z. R. & LIANG, Z. S. 2011. Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Industrial Crops and Products, 33, 84-88.http://dx.doi.org/10.1016/j.indcrop.2010.09.006
LU, T., ZHANG, Z., LI, Y., ZHANG, Q., CUI, H., SUN, L., PEIJNENBURG, W., PENUELAS, J., ZHU, L., ZHU, Y. G., CHEN, J. & QIAN, H. 2021. Does biological rhythm transmit from plants to rhizosphere microbes?Environ Microbiol, 23, 6895-6906.http://dx.doi.org/10.1111/1462-2920.15820
MALEK, S., WAZNY, R., BLONSKA, E., JASIK, M. & LASOTA, J. 2021. Soil fungal diversity and biological activity as indicators of fertilization strategies in a forest ecosystem after spruce disintegration in the Karpaty Mountains. Sci Total Environ, 751, 142335.http://dx.doi.org/10.1016/j.scitotenv.2020.142335
MENG, H., SICONG, L., YIMIN, C., XIAOGUANG, J. & YUEYU, S. 2021. Effects of irrigation and fertilizers management on nitrate reductase activities in Mollisols under facility eggplant field. Soils and Crops, 10, 187-193.http://dx.doi.org/10.11689/j.issn.2095-2961.2021.02.007
MITTLER, R., ZANDALINAS, S. I., FICHMAN, Y. & VAN BREUSEGEM, F. 2022. Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol, 23, 663-679.http://dx.doi.org/10.1038/s41580-022-00499-2
MORCILLO, R. J. L. & MANZANERA, M. 2021. The Effects of Plant-Associated Bacterial Exopolysaccharides on Plant Abiotic Stress Tolerance. Metabolites, 11, 337.http://dx.doi.org/ARTN 337
10.3390/metabo11060337
PANCHAL, P., PREECE, C., PENUELAS, J. & GIRI, J. 2022. Soil carbon sequestration by root exudates. Trends Plant Sci, 27,749-757.http://dx.doi.org/10.1016/j.tplants.2022.04.009
PANSU, M. & GAUTHEYROU, J. 2006. Handbook of soil analysis volume 449 || exchange complex. 10.1007/978-3-540-31211-6, 629-643.http://dx.doi.org/10.1007/978-3-540-31211-6_19
PRAMANIK, P. & PHUKAN, M. 2020. Potential of tea plants in carbon sequestration in North-East India. Environ Monit Assess,192, 211.http://dx.doi.org/10.1007/s10661-020-8164-y
QI BING-LIN, CAO CUI-LING, WANG FEI, LEI ZHONG-PING, ZHAO QIAN-RU & LI JUN 2010. Influence of low phosphorus on nitrate reductive activity and NO3-N content in cowpea seedling. Agricultural Research in the Arid Areas, 28, 147-151.http://dx.doi.org/CNKI:SUN:GHDQ.0.2010-01-029
QIANG, L., YUN, R., YONG, Z., JING, L. & JICHAO, Y. 2021. Differences in Nitrogen Metabolism and Dry Matter Production between Maize Cultivars and Different Nitrogen Efficiencies under Low Nitroger Stress.Acta Agriculturae Boreali-occidentalis Sinica, 30,672-680.http://dx.doi.org/10.7606/ji.ssn.1004-1389.2021.05.006
SONG, F. B., HAN, X. Y., ZHU, X. C. & HERBERT, S. J. 2012. Response to water stress of soil enzymes and root exudates from drought and non-drought tolerant corn hybrids at different growth stages.Canadian Journal of Soil Science, 92, 501-507.http://dx.doi.org/10.4141/Cjss2010-057
STASZEL, K., LASOTA, J. & BLONSKA, E. 2022. Effect of drought on root exudates from Quercus petraea and enzymatic activity of soil. Sci Rep, 12, 7635.http://dx.doi.org/10.1038/s41598-022-11754-z
TORRES-RODRIGUEZ, J. V., SALAZAR-VIDAL, M. N., CHAVEZ MONTES, R. A., MASSANGE-SANCHEZ, J. A., GILLMOR, C. S. & SAWERS, R. J. H. 2021. Low nitrogen availability inhibits the phosphorus starvation response in maize (Zea mays ssp. mays L.). BMC Plant Biol, 21, 259.http://dx.doi.org/10.1186/s12870-021-02997-5
TWINING, C. W., SHIPLEY, J. R. & MATTHEWS, B. 2022. Climate change creates nutritional phenological mismatches. Trends Ecol Evol,37, 736-739.http://dx.doi.org/10.1016/j.tree.2022.06.009
ULRICH, D. E. M., CLENDINEN, C. S., ALONGI, F., MUELLER, R. C., CHU, R. K., TOYODA, J., GALLEGOS-GRAVES, V., GOEMANN, H. M., PEYTON, B., SEVANTO, S. & DUNBAR, J. 2022. Root exudate composition reflects drought severity gradient in blue grama (Bouteloua gracilis). Sci Rep, 12, 12581.http://dx.doi.org/10.1038/s41598-022-16408-8
WANG, N. Q., KONG, C. H., WANG, P. & MEINERS, S. J. 2021. Root exudate signals in plant-plant interactions. Plant Cell Environ,44, 1044-1058.http://dx.doi.org/10.1111/pce.13892
WEI-JIE, Z. 1999. Techniques for biochemical studies of glycocalyxes , Techniques for biochemical studies of glycocalyxes.
WIDDIG, M., HEINTZ-BUSCHART, A., SCHLEUSS, P.-M., GUHR, A., BORER, E. T., SEABLOOM, E. W. & SPOHN, M. 2020. Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil. Soil Biology and Biochemistry,151, 108041.http://dx.doi.org/10.1016/j.soilbio.2020.108041
WOHLGEMUTH, R., LIESE, A. & STREIT, W. 2017. Biocatalytic Phosphorylations of Metabolites: Past, Present, and Future. Trends Biotechnol, 35, 452-465.http://dx.doi.org/10.1016/j.tibtech.2017.01.005
XIA, Z., HE, Y., YU, L., LV, R., KORPELAINEN, H. & LI, C. 2020. Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution. New Phytol, 225, 782-792.http://dx.doi.org/10.1111/nph.16170
XIHUAN, L., SIYU, G., JINYU, N., SHUAIQIANG, Y., ZIXUAN, W., JUN, W. & QIYUAN, L. 2020. Response of Key Enzymes Activity of Nitrogen Metabolism to Low Nitrogen Stress in Different Genotypes Tobacco. Molecular Plant Breeding, 18, 7554-7561.http://dx.doi.org/10.13271/j.mpb.018.007554
XU, G., FAN, X. & MILLER, A. J. 2012. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 63, 153-82.http://dx.doi.org/10.1146/annurev-arplant-042811-105532
YADAV, S., KANWAR, R. S., PATIL, J. A. & TOMAR, D. 2020. Effects of Heterodera avenae on the absorption and translocation of N, P, K, and Zn from the soil in wheat. Journal of Plant Nutrition, 43,2549-2556.http://dx.doi.org/10.1080/01904167.2020.1783296
YUAN, J. S., HIMANEN, S. J., HOLOPAINEN, J. K., CHEN, F. & STEWART, C. N., JR. 2009. Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol Evol, 24,323-31.http://dx.doi.org/10.1016/j.tree.2009.01.012
ZANDALINAS, S. I., SENGUPTA, S., FRITSCHI, F. B., AZAD, R. K., NECHUSHTAI, R. & MITTLER, R. 2021. The impact of multifactorial stress combination on plant growth and survival. New Phytol,230, 1034-1048.http://dx.doi.org/10.1111/nph.17232
ZHAO, D., REDDY, K. R., KAKANI, V. G. & REDDY, V. R. 2005. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy, 22, 391-403.http://dx.doi.org/10.1016/j.eja.2004.06.005
ZHU, S., VIVANCO, J. M. & MANTER, D. K. 2016. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Applied Soil Ecology,107, 324-333.http://dx.doi.org/10.1016/j.apsoil.2016.07.009