References
Adolfi, A., Poulton, B., Anthousi, A., Macilwee, S., Ranson, H., & Lycett, G. J. (2019). Functional genetic validation of key genes conferring insecticide resistance in the major African malaria vector, Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America , 116 (51), 25764–25772. https://doi.org/10.1073/pnas.1914633116
Alonge, M., Wang, X., Benoit, M., Knaap, E. Van Der, Schatz, M. C., & Lippman, Z. B. (2020). Article Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato ll ll Article Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato. Cell , 182 (1), 145-161.e23. https://doi.org/10.1016/j.cell.2020.05.021
Balabanidou, V., Kampouraki, A., Maclean, M., Blomquist, G. J., Tittiger, C., Juárez, M. P., Mijailovsky, S. J., Chalepakis, G., Anthousi, A., Lynd, A., Antoine, S., Hemingway, J., Ranson, H., Lycett, G. J., & Vontas, J. (2016). Cytochrome P450 associated with insecticide resistance catalyses cuticular hydrocarbon production in Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America , 113 (33), 9268–9273. https://doi.org/10.1073/pnas.1608295113
Barnes, K. G., Irving, H., Chiumia, M., Mzilahowa, T., Coleman, M., Hemingway, J., & Wondji, C. S. (2017). Restriction to gene flow is associated with changes in the molecular basis of pyrethroid resistance in the malaria vector Anopheles funestus. Proceedings of the National Academy of Sciences , 114 (2), 286–291.
Bass, C., Nikou, D., Blagborough, A. M., Vontas, J., Sinden, R. E., Williamson, M. S., & Field, L. M. (2008). PCR-based detection of Plasmodium in Anopheles mosquitoes: A comparison of a new high-throughput assay with existing methods. Malaria Journal ,7 , 1–9. https://doi.org/10.1186/1475-2875-7-177
Bhatt, S., Weiss, D. J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., Battle, K. E., Moyes, C. L., Henry, A., Eckhoff, P. A., Wenger, E. A., Briët, O., Penny, M. A., Smith, T. A., Bennett, A., Yukich, J., Eisele, T. P., Griffin, J. T., Fergus, C. A., … Gething, P. W. (2015). The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature ,526 (7572), 207–211. https://doi.org/10.1038/nature15535
Brookfield, J. F. Y. (2004). Evolutionary genetics: Mobile DNAs as sources of adaptive change? Current Biology , 14 (9), 344–345. https://doi.org/10.1016/j.cub.2004.04.021
Catania, F., Kauer, M. O., Daborn, P. J., Yen, J. L., Ffrench-Constant, R. H., & Schlötterer, C. (2004). World-wide survey of an Accord insertion and its association with DDT resistance in Drosophila melanogaster. Molecular Ecology , 13 (8), 2491–2504. https://doi.org/10.1111/j.1365-294X.2004.02263.x
Chen, S., & Li, X. (2007). Transposable elements are enriched within or in close proximity to xenobiotic-metabolising cytochrome P450 genes.BMC Evolutionary Biology , 7 , 1–13. https://doi.org/10.1186/1471-2148-7-46
Chung, H., Bogwitz, M. R., McCart, C., Andrianopoulos, A., Ffrench-Constant, R. H., Batterham, P., & Daborn, P. J. (2007). Cis-regulatory elements in the accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics , 175 (3), 1071–1077. https://doi.org/10.1534/genetics.106.066597
Daborn, P., Boundy, S., Yen, J., Pittendrigh, B., & Ffrench-Constant, R. (2001). DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Molecular Genetics and Genomics , 266 (4), 556–563. https://doi.org/10.1007/s004380100531
David, J. P., Strode, C., Vontas, J., Nikou, D., Vaughan, A., Pignatelli, P. M., Louis, C., Hemingway, J., & Ranson, H. (2005). The Anopheles gambiae detoxification chip: A highly specific microarray to study metabolic-based insecticide resistance in malaria vectors.Proceedings of the National Academy of Sciences of the United States of America , 102 (11), 4080–4084. https://doi.org/10.1073/pnas.0409348102
De Coster, W., De Rijk, P., De Roeck, A., De Pooter, T., D’Hert, S., Strazisar, M., Sleegers, K., & Van Broeckhoven, C. (2019). Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome. Genome Research , 29 (7), 1178–1187. https://doi.org/10.1101/gr.244939.118
Duneau. (2018). Signatures of insecticide selection in the genome of Drosophila melanogaster. G3: Genes, Genomes, Genetics ,8 (11), 3469–3480. https://doi.org/10.1534/g3.118.200537
Félix, R. C., Müller, P., Ribeiro, V., Ranson, H., & Silveira, H. (2010). Plasmodium infection alters Anopheles gambiae. BMC Genomics , 11 (312), 14139–14144. https://doi.org/10.1073/pnas.2036262100
Ferretti, L., Ramos-Onsins, S. E., & Pérez-Enciso, M. (2013). Population genomics from pool sequencing. Molecular Ecology ,22 (22), 5561–5576.
García, G. P., Flores, A. E., Fernández-Salas, I., Saavedra-Rodríguez, K., Reyes-Solis, G., Lozano-Fuentes, S., Bond, J. G., Casas-Martínez, M., Ramsey, J. M., García-Rejón, J., Domínguez-Galera, M., Ranson, H., Hemingway, J., Eisen, L., & Black IV, W. C. (2009). Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in México.PLoS Neglected Tropical Diseases , 3 (10). https://doi.org/10.1371/journal.pntd.0000531
Ge, S. X., Son, E. W., & Yao, R. (2018). iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics , 19 (1), 1–24.
Gel, B., & Serra, E. (2017). karyoploteR: an R/Bioconductor package to plot customisable genomes displaying arbitrary data.Bioinformatics , 33 (19), 3088–3090.
Ghurye, J., Koren, S., Small, S. T., Redmond, S., Howell, P., Phillippy, A. M., & Besansky, N. J. (2019). A chromosome-scale assembly of the major African malaria vector Anopheles funestus .GigaScience , 8 (6), giz063.
Guio, L., Barrõn, M. G., & González, J. (2014). The transposable element Bari-Jheh mediates oxidative stress response in Drosophila.Molecular Ecology , 23 (8), 2020–2030. https://doi.org/10.1111/mec.12711
Hall. (1999). BioEdit_a_user_friendly_biological_seque.pdf .
Han, Y. S., Thompson, J., Kafatos, F. C., & Barillas-Mury, C. (2000). MC8 - Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: The time bomb theory of ookinete invasion.Memorias Do Instituto Oswaldo Cruz , 95 (SUPPL. 2), 28–29.
Hancock, P. A., Hendriks, C. J. M., Tangena, J. A., Gibson, H., Hemingway, J., Coleman, M., Gething, P. W., Cameron, E., Bhatt, S., & Moyes, C. L. (2020). Mapping trends in insecticide resistance phenotypes in African malaria vectors. PLoS Biology , 18 (6), 1–23. https://doi.org/10.1371/journal.pbio.3000633
Hearn, J., Djoko Tagne, C. S., Ibrahim, S. S., Tene‐Fossog, B., Mugenzi, L. M. J., Irving, H., Riveron, J. M., Weedall, G. D., & Wondji, C. S. (2022). Multi‐omics analysis identifies a CYP9K1 haplotype conferring pyrethroid resistance in the malaria vector Anopheles funestus in East Africa. Molecular Ecology .
Hu, B., Huang, H., Hu, S., Ren, M., Wei, Q., Tian, X., Elzaki, M. E. A., Bass, C., Su, J., & Palli, S. R. (2021). Changes in both trans- And cis-regulatory elements mediate insecticide resistance in a lepidopteron pest, Spodoptera exigua. PLoS Genetics , 17 (3), 1–22. https://doi.org/10.1371/journal.pgen.1009403
Hughes, A., Lissenden, N., Viana, M., Toé, K. H., & Ranson, H. (2020). Anopheles gambiae populations from Burkina Faso show minimal delayed mortality after exposure to insecticide-treated nets. Parasites and Vectors , 13 (1), 1–11. https://doi.org/10.1186/s13071-019-3872-2
Ibrahim, S. S., Riveron, J. M., Bibby, J., Irving, H., Yunta, C., Paine, M. J. I., & Wondji, C. S. (2015). Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector.PLoS Genetics , 11 (10), 1–25. https://doi.org/10.1371/journal.pgen.1005618
Irving, H., & Wondji, C. S. (2017). Investigating knockdown resistance (kdr) mechanism against pyrethroids/DDT in the malaria vector Anopheles funestus across Africa. BMC Genetics , 18 (1), 1–11. https://doi.org/10.1186/s12863-017-0539-x
Kahamba, N. F., Finda, M., Ngowo, H. S., Msugupakulya, B. J., Baldini, F., Koekemoer, L. L., Ferguson, H. M., & Okumu, F. O. (2022). Using ecological observations to improve malaria control in areas where Anopheles funestus is the dominant vector. Malaria Journal ,21 (1), 158. https://doi.org/10.1186/s12936-022-04198-3
Killeen, G. F. (2014). Characterising, controlling and eliminating residual malaria transmission . 1–22.
Kleinschmidt, I., Bradley, J., Knox, T. B., Mnzava, A. P., Kafy, H. T., Mbogo, C., Ismail, B. A., Bigoga, J. D., Adechoubou, A., Raghavendra, K., Cook, J., Malik, E. M., Nkuni, Z. J., Macdonald, M., Bayoh, N., Ochomo, E., Fondjo, E., Awono-Ambene, H. P., Etang, J., … Donnelly, M. J. (2018). Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study.The Lancet Infectious Diseases , 18 (6), 640–649. https://doi.org/10.1016/S1473-3099(18)30172-5
Koekemoer, L. L., Kamau, L., Hunt, R. H., & Coetzee, M. (2002). A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. American Journal of Tropical Medicine and Hygiene , 66 (6), 804–811. https://doi.org/10.4269/ajtmh.2002.66.804
Kreppel, K. S., Viana, M., Main, B. J., Johnson, P. C. D., Govella, N. J., Lee, Y., & Maliti, D. (2020). Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in Tanzania. Scientific Reports , 1–11. https://doi.org/10.1038/s41598-020-71187-4
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics , 25 (16), 2078–2079.
Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics , 30 (7), 923–930.
Lucas, E. R., Miles, A., Harding, N. J., Clarkson, C. S., Lawniczak, M. K. N., Kwiatkowski, D. P., Weetman, D., & Donnelly, M. J. (2019). Whole-genome sequencing reveals high complexity of copy number variation at insecticide resistance loci in malaria mosquitoes. Genome Research , 29 (8), 1250–1261. https://doi.org/10.1101/gr.245795.118
Luckhart, S., Vodovotz, Y., Ciu, L., & Rosenberg, R. (1998). The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proceedings of the National Academy of Sciences of the United States of America , 95 (10), 5700–5705. https://doi.org/10.1073/pnas.95.10.5700
Lynd, A., Weetman, D., Barbosa, S., Egyir Yawson, A., Mitchell, S., Pinto, J., Hastings, I., & Donnelly, M. J. (2010). Field, genetic, and modeling approaches show strong positive selection acting upon an insecticide resistance mutation in anopheles gambiae s.s.Molecular Biology and Evolution , 27 (5), 1117–1125. https://doi.org/10.1093/molbev/msq002
Martinez-Torres, D., Chandre, F., Williamson, M. S., Darriet, F., Bergé, J. B., Devonshire, A. L., Guillet, P., Pasteur, N., & Pauron, D. (1998). Molecular characterisation of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Molecular Biology , 7 (2), 179–184. https://doi.org/10.1046/j.1365-2583.1998.72062.x
Menze, B. D., Wondji, M. J., Tchapga, W., Tchoupo, M., Riveron, J. M., & Wondji, C. S. (2018). Bionomics and insecticides resistance profiling of malaria vectors at a selected site for experimental hut trials in central Cameroon. Malaria Journal , 17 (1), 1–10. https://doi.org/10.1186/s12936-018-2467-2
Mosha, J. F., Kulkarni, M. A., Lukole, E., Matowo, N. S., Pitt, C., Messenger, L. A., Mallya, E., Jumanne, M., Aziz, T., Kaaya, R., Shirima, B. A., Isaya, G., Taljaard, M., Martin, J., Hashim, R., Thickstun, C., Manjurano, A., Kleinschmidt, I., Mosha, F. W., … Protopopoff, N. (2022). Effectiveness and cost-effectiveness against malaria of three types of dual-active-ingredient long-lasting insecticidal nets (LLINs) compared with pyrethroid-only LLINs in Tanzania: a four-arm, cluster-randomised trial. The Lancet , 399 (10331), 1227–1241. https://doi.org/10.1016/S0140-6736(21)02499-5
Mugenzi, L. M. J., Menze, B. D., Tchouakui, M., Wondji, M. J., Irving, H., Tchoupo, M., Hearn, J., Weedall, G. D., Riveron, J. M., Cho-Ngwa, F., & Wondji, C. S. (2020). A 6.5-kb intergenic structural variation enhances P450-mediated resistance to pyrethroids in malaria vectors lowering bed net efficacy. Molecular Ecology , 29 (22), 4395–4411. https://doi.org/10.1111/mec.15645
Mugenzi, L. M. J., Menze, B. D., Tchouakui, M., Wondji, M. J., Irving, H., Tchoupo, M., Hearn, J., Weedall, G. D., Riveron, J. M., & Wondji, C. S. (2019). Cis-regulatory CYP6P9b P450 variants associated with loss of insecticide-treated bed net efficacy against Anopheles funestus.Nature Communications , 10 (1), 1–11. https://doi.org/10.1038/s41467-019-12686-5
Müller, P., Donnelly, M. J., & Ranson, H. (2007). Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana . 12 , 1–12. https://doi.org/10.1186/1471-2164-8-36
Nkemngo, F. N., Mugenzi, L. M. J., Tchouakui, M., Nguiffo-Nguete, D., Wondji, M. J., Mbakam, B., Tchoupo, M., Ndo, C., Wanji, S., & Wondji, C. S. (2022). Xeno-monitoring of molecular drivers of artemisinin and partner drug resistance in P. falciparum populations in malaria vectors across Cameroon. Gene , 821 , 146339. https://doi.org/10.1016/j.gene.2022.146339
Nkemngo, F. N., Mugenzi, L. M. J., Terence, E., Niang, A., Wondji, M. J., Tchoupo, M., Nguete, N. D., Tchapga, W., Irving, H., Ntabi, J. D. M., Agonhossou, R., Boussougou-Sambe, T. S., Akoton, R. B., Koukouikila-Koussounda, F., Pinilla, Y. T., Ntoumi, F., Djogbenou, L. S., Ghogomu, S. M., Ndo, C., … Wondji, C. S. (2020). Elevated Plasmodium sporozoite infection and multiple insecticide resistance in the principal malaria vectors Anopheles funestus and Anopheles gambiae in a forested locality close to the Yaoundé airport, Cameroon [version 1; peer review: 1 approved, 1 app. Wellcome Open Research ,5 , 1–28. https://doi.org/10.12688/WELLCOMEOPENRES.15818.1
Picard toolkit. (2019). In Broad Institute, GitHub repository . Broad Institute.
Pinda, P. G., Eichenberger, C., Ngowo, H. S., Msaky, D. S., Abbasi, S., Kihonda, J., Bwanaly, H., & Okumu, F. O. (2020). Comparative assessment of insecticide resistance phenotypes in two major malaria vectors, Anopheles funestus and Anopheles arabiensis in south-eastern Tanzania.Malaria Journal , 19 (1), 408. https://doi.org/10.1186/s12936-020-03483-3
Rajaby, R., & Sung, W.-K. (2018). TranSurVeyor: an improved database-free algorithm for finding non-reference transpositions in high-throughput sequencing data. Nucleic Acids Research ,46 (20), e122. https://doi.org/10.1093/nar/gky685
Riveron, J. M., Huijben, S., Tchapga, W., Tchouakui, M., Wondji, M. J., Tchoupo, M., Irving, H., Cuamba, N., Maquina, M., Paaijmans, K., & Wondji, C. S. (2019). Escalation of Pyrethroid Resistance in the Malaria Vector Anopheles funestus Induces a Loss of Efficacy of Piperonyl Butoxide–Based Insecticide-Treated Nets in Mozambique. The Journal of Infectious Diseases , 220 (3), 467–475. https://doi.org/10.1093/infdis/jiz139
Riveron, J. M., Irving, H., Ndula, M., Barnes, K. G., Ibrahim, S. S., Paine, M. J. I., & Wondji, C. S. (2013). Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Proceedings of the National Academy of Sciences of the United States of America ,110 (1), 252–257. https://doi.org/10.1073/pnas.1216705110
Riveron, J. M., Yunta, C., Ibrahim, S. S., Djouaka, R., Irving, H., Menze, B. D., Ismail, H. M., Hemingway, J., Ranson, H., Albert, A., & Wondji, C. S. (2014). A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector. Genome Biology , 15 (2), R27. https://doi.org/10.1186/gb-2014-15-2-r27
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols , 3 (6), 1101–1108. https://doi.org/10.1038/nprot.2008.73
Snounou, G., Viriyakosol, S., Xin Ping Zhu, Jarra, W., Pinheiro, L., do Rosario, V. E., Thaithong, S., & Brown, K. N. (1993). High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Molecular and Biochemical Parasitology ,61 (2), 315–320. https://doi.org/10.1016/0166-6851(93)90077-B
Staedke, S. G., Gonahasa, S., Dorsey, G., Kamya, M. R., Maiteki-Sebuguzi, C., Lynd, A., Katureebe, A., Kyohere, M., Mutungi, P., Kigozi, S. P., Opigo, J., Hemingway, J., & Donnelly, M. J. (2020). Effect of long-lasting insecticidal nets with and without piperonyl butoxide on malaria indicators in Uganda (LLINEUP): a pragmatic, cluster-randomised trial embedded in a national LLIN distribution campaign. The Lancet , 395 (10232), 1292–1303. https://doi.org/10.1016/S0140-6736(20)30214-2
Wamba, A. N. R., Ibrahim, S. S., Kusimo, M. O., Muhammad, A., Mugenzi, L. M. J., Irving, H., Wondji, M. J., Hearn, J., Bigoga, J. D., & Wondji, C. S. (2021). The cytochrome P450 CYP325A is a major driver of pyrethroid resistance in the major malaria vector Anopheles funestus in Central Africa. Insect Biochemistry and Molecular Biology ,138 , 103647. https://doi.org/10.1016/j.ibmb.2021.103647
Weedall, G. D., Mugenzi, L. M. J., Menze, B. D., Tchouakui, M., Ibrahim, S. S., Amvongo-Adjia, N., Irving, H., Wondji, M. J., Tchoupo, M., Djouaka, R., Riveron, J. M., & Wondji, C. S. (2019). A cytochrome P450 allele confers pyrethroid resistance on a major African malaria vector, reducing insecticide-treated bednet efficacy. Sci. Transl. Med ,11 (March), 7386. http://stm.sciencemag.org/
Weedall, G. D., Riveron, J. M., Hearn, J., Irving, H., Kamdem, C., Fouet, C., White, B. J., & Wondji, C. S. (2020). An Africa-wide genomic evolution of insecticide resistance in the malaria vector Anopheles funestus involves selective sweeps, copy number variations, gene conversion and transposons. PLoS Genetics , 16 (6), 1–29. https://doi.org/10.1371/journal.pgen.1008822
Weetman. (2018). Candidate-gene based GWAS identifies reproducible DNA markers for metabolic pyrethroid resistance from standing genetic variation in East African Anopheles gambiae. Scientific Reports ,8 (1), 1–12. https://doi.org/10.1038/s41598-018-21265-5
Weill, M., Malcolm, C., Chandre, F., Mogensen, K., Berthomieu, A., Marquine, M., & Raymond, M. (2004). The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors.Insect Molecular Biology , 13 (1), 1–7. https://doi.org/10.1111/j.1365-2583.2004.00452.x
Weischenfeldt, J., Symmons, O.-4. 3k. S. data/manuscript/proof reading/1-combined/articles/weischenfeldt2013. pdfrsoly., Spitz, F., & Korbel, J. O. (2013). Phenotypic impact of genomic structural variation: insights from and for human disease. Nature Reviews Genetics ,14 (2), 125–138. https://doi.org/10.1038/nrg3373
WHO. (2013). for Laboratory and . 102.
WHO. (2016). Test procedures for insecticide resistance monitoring in malaria vector mosquitoes Second edition .
WHO. (2021). World Malaria Report 2021 . https://apps.who.int/iris/handle/10665/350147
Wipf, N. C., Duchemin, W., Kouadio, F.-P. A., Fodjo, B. K., Sadia, C. G., Mouhamadou, C. S., Vavassori, L., Mäser, P., Mavridis, K., Vontas, J., & Müller, P. (2022). Multi-insecticide resistant malaria vectors in the field remain susceptible to malathion, despite the presence of Ace1 point mutations. PLoS Genetics , 18 (2), e1009963. https://doi.org/10.1371/journal.pgen.1009963