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Abstract1

Big Data promises to advance science through data-driven discovery. However, many standard lab protocols rely on manual2

examination, which is not feasible for large-scale datasets. Meanwhile, automated approaches lack the accuracy of expert3

examination. We propose to 1) start with expertly labelled data, 2) amplify labels through web applications that engage citizen4

scientists, and 3) train machine learning on amplified labels, to emulate the experts. Demonstrating this, we developed a5

system to quality control brain magnetic resonance images. Expert-labeled data were amplified by citizen scientists through6

a simple web interface. A deep learning algorithm was then trained to predict data quality, based on citizen scientist labels.7

Deep learning performed as well as specialized algorithms for quality control (AUC=0.99). Combining citizen science and8

deep learning can generalize and scale expert decision making; this is particularly important in disciplines where specialized,9

automated tools do not yet exist.10

Author Summary11

How do we scale procedures that currently depend on human expertise to large-scale datasets? This is a12

fundamental challenge in this era of Big Data, not unique to any one discipline, but particularly pertinent to13

computational neuroimaging. For example, when studying pediatric mental health using brain MRI scans,14

researchers would need to visually check the quality of hundreds of brain images. Instead, we developed a15

web application (https://braindr.us) for citizen scientists to perform quality control of this large dataset16

by swiping right (to pass) or left (to fail) each image. We aggregated the ratings with a machine learning17

model, and then trained a deep neural network to automatically predict image quality, such that it matched18

expert ratings. In other words, combining citizen science with deep learning through an intuitive web19

application enabled us to amplify and automate expertise. This procedure will be broadly applicable to20
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the growing demands of Big Data across the sciences. An interactive version of this article is at http://21

results.braindr.us .22

Introduction23

Many research fields ranging from astronomy, to genomics, to neuroscience are entering an era of Big Data.24

Large and complex datasets promise to address many scientific questions, but they also present a new set25

of challenges. For example, over the last few years human neuroscience has evolved into a Big Data field.26

In the past, individual groups would each collect their own samples of data from a relatively small group27

of individuals. More recently, large data sets collected from many thousands of individuals are increasingly28

more common. This transition has been facilitated through assembly of large aggregated datasets, con-29

taining measurements from many individuals, and collected through consortium efforts such as the Human30

Connectome Project (Glasser et al., 2016). These efforts, and the large datasets that they are assembling,31

promise to enhance our understanding of the relationship between brain anatomy, brain activity and cog-32

nition. The field is experiencing a paradigm shift (Fan, Han, & Liu, 2014), where our once established33

scientific procedures are morphing as dictated by the new challenges posed by large datasets. We’ve seen34

a shift from desktop computers to cyberinfrastructure (Van Horn & Toga, 2013), from small studies siloed35

in individual labs to an explosion of data sharing initiatives (Ferguson, Nielson, Cragin, Bandrowski, &36

Martone, 2014; Poldrack & Gorgolewski, 2014), from idiosyncratic data organization and analysis scripts37

to standardized file structures and workflows (K. J. Gorgolewski et al., 2016, 2017), and an overall shift in38

statistical thinking and computational methods (Fan et al., 2014) that can accommodate large datasets. But39

one often overlooked aspect of our protocols in neuroimaging has not yet evolved to the needs of Big Data:40

expert decision making.41

Specifically, decisions made by scientists with expertise in neuroanatomy and MRI methods (i.e., neuroimag-42

ing experts) through visual inspection of imaging data cannot be accurately scaled to large datasets. For43

example, when inspecting an MRI image of the brain, there is extensive variation in neuroanatomy across44

individuals, and variation in image acquisition and imaging artifacts; knowing which of these variations are45

acceptable versus abnormal comes with years of training and experience. Specific research questions require46

even more training and domain expertise in a particular method, such as tracing anatomical regions of47

2

http://results.braindr.us
http://results.braindr.us
http://results.braindr.us


interest (ROIs), editing fascicle models from streamline tractography (Jordan, Amirbekian, Keshavan, &48

Henry, 2017), evaluating cross-modality image alignment, and quality control of images at each stage of49

image processing. On large datasets, especially longitudinal multisite consortium studies, these expert de-50

cisions cannot be reliably replicated because the timeframe of these studies is long, individual experts get51

fatigued, and training teams of experts is time consuming, difficult and costly. As datasets grow to hundreds52

of thousands of brains it is no longer feasible to depend on manual interventions.53

One solution to this problem is to train machines to emulate expert decisions. However, there are many cases54

in which automated algorithms exist, but expert decision-making is still required for optimal results. For55

example, a variety of image segmentation algorithms have been developed to replace manual ROI editing,56

with Freesurfer (Fischl, 2012), FSL (Patenaude, Smith, Kennedy, & Jenkinson, 2011), ANTS (Avants et al.,57

2011), and SPM (Ashburner & Friston, 2005) all offering automated segmentation tools for standard brain58

structures. But these algorithms were developed on a specific type of image (T1-weighted) and on a specific59

type of brain (those of healthy controls). Pathological brains, or those of children or the elderly may violate60

the assumptions of these algorithms, and their outputs often still require manual expert editing. Similarly,61

in tractography, a set of anatomical ROIs can be used to target or constrain streamlines to automatically62

extract fascicles of interest (Catani & Thiebautdeschotten, 2008; Yeatman, Dougherty, Myall, Wandell, &63

Feldman, 2012). But again, abnormal brain morphology resulting from pathology would still require expert64

editing (Jordan, Keshavan, et al., 2017). The delineation of retinotopic maps in visual cortex is another65

task that has been recently automated (Benson, Butt, Brainard, & Aguirre, 2014; Benson et al., 2012),66

but these procedures are limited to only a few of the known retinotopic maps and substantial expertise is67

still required to delineate the other known maps (Winawer & Witthoft, 2017; Wandell & Winawer, 2011).68

Another fundamental step in brain image processing that still requires expert examination is quality control.69

There are several automated methods to quantify image quality, based on MRI physics and the statistical70

properties of images, and these methods have been collected under one umbrella in an algorithm called71

MRIQC (Esteban et al., 2017). However, these methods are specific to T1-weighted images, and cannot72

generalize to different image acquisition methods. To address all of these cases, and scale to new, unforeseen73

challenges, we need a general-purpose framework that can train machines to emulate experts for any purpose,74

allowing scientists to fully realize the potential of Big Data.75
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One general solution that is rapidly gaining traction is deep learning. Specifically, convolutional neural76

networks (CNNs) have shown promise in a variety of biomedical image processing tasks. Modeled loosely77

on the human visual system, CNNs can be trained for a variety of image classification and segmentation78

tasks using the same architecture. For example, the U-Net (Ronneberger, Fischer, & Brox, 2015) which was79

originally built for segmentation of neurons in electron microscope images, has also been adapted to segment80

macular edema in optical coherence tomography images (Lee, Tyring, et al., 2017b), to segment breast and81

fibroglandular tissue (Dalmış et al., 2017), and a 3D adaptation was developed to segment the Xenopus82

kidney (Çiçek, Abdulkadir, Lienkamp, Brox, & Ronneberger, 2016). Transfer learning is another broadly83

applicable deep learning technique, where a number of layers from pretrained network are retrained for a84

different use case. This can drastically cut down the training time and labelled dataset size needed (Ahmed,85

Yu, Xu, Gong, & Xing, 2008; Pan & Yang, 2010). For example, the same transfer learning approach was86

used for brain MRI tissue segmentation (gray matter, white matter, and CSF) and for multiple sclerosis87

lesion segmentation (Van Opbroek, Ikram, Vernooij, & De Bruijne, 2015). Yet despite these advances in88

deep learning, there is one major constraint to generalizing these methods to new imaging problems: a large89

amount of labelled data is still required to train CNNs. Thus, even with the cutting-edge machine learning90

methods available, researchers seeking to automate these processes are still confronted with the original91

problem: how does a single expert create an annotated dataset that is large enough to train an algorithm92

to automate their expertise through machine learning?93

We propose that citizen scientists are a solution. Specifically, we hypothesize that citizen scientists can learn94

from, and amplify expert decisions, to the extent where deep learning approaches become feasible. Rather95

than labelling hundreds or thousands of training images, an expert can employ citizen scientists to help with96

this task, and machine learning can identify which citizen scientists provide expert-quality data. As a proof97

of concept, we apply this approach to brain MRI quality control (QC): a binary classification task where98

images are labelled “pass” or “fail” based on image quality. QC is a paradigmatic example of the problem of99

scaling expertise, because a large degree of subjectivity still remains in QC. Each researcher has their own100

standards as to which images pass or fail on inspection, and this variability may have problematic effects on101

downstream analyses, especially statistical inference. Effect size estimates may depend on the input data102

to a statistical model. Varying QC criteria will add more uncertainty to these estimates, and might result in103

replication failures. For example, in (Ducharme et al., 2016a), the authors found that QC had a significant104

impact on their estimates of the trajectory of cortical thickness during development. They concluded that105
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post-processing QC (in the form of expert visual inspection) is crucial for such studies, especially due to106

motion artifacts in younger children. While this was feasible in their study of 398 subjects, this would107

not be possible for larger scale studies like the ABCD study, which aims to collect data on 10,000 subjects108

longitudinally (Casey et al., 2018). It is therefore essential that we develop systems that can accurately109

emulate expert decisions, and that these systems are made openly available for the scientific community.110

To demonstrate how citizen science and deep learning can be combined to amplify expertise in neuroimaging,111

we developed a citizen-science amplification and CNN procedure for the openly available Healthy Brain112

Network dataset (HBN; (Alexander et al., 2017)). The HBN initiative aims to collect and publicly release113

data on 10,000 children over the next 6 years to facilitate the study of brain development and mental114

health through transdiagnostic research. The rich dataset includes MRI brain scans, EEG and eye tracking115

recordings, extensive behavioral testing, genetic sampling, and voice and actigraphy recordings. In order116

to understand the relationship between brain structure (based on MRI) and behavior (EEG, eye tracking,117

voice, actigraphy, behavioral data), or the association between genetics and brain structure, researchers118

require high quality MRI data.119

120

In this study, we crowd-amplify image quality ratings and train a CNN on the first and second data releases121

of the HBN (n=722), which can be used to infer data quality on future data releases. We also demonstrate122

how choice of QC threshold is related to the effect size estimate on the established association between age123

and brain tissue volumes during development (Lebel & Beaulieu, 2011). Finally, we show that our approach124

of deep learning trained on a crowd-amplified dataset matches state-of-the-art software built specifically for125

image QC (Esteban et al., 2017). We conclude that this novel method of crowd-amplification has broad126

applicability across scientific domains where manual inspection by experts is still the gold-standard.127
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Results128

Overview129

Our primary goals were to 1) amplify a small, expertly labelled dataset through citizen science, 2) train130

a model that optimally combines citizen scientist ratings to emulate an expert, 3) train a CNN on the131

amplified labels, and 4) evaluate its performance on a validation dataset. Figure 1 shows an overview of132

the procedure and provides a summary of our results. At the outset, a group of neuroimaging experts133

created a gold-standard quality control dataset on a small subset of the data (n=200), through extensive134

visual examination of the full 3D volumes of the data. In parallel, citizen scientists were asked to “pass” or135

“fail” two-dimensional axial slices from the full dataset (n=722) through a web application called braindr136

that could be accessed through a desktop, tablet or mobile phone (https://braindr.us). Amplified labels,137

that range from 0 (fail) to 1 (pass), were generated from citizen scientist ratings. A receiver operating138

characteristic (ROC) curve was generated for both the ratings averaged across citizen scientists and labels139

generated by fitting a classifier that weights ratings more heavily for citizen scientists who more closely140

matched the experts in the subset rated by both (gold-standard). Next, a neural network was trained to141

predict the weighted labels. The AUC for the predicted labels on a left out dataset was 0.99.142

143

Aggregating Citizen Scientist Ratings to Emulate Expert Labels144

Citizen scientists who rated images through the braindr web application differed substantially in terms of145

how well their ratings matched the experts’ ratings on the gold-standard subset: while some provided high-146

quality ratings that agree with the experts most of the time, others displayed variable and unreliable ratings.147

In order to capitalize on citizen scientists to amplify expert ratings to new data, a weighting of each citizen148

scientist was learned based on a reliable match to expert agreement in slices from the gold-standard set.149

We used the XGBoost algorithm (Chen & Guestrin, 2016a), an ensemble method that combines a set of150

weak learners (decision trees) to fit the gold-standard labels based on a set of features. In our case, the151

features were the average rating of the slice image from each citizen scientist (some images were viewed and152

rated more than once, so image ratings could vary between 1=always “pass” and 0=always “fail”). We then153

used the weights to combine the ratings of the citizen scientists and predict the left out test set. Figure 2A154
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Figure 1: Overview and results of our procedure: First, the HBN data set was rated by 4 neuroimaging
experts to create a gold standard subset of data. Next, the 3D MRI scans were converted into 2D axial brain
slices, which were loaded onto braindr (https://braindr.us), a web application to crowdsource the quality
ratings (see Methods). Area under the curve of a the Receiver Operating Characteristic curve (AUC) was
calculated for the average citizen scientist quality rating for each slice. Compared to an expert-labeled test
set, this resulted in an AUC of 0.95. In an effort to remove unreliable citizen scientists, the ratings were
aggregated by fitting a model that weights each citizen scientist contribution to the slice score by how much
that individual’s scores match those of the experts. The resulting AUC was 0.97. Finally, the 2D brain
slices together with the weighted citizen scientist ratings were used to train a neural network. In an ROC
analysis on left out data, the AUC of these predictions was 0.99.

shows ROC curves of classification on the left-out test set for different training set sizes, compared to the155

ROC curve of a baseline model in which equal weights were assigned to each citizen scientist. We see an156

improvement in the AUC of the XGBoosted labels (0.97) compared to the AUC of the equi-weighted labels157

(0.95). Using the model trained on two-thirds of the gold standard data (n=670 slices), we extracted the158

probability scores of the classifier on all slices (see Figure 2B). The distribution of probability scores in159

Figure 2B matches our expectations of the data; a bimodal distribution with peaks at 0 and 1, reflecting160

that images are mostly perceived as “passing” or “failing” . The XGBoost model also calculates a feature161
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importance score (F). F is the number of times that a feature (in our case, an individual citizen scientist)162

has split the branches of a tree, summed over all boosted trees. Figure 2C shows the feature importance for163

each citizen scientist, and 2D shows the relationship between a citizen scientist’s importance compared to164

the number of images they rated. In general, the more images a citizen scientist rates, the more important165

they are to the model. However, there are still exceptions where a citizen scientist rated many images and166

their ratings were incorrect or unreliable, so the model gave them less weight during aggregation.

Figure 2: Braindr rating aggregation and citizen scientist importance: A. ROC curves on the test
set for various training set sizes (here n denotes the number of training slices used). The dashed line is the
ROC curve of the average citizen scientist ratings for all slices. B. The distribution of XGBoost probability
scores on all Braindr slices. C. Feature importance for each anonymized user. D. Relationship between
citizen scientist importance and total number of ratings in the gold-standard dataset.

167

Training Deep Learning to Automate Image Labeling168

Citizen scientists accurately amplify expert ratings but, ideally, we would have a fully automated approach169

that can be applied to new data as it becomes available. Thus, we trained a deep learning model to170
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predict the XGBoosted labels that were based on aggregated citizen scientist ratings. A VGG16 neural171

network (Simonyan & Zisserman, 2014) pretrained on the ImageNet challenge dataset (Russakovsky et al.,172

2015) was used: we removed the top layer of the network, and then trained a final fully-connected layer173

followed by a single node output layer. The training of the final layer was run for 50 epochs and the best174

model on the validation set was saved. To estimate the variability of training, the model was separately175

trained through 10 different training courses, each time with a different random initialization seed. Typically,176

training and validation loss scores were equal at around 10 epochs, after which the model usually began to177

overfit (training error decreased, while validation error increased, see Figure 3A). In each of the 10 training178

courses, we used the model with the lowest validation error for inference on the held out test set, and179

calculated the ROC AUC. AUC may be a problematic statistic when the test-set is imbalanced (Saito &180

Rehmsmeier, 2015), but in this case, the test-set is almost perfectly balanced (see Methods). Thus, we181

found that a deep learning network trained on citizen scientist generated labels was a better match to expert182

ratings than citizen scientist generated labels alone: the deep learning model had an AUC of 0.99 (+/-183

standard deviation of 0.12, see Figure 3B).

Figure 3: Deep learning training and evaluation on the left out test set: Part A shows the training
and validation loss scores for 10 training runs, each with a different initialization seed. The training loss
tends towards 0 but the validation loss plateaus between 0.05 and 0.07 mean squared error at the 10th epoch.
Part B shows the ROC curve of the prediction on the test set against the binary classified gold-standard
slices, along with the ROC curves computed from previous analysis (the average citizen scientist rating, and
the XGBoosted ratings).

184
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Crowd amplification and deep learning strategy performs as well as a specialized185

QC algorithm186

We validated our generalized approach of crowd-amplification and deep learning by comparing classification187

results against an existing, specialized algorithm for QC of T1 weighted images, called MRIQC (Esteban et188

al., 2017). The features extracted by MRIQC are guided by the physics of MR image acquisition and by the189

statistical properties of images. An XGBoost model was trained on the features extracted by MRIQC on a190

training subset of gold-standard images, and evaluated on a previously unseen test subset. The AUC was191

also 0.99, matching the performance of our crowd-trained deep learning model.192

Braindr-based quality control has a substantial impact on effect size estimates193

The secondary goal of this study was to investigate how scaling expertise through citizen science amplification194

affects scientific inferences from these data. For this proof of concept, we studied brain development, which is195

the primary focus on the HBN dataset. Lebel and colleagues (Lebel & Beaulieu, 2011) found that increases196

in white matter volume and decreases in gray matter volume are roughly equal in magnitude, resulting197

in no overall brain volume change over development in late childhood. Based on Figure 2 in the Lebel198

manuscript (Lebel & Beaulieu, 2011), we estimate an effect of approximately -4.3 cm3 per year - a decrease199

in gray matter volume over the ages measured (See Figure 2 in the the original manuscript; we estimate the200

high point to be 710 cm3 and the low point to be 580 cm3 with a range of ages of approximately 5 years to201

35 years and hence: (710-580)/(5-35) = -4.3 cm3/year). To reproduce their analysis and assess the effect of202

using the CNN-derived quality control estimates, we estimated gray and white matter volume in the subjects203

that had been scored for quality using our algorithm. Figure 4 shows gray matter volume as a function of age.204

Two conditions are compared: in one (Figure 4A) all of the subjects are included, while in the other only205

subjects that were passed by the CNN are included (Figure 4B, blue points). Depending on the threshold206

chosen, the effect of gray matter volume over age varies from -2.6 cm3/year (with no threshold) to -5.3207

cm3/year (with Braindr rating > 0.9). A threshold of 0.7 of either Braindr or MRIQC results in an effect208

size around -4.3 cm3 per year, replicating the results of (Lebel & Beaulieu, 2011). A supplemental interactive209

version of this figure allows readers to threshold data points based on QC scores from the predicted labels210

of the CNN (called “Braindr ratings”), or on MRIQC XGBoost probabilities (called “MRIQC ratings”) is211

available at http://results.braindr.us. Thus, quality control has a substantial impact on estimates of212
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brain development and allowing poor quality data into the statistical model can almost entirely obscure213

developmental changes in gray matter volume.214

Figure 4: Impact of quality control on effect size estimates: Results of quality control on the inferred
association between gray matter volume and age during development. Part A shows the relationship when
all data is used in the ordinary least squares (OLS) model. Part B shows the new OLS model when data
is thresholded by the deep learning model’s predicted braindr rating at 0.7. The effect size nearly doubles
when QC scores are taken into account. See results.braindr.us for an interactive version of this figure.

Discussion215

We have developed a system to scale expertise in neuroimaging to meet the demands of Big Data. The216

system uses citizen scientists to amplify an initially-small, expert-labeled dataset. Combined with deep217

learning (via CNNs), the system can then accurately perform image analysis tasks that require expertise,218

such as quality control (QC). We have validated our method against MRIQC, a specialized tool that was219

designed specifically for this use case based on knowledge of the physics underlying the signal generation220

process in T1-weighted images (Esteban et al., 2017). Unlike MRIQC, our method is able to generalize221

beyond quality control of T1-weighted images; any image-based binary classification task can be loaded onto222

the Braindr platform, and crowdsourced via the web. For this use-case, we demonstrated the importance of223

scaling QC expertise by showing how replication of a previously established results depends on a researcher’s224

decision on data quality. Lebel and colleagues (Lebel & Beaulieu, 2011) report changes in gray matter225
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volume over development and we find that we only replicate these findings when using a stringent quality226

control threshold for the input data.227

The Internet and Web Applications for Collaboration228

The internet and web browser technologies are not only crucial for scientific communication, but also for229

collaboration and distribution of work. This is particularly true in the age of large consortium efforts aimed at230

generating high-quality large data sets. Recent progress in citizen science projects for neuroscience research231

have proven extremely useful and popular, in part due to the ubiquity of the web browser. Large-scale232

citizen science projects, like EyeWire (Kim et al., 2014; Marx, 2013) , and Mozak (Roskams & Popović,233

2016), have enabled scientists working with high resolution microscopy data to map neuronal connections234

at the microscale, with help from over 100,000 citizen scientists. In MR imaging, web-based tools such235

as BrainBox (Heuer, Ghosh, Sterling, & Toro, 2016) and Mindcontrol (Keshavan et al., 2017) were built to236

facilitate the collaboration of neuroimaging experts in image segmentation and quality control. However,237

the task of inspecting each slice of a 3D image in either BrainBox or Mindcontrol takes a long time, and this238

complex task tends to lose potential citizen scientists who find it too difficult or time consuming. In general,239

crowdsourcing is most effective when a project is broken down into short, simple, well-defined “micro-tasks”,240

that can be completed in short bursts of work and are resilient to interruption (Cheng, Teevan, Iqbal, &241

Bernstein, 2015). In order to simplify the task for citizen scientists, we developed a web application called242

braindr, which reduces the time-consuming task of slice-by-slice 3D inspection to a quick binary choice made243

on a 2D slice. While we might worry that distilling a complex decision into a simple swipe on a smartphone244

might add noise, we demonstrated that a model could be constructed to accurately combine ratings from245

many citizen scientists to almost perfectly emulate those obtained from inspection by experts. Using braindr,246

citizen scientists amplified the initial expert-labelled dataset (200 3D images) to the entire dataset (> 700247

3D images, > 3000 2D slices) in a few weeks. Because braindr is a lightweight web application, users could248

play it at any time and on any device, and this meant we were able to attract many users. On braindr,249

each slice received on average 20 ratings, and therefore each 3D brain (consisting of 5 slices) received on250

average 100 ratings. In short, by redesigning the way we interact with our data and presenting it in the web251

browser, we were able to get many more eyes on our data than would have been possible in a single research252

lab.253
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Scaling expertise through interactions between experts, citizen scientists and254

machine learning255

We found that an interaction between experts, citizen scientists, and machine learning results in scalable256

decision-making on brain MRI images. Recent advances in machine learning have vastly improved image257

classification(Krizhevsky, Sutskever, & Hinton, 2012), object detection(Girshick, Donahue, Darrell, & Malik,258

2014), and segmentation(Long, Shelhamer, & Darrell, 2015) through the use of deep convolutional neural net-259

works. In the biomedical domain, these networks have been trained to accurately diagnose eye disease (Lee,260

Baughman, & Lee, 2017), diagnose skin cancer (Esteva et al., 2017), and breast cancer (Sahiner et al., 1996),261

to name a few applications. But these applications require a large and accurately labeled dataset. This262

presents an impediment for many scientific disciplines, where labeled data may be more scarce, or hard to263

come by, because it requires labor-intensive procedures. The approach presented here solves this fundamen-264

tal bottleneck in the current application of modern machine learning approaches, and enables scientists to265

automate complex tasks that require substantial expertise.266

A surprising finding that emerges from this work is that a deep learning algorithm can learn to match or267

even exceed the aggregated ratings that are used for training. This finding is likely to reflect the fact that268

algorithms are more reliable than humans, and when an algorithm is trained to match human accuracy, it has269

the added benefit of perfect reliability. For example even an expert might not provide the exact same ratings270

each time they see the same image, while an algorithm will. This is in line with findings from (Lee, Tyring,271

et al., 2017a), showing that the agreement between an algorithm and any one expert can be equivalent to272

agreement between any pair of experts. We have demonstrated that while an individual citizen scientist273

may not provide reliable results, by intelligently combining a crowd with machine learning, and keeping an274

expert in the loop to monitor results, decisions can be accurately scaled to meet the demands of Big Data.275

MRI Quality Control and Morphometrics over Development276

The specific use-case that we focused on pertains to the importance of quality control in large-scale MRI277

data acquisitions. Recently, Ducharme and colleagues (Ducharme et al., 2016b) stressed the importance of278

quality control for studies of brain development in a large cohort of 954 subjects. They estimated cortical279
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thickness on each point of a cortical surface and fit linear, quadratic and cubic models of thickness versus280

age at each vertex. Quality control was performed by visual inspection of the reconstructed cortical surface,281

and removing data that failed QC from the analysis. Without stringent quality control, the best fit models282

were more complex (quadratic/cubic), and with quality control the best fit models were linear. They found283

sex differences only at the occipital regions, which thinned faster in males. In the supplemental figure that284

accompanies Figure 4, we presented an interactive chart where users can similarly explore different ordinary285

least squares models (linear or quadratic) and also split by sex for the relationship between total gray matter286

volume, white matter volume, CSF volume, and total brain volume over age.287

We chose to QC raw MRI data in this study, rather than the processed data because the quality of the288

raw MRI data affects the downstream cortical mesh generation, and many other computed metrics. A289

large body of research in automated QC of T1-weighted images exists, in part because of large open data290

sharing initiatives. In 2009, Mortamet and colleagues (Mortamet et al., 2009) developed a QC algorithm291

based on the background of magnitude images of the Alzheimer’s Disease Neuroimaging Initiative (ADNI)292

dataset, and reported a sensitivity and specificity of > 85%. In 2015, Shezad and colleagues (Shehzad et293

al., 2015) developed the Preprocessed Connectomes Project Quality Assessment Protocol (PCP-QAP) on294

the Autism Brain Imaging Data Exchange (ABIDE) and Consortium for Reproducibility and Reliability295

(CoRR) datasets. The PCP-QAP also included a Python library to easily compute metrics such as signal296

to noise ratio, contrast to noise ratio, entropy focus criterion, foreground-to-background energy ratio, voxel297

smoothness, and percentage of artifact voxels. Building on this work, the MRIQC package from Esteban298

and colleagues (Esteban et al., 2017) includes a comprehensive set of 64 image quality metrics, from which a299

classifier was trained to predict data quality of the ABIDE dataset for new, unseen sites with 76% accuracy.300

Our strategy differed from that of the MRIQC classification study. In the Esteban 2017 study (Esteban et al.,301

2017), the authors labelled images that were “doubtful” in quality as a “pass” when training and evaluating302

their classifier. Our MRIQC classifier was trained and evaluated only on images that our raters very confi-303

dently passed or failed. Because quality control is subjective, we felt that it was acceptable for a “doubtful”304

image to be failed by the classifier. Since our classifier was trained on data acquired within a single site, and305

only on images that we were confident about, our MRIQC classifier achieved near perfect accuracy with an306

AUC of 0.99. On the other hand, our braindr CNN was trained as a regression (rather than a classification)307
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on the full dataset, including the “doubtful” images (i.e those with ratings closer to 0.5), but was still eval-308

uated as a classifier against data we were confident about. This also achieved near-perfect accuracy with309

an AUC of 0.99. Because both the MRIQC and braindr classifiers perform so well on data we are confident310

about, we contend that it is acceptable to let the classifier act as a “tie-breaker” for images that lie in the311

middle of the spectrum, for future acquisitions of the HBN dataset.312

Quality control of large consortium datasets, and more generally, the scaling of expertise in neuroimaging,313

will become increasingly important as neuroscience moves towards data-driven discovery. Interdisciplinary314

collaboration between domain experts and computer scientists, and public outreach and engagement of315

citizen scientists can help realize the full potential of Big Data.316

Limitations317

One limitation of this method is that there is an interpretability-to-speed tradeoff. Specialized QC tools318

were developed over many years, while this study was performed in a fraction of that time. Specialized QC319

tools are far more interpretable; for example, the coefficient of joint variation (CJV) metric from MRIQC320

is sensitive to the presence of head motion. CJV was one of the most important features of our MRIQC321

classifier, implying that our citizen scientists were primarily sensitive to motion artifacts. This conclusion is322

difficult to come to when interpreting the braindr CNN. Because we employed transfer learning, the features323

that were extracted were based on the ImageNet classification task, and it is unclear how these features324

related to MRI-specific artifacts. However, interpretability of deep learning is an ongoing active field of325

research (Chakraborty et al., 2017), and we may be able to fit more interpretable models in the future.326

Compared to previous efforts to train models to predict quality ratings, such as MRIQC (Esteban et al.,327

2017), our AUC scores are very high. There are two main reasons for this. First, in the Esteban 2017328

study (Esteban et al., 2017), the authors tried to predict the quality of scans from unseen sites, whereas in329

our study, we combined data across the two sites from which data had been made publicly available at the330

time we conducted this study. Second, even though our quality ratings on the 3D dataset were continuous331

scores (ranging from -5 to 5), we only evaluated the performance of our models on data that received an332

extremely high (4,5) or extremely low score (-4,-5) by the experts. This was because quality control is very333
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subjective, and therefore, there is more variability on images that people are unsure about. An image that334

was failed with low confidence (-3 to -1) by one researcher could conceivably be passed with low confidence335

by another researcher (1 to 3). Most importantly, our study had enough data to exclude the images within336

this range of relative ambiguity in order to train our XGBoost model on both the braindr ratings and the337

MRIQC features. In studies with less data, such an approach might not be feasible.338

Another limitation of this method was that our citizen scientists were primarily neuroscientists. The braindr339

application was advertised on Twitter (https://www.twitter.com) by the authors, whose social networks340

(on this platform) primarily consisted of neuroscientists. As the original tweet travelled outside our social341

network, we saw more citizen scientists without experience looking at brain images on the platform, but the342

number of ratings they contributed were not as high as those with neuroscience experience. We also saw that343

there was an overall tendency for all our users to incorrectly pass images. Future iterations of braindr will344

include a more informative tutorial and random checks with known images throughout the game to make345

sure our players are well informed and are performing well throughout the task. In this study, we were able346

to overcome this limitation because we had enough ratings to train the XGBoost algorithm to preferentially347

weight some user’s ratings over others.348

Future Directions349

Citizen science platforms like the Zooniverse (Simpson, Page, & De Roure, 2014) enable researchers to350

upload tasks and engage over 1 million citizen scientists. We plan to integrate braindr into a citizen science351

platform like Zooniverse. This would enable researchers to upload their own data to braindr, and give them352

access to a diverse group of citizen scientists, rather than only neuroscientists within their social network.353

We also plan to reuse the braindr interface for more complicated classification tasks in brain imaging. An354

example could be the classification of ICA components as signal or noise (Griffanti et al., 2017), or the355

evaluation of segmentation algorithms. Finally, incorporating braindr with existing open data initiatives,356

like OpenNeuro (K. Gorgolewski, Esteban, Schaefer, Wandell, & Poldrack, 2017), or existing neuroimaging357

platforms like LORIS (Das, Zijdenbos, Vins, Harlap, & Evans, 2012) would enable scientists to directly358

launch braindr tasks from these platforms, which would seamlessly incorporate human in the loop data359

analysis in neuroimaging research. More generally, the principles described here motivate platforms that360
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integrate citizen science with deep learning for Big Data applications across the sciences.361

Methods362

The Healthy Brain Network Dataset363

The first two releases of the Healthy Brain Network dataset were downloaded from http://fcon 1000364

.projects.nitrc.org/indi/cmi healthy brain network/sharing neuro.html . A web application for365

brain quality control, called Mindcontrol (Keshavan et al., 2017) was hosted at https://mindcontrol-hbn366

.herokuapp.com , which enabled users to view and rate 3D MRI images in the browser. There were 724 T1-367

weighted images. All procedures were approved by the University of Washington Institutional Review Board368

(IRB). Mindcontrol raters, who were all neuroimaging researchers with substantial experience in similar369

tasks, provided informed consent, including consent to publicly release these ratings. Mindcontrol raters370

were asked to pass or fail images after inspecting the full 3D volume, and provide a score of their confidence371

on a 5 point Likert scale, where 1 was the least confident and 5 was the most confident. Mindcontrol raters372

received a point for each new volume they rated, and a leaderboard on the homepage displayed rater rankings.373

The ratings of the top 4 expert raters (including the lead author) were used to create a gold-standard subset374

of the data.375

Gold-standard Selection376

The gold-standard subset of the data was created by selecting images that were confidently passed or con-377

fidently failed (confidence equal or larger than 4) by the 4 expert raters. In order to measure reliability378

between expert raters, the ratings of the second, third, and fourth expert expert rater were recoded to a379

scale of -5 to 5 (where -5 is confidently failed, and 5 is confidently passed). An ROC analysis was performed380

against the binary ratings of the lead author on the commonly rated images, and the area under the curve381

(AUC) was computed for each pair. An average AUC, weighted by the number of commonly rated images382

between the pair, was 0.97, showing good agreement between expert raters. The resulting gold-standard383

dataset consisted of 200 images. Figure 5 shows example axial slices from the gold-standard dataset. The384
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gold-standard dataset set contains 100 images that were failed by experts, and 100 images that were passed385

by experts.

Figure 5: Example axial slices from the gold-standard dataset: Passed images show clear contrast
between tissue types, and failed images primarily consisted of those with large motion artifacts. We excluded
images that failed because of defacing errors from this analysis.

386

Data Preparation387

All images were then converted into a set of 2D axial slices using the NiBabel Python library (Brett et al.,388

2018) and uploaded to https://braindr.us. Two images of the 724 were corrupted, so the total image389

count became 722 images. Five slices, separated by 40 slices, were selected from each brain, where the first390

slice was one that had over 10,000 non-zero pixels. All slices were padded to 256x256 or 512x512 depending391

on original image size. One subject (sub-NDARVJ504DAA) had only 4 slices because the last slice did not392

meet the 10,000 pixel threshold. The total number of slices uploaded to https://braindr.us was 3609.393

The braindr web application394

The braindr application was written in Javascript using the Vue.js (https://vuejs.org) framework. Google395

Firebase (https://firebase.google.com/) was used for the realtime database. The axial brain slices were396

hosted on Amazon S3 and served over the Amazon CloudFront content delivery network. Figure 6 shows the397

braindr interface, which presents to the user a 2D slice. On a touchscreen device (tablet or mobile phone),398

users can swipe right to pass or swipe left to fail the image. On a desktop, a user may click the “pass” or399
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“fail” button or use the right or left arrow keys to classify the image. The user receives a point for each400

rating, unless they rate against the majority, where the majority is defined only for images with more than 5401

ratings, and where the average rating is below 0.3 or above 0.7. The user receives a notification of the point402

they earned (or did not earn) for each image after each swipe. All users electronically signed a consent form403

as approved by the University of Washington IRB. Images were initially served randomly, and then images404

with fewer ratings were preferentially served.405

Figure 6: The braindr web interface: Braindr was hosted at https://braindr.us. Users may click pass
or fail buttons, use arrow keys, or swipe on a touchscreen device to rate the image. The top right shows the
user’s score.

406

Braindr data collection407

A total of 261 users submitted over 80,000 ratings. We selected the 25% of the users who rated the largest408

numbers of the gold-standard slices. This reduced the dataset to 65 users who submitted 68,314 total ratings,409

18,940 of which were on the 1000 gold-standard slices. Figure 7 shows the distribution of average ratings410

and the distribution of number of ratings per slice on the gold-standard dataset.411
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Figure 7: Braindr data distributions: Part A shows the distribution of average ratings for each slice on
the gold-standard slices. Part B shows the number of ratings per slice, where on average each slice received
20 ratings.

Rating aggregation with XGBoost412

To aggregate citizen scientist ratings, we weighted citizen scientists based on how consistent their rat-413

ings were with the gold-standard. We trained an XGBoost classifier (Chen & Guestrin, 2016b) imple-414

mented in Python (http://xgboost.readthedocs.io/en/latest/python/python intro.html) using the415

cross-validation functions from the scikit-learn Python library (Pedregosa et al., 2011). We used 600 es-416

timators, and grid searched over a stratified 10-fold cross-validation within the training set to select the417

optimal maximum depth (2 vs 6) and learning rate (0.01, 0.1). The features of the model were the citizen418

scientists and each observation was a slice, with the entries in the design matrix set to be the average rating419

of a specific citizen scientist on a particular slice. We trained the classifier on splits of various sizes of the420

data to test the dependence on training size (see Figure 2A). We used the model trained with n=670 to421

extract the probability scores of the classifier on all 3609 slices in braindr (see Figure 2B). While equally422

weighting each citizen scientist’s ratings results in a bimodal distribution with a lower peak that is shifted423

up from zero (Figure 7A), the distribution of probability scores in Figure 2B more accurately matches our424

expectations of the data; a bimodal distribution with peaks at 0 and 1. Feature importances were extracted425

from the model and plotted in Figure 2C, and plotted against total number of gold-standard image ratings426

in Figure 2D.427
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Deep learning to predict image QC label428

Finally, a deep learning model was trained on the brain slices to predict the XGBoost probability score. All429

brain slices were resized to 256 by 256 pixels and converted to 3 color channels (RGB) to be compatible with430

the VGG16 input layer. The data was split into 80%-10%-10% training-validation-test sets. The data was431

split such that all slices belonging to the same subject were grouped together, so that any individual subject432

could be only in either training, validation or test. We loaded the VGG16 network that was pretrained with433

ImageNet weights (Simonyan & Zisserman, 2014) implemented in Keras (Chollet et al., 2015), removed434

the top layer, and ran inference on all the data. The output of the VGG16 inference was then used to435

train a small sequential neural network consisting of a dense layer with 256 nodes and a rectified linear unit436

activation function (ReLu), followed by a dropout layer set to drop 50% of the weights to prevent overfitting,437

and finally a single node output layer with sigmoid activation. The training of the final layer was run for438

50 epochs and the best model on the validation set across the 50 epochs was saved. We ran this model 10439

separate times, each time with a different random initialization seed, in order to measure the variability of440

our ROC AUC on the test set.441

Training the MRIQC model442

MRIQC was run on all images in the HBN dataset. Rather than using the previously trained MRIQC443

classifier from Esteban and colleagues (Esteban et al., 2017), the extracted QC features were used to train444

another XGBoost classifier to predict gold-standard labels. Two thirds of the data was used to train the445

model, where a 2-fold cross-validation was used to optimize hyper parameters: learning rate = 0.001, 0.01,446

0.1, number of estimators = 200, 600, and maximum depth = 2,6,8. An ROC analysis was run, and the447

computed area under the curve was 0.99.448

Gray matter volume vs age during development449

Finally, to explore the relationship between gray matter volume and age over development as a function450

of QC threshold, gray matter volume was computed from running the Mindboggle software (Klein et al.,451

2017) on the entire dataset. Mindboggle combines the image segmentation output from Freesurfer (Fischl,452

2012) with that of ANTS (Avants et al., 2011) to improve the accuracy of segmentation, labeling and volume453
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shape features. Extremely low quality scans did not make it through the entire Mindboggle pipeline, and as454

a result the dataset size was reduced to 629 for this part of the analysis. The final QC score for the brain455

volumes was computed by taking the average of the predicted braindr rating from the deep learning model456

for all five slices. We ran an ordinary least squares (OLS) model on gray matter volume versus age on the457

data with and without QC thresholding, where the QC threshold was set at 0.7. Figure 4 shows the result458

of this analysis, which showed an effect size that nearly doubled and replicated previous findings when QC459

was performed on the data.460
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master/braindrAnalysis/data/mindcontrol-feb-21-18 anon.json).483
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(2016b). Trajectories of cortical thickness maturation in normal brain development—The importance536

of quality control procedures. Neuroimage, 125 , 267–279. doi: 10.1016/j.neuroimage.2015.10.010537

Esteban, O., Birman, D., Schaer, M., Koyejo, O. O., Poldrack, R. A., & Gorgolewski, K. J. (2017). MRIQC:538

Advancing the automatic prediction of image quality in MRI from unseen sites. PloS one, 12 (9),539

e0184661. doi: 10.1371/journal.pone.0184661540

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-541

level classification of skin cancer with deep neural networks. Nature, 542 (7639), 115. doi: 10.1038/542

nature21056543

Fan, J., Han, F., & Liu, H. (2014, feb). Challenges of Big Data analysis. National Science Review , 1 (2),544

25

https://doi.org/10.1002%2Fmp.12079


293–314. Retrieved from https://doi.org/10.1093%2Fnsr%2Fnwt032 doi: 10.1093/nsr/nwt032545

Ferguson, A. R., Nielson, J. L., Cragin, M. H., Bandrowski, A. E., & Martone, M. E. (2014, nov). Big546

data from small data: data-sharing in the 'long tail' of neuroscience. Nature Neuroscience, 17 (11),547

1442–1447. Retrieved from https://doi.org/10.1038%2Fnn.3838 doi: 10.1038/nn.3838548

Fischl, B. (2012). FreeSurfer. Neuroimage, 62 (2), 774–781. doi: 10.1016/j.neuroimage.2012.01.021549

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object550

detection and semantic segmentation. In Proceedings of the ieee conference on computer vision and551

pattern recognition (pp. 580–587). Retrieved from https://arxiv.org/abs/1311.2524 doi: 10.1109/552

CVPR.2014.81553

Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L., Auerbach, E. J., Behrens, T. E., . . . others554

(2016). The human connectome project’s neuroimaging approach. Nature Neuroscience, 19 (9), 1175.555

Gorgolewski, K., Esteban, O., Schaefer, G., Wandell, B., & Poldrack, R. (2017). OpenNeuro—a free online556

platform for sharing and analysis of neuroimaging data. Organization for Human Brain Mapping.557

Vancouver, Canada, 1677.558

Gorgolewski, K. J., Alfaro-Almagro, F., Auer, T., Bellec, P., Capotă, M., Chakravarty, M. M., . . . others559
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