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Text S1. Larval density estimation 28 

In the study area, the surveyed larval habitats include drainage ditch, river edge/reservoir 29 

shoreline, swamp/marsh, rice puddle, animal footprint, tire track/road puddle, man-made pond, 30 

natural pond/rain pool, rock pool, water container, irrigation canal, and brick pit. The larval 31 

habitats were classified as temporary, semi-permanent, or permanent based on their natural 32 

characteristics. Since larval density can be significantly different in the dry and rainy seasons 33 

(Hinne et al., 2021; Kweka et al., 2012) and the timing and duration of the survey periods were 34 

inconsistent, we sorted the measured larval densities from the 769 sample points (Figure 1) into 35 

the dry season (January to April; November to December) and the rainy season (May to 36 

October). We then calculated the average larval density for each season as shown in Figure S4.  37 

In the surveyed area, the larval density for temporary habitats was higher in the rainy 38 

season than in the dry season during which the habitats are less stable. On the other hand, the 39 

larval densities for semi-permanent and permanent habitats were higher in the dry season. Most 40 

of the semi-permanent and permanent habitats were associated with river edges and swamps, 41 

whereby the larvae are prone to flushing in the rainy season. Finally, the larval density in Table 1 42 

was calculated based on the average dry season and rainy season densities. 43 

Text S2. Irrigation schedule design 44 

Figure S6 shows the monthly irrigation schedule obtained from the Arjo-Didessa Sugar 45 

Factory, which is tailored to the sugarcane planting cycle. 46 

To model irrigation in ParFlow-CLM, the irrigation interval and rate are required user 47 

inputs. A report provided by the factory recommended 8-12 days for the design of the local 48 

irrigation system, so we set the irrigation interval as 10 days.  49 

To determine the irrigation rate, we first calculated the irrigation depth, defined as the 50 

amount of water that needs to be applied when the soil water content is depleted to the wilting 51 

point. The irrigation depth (𝐼𝑟𝑟𝐷) was calculated as 52 

𝐼𝑟𝑟𝐷 = (𝐹𝐶 −𝑊𝑃) × 𝐷𝑒𝑝𝑡ℎ𝑠𝑜𝑖𝑙,     (S1) 53 

where  𝐹𝐶 is the field capacity,  𝑊𝑃 is the permanent wilting point and 𝐷𝑒𝑝𝑡ℎ𝑠𝑜𝑖𝑙 is the soil 54 

depth.  55 

The study area is characterized by clay and clay loam with low permeability. Based on 56 

resources by the Northeast Region Certified Crop Advisor 57 

(https://nrcca.cals.cornell.edu/soil/CA2/CA0212.1-3.php), the field capacity volumetric soil 58 

moisture content of clay was set as 50%, and the wilting point volumetric soil moisture content 59 

was set as 15%.  A soil depth of 2 m was assumed. Using Equation (S1), an irrigation depth of 60 

700 mm was obtained. 61 

 We configured the irrigation to be applied when 50% of the irrigation depth was 62 

depleted; hence, the actual irrigation depth to be applied over the 10-day irrigation interval was 63 

350 mm. Adopting an intermittent irrigation strategy, we set the irrigation to be applied for 22 64 

hours a day over 3 days within the 10-day cycle. The irrigation rate was then calculated to be 5.3 65 

mm/hour.  66 

https://nrcca.cals.cornell.edu/soil/CA2/CA0212.1-3.php
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Text S3. Model calibration 67 

At each grid cell, ponding is assumed to occur if the soil saturation exceeds the 68 

threshold, 𝜃. Therefore, the threshold was calibrated to ensure that the model will predict the 69 

occurrence of ponding at locations in line with the field-surveyed larval habitats for soil 70 

saturation above 𝜃. The value for  𝜃 was obtained based on a sensitivity analysis by altering the 71 

threshold and noting the corresponding change in the probability of detection (𝑃𝑂𝐷). The 𝑃𝑂𝐷 72 

determines if the model can predict an aquatic habitat successfully and can be calculated based 73 

on the ratio of the number of successful predictions or hits, 𝐻, to the total number of samples, 𝑆: 74 

𝑃𝑂𝐷 = 𝐻/𝑆,       (S2) 75 

Figure S8 shows the results of the sensitivity analysis. Generally, the 𝑃𝑂𝐷 curve is higher 76 

for the simulation excluding dry season. This is because irrigation was only approximated by a 77 

simplified scheme in the dry season and may not reflect the localized irrigation dynamics. As the 78 

threshold was lowered, 𝑃𝑂𝐷 increased because ponding occurred across a larger area in the 79 

model. The influence of topography on the ponding was weakened, and the soil type became 80 

the dominant factor. On the other hand, when the threshold was increased, less ponding was 81 

predicted, resulting in a lower 𝑃𝑂𝐷 but the topographic variability was better represented. 82 

Therefore, we selected a threshold of 0.75 for a reasonable POD of 0.66 (excluding dry season) 83 

without obscuring topographic variability.  84 

In EMOD, we calibrated 15 key parameters identified from a preliminary sensitivity 85 

analysis, and Table S3 presents the calibrated values. Using the calibrated parameters, we 86 

compared the simulated prevalence rate against field data for January 2018 and October 2018 87 

(Figure S9). The results are within the same order of magnitude. In addition, we compared the 88 

simulated monthly number of clinical cases with the recorded malaria cases from April 2018 to 89 

May 2020 (Figure S10). Apart from the two peaks missed in October 2018 and November 2019, 90 

the simulated malaria cases compare reasonably well with observation in terms of magnitude 91 

and pattern. As the clinical malaria cases were sourced from major hospitals within the study 92 

area, the two peaks in recorded cases could be anomalous due to an influx of patients from 93 

outside seeking treatment at the hospitals. Overall, the model shows a good agreement with the 94 

field observation. 95 
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 96 

Figure S1. Annual climate data from PERSIANN-CCS-CDR and ERA5 for the study area. (a) total 97 

precipitation, (b) average temperature and (c) average relative humidity. The red dashed line 98 

represents the linear trendline in each subplot. 99 

 100 

Figure S2. Monthly climate data (averaged from 1994 to 2020) derived from PERSIANN-CCS-101 

CDR and ERA5 climate data for the study area. (a) total precipitation, (b) average temperature, 102 

and (c) average relative humidity. 103 

 104 
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 105 

Figure S3. Land use survey locations. 106 

 107 

Figure S4. Percentage distribution of International Geosphere-Biosphere Programme type from 108 

land use survey. 109 

 110 
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 111 

Figure S5. Average larval densities for temporary, semi-permanent, and permanent habitats 112 

during rainy and dry seasons from field survey. 113 

 114 

Figure S6. Arjo-Didessa Sugar Factory sugarcane plantation irrigation schedule.  A typical sugar 115 

planting schedule includes (a) a 2-year cycle for virgin planting and (b) a 1-year cycle for the 116 

following 2 ratoons. MA: Maturity/water drain; H: Harvesting; LW: Land work; P: Planting; RF: 117 

Rainfed; IR: Irrigation. 118 

 119 
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 120 

Figure S7. Adjustment of decay factors for temporary and semi-permanent habitats in default 121 

EMOD function. The objective was to match the (a) intra-annual variability and (b) inter-annual 122 

variability of the habitats from the hydrologic model as closely as possible. The decay factor of 123 

semi-permanent habitat also had to be smaller than that of temporary habitat. Intra-annual 124 

variability was measured in terms of the standard deviation of the 20-year average habitat area 125 

for each day of the year. Inter-annual variability was characterized by the standard deviation of 126 

the annual average habitat area for each year.  127 

 128 

Figure S8. Sensitivity analysis of the probability of detection to saturation threshold. The 129 

probability of detection determines if the model can predict an aquatic habitat successfully and 130 

can be calculated based on the ratio of successful predictions to the total number of 131 

observations. The dotted vertical line corresponds to the selected threshold of 0.75, which 132 
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results in a reasonable POD of 0.66 excluding dry season and a POD of 0.59 including dry 133 

season. 134 

 135 

 136 
Figure S9. Comparison of simulated monthly average prevalence rate in Irrigation and 137 

measured prevalence diagnosed by Polymerase Chain Reaction (PCR). The whisker on the bar 138 

plot represents one standard error. 139 

 140 

Figure S10. Comparison of simulated monthly confirmed cases in Irrigation and clinical data. 141 

The orange band indicates the 95% confidence interval.  142 
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 143 

Figure S11. Time series of daily climate data and comparison of simulated daily malaria 144 

transmission results between Default EMOD and Integrated EMOD. Climate data include (a) 145 

precipitation and (b) temperature. Malaria transmission results include (c) habitat larval capacity, 146 

(d) adult vector abundance, (e) adult vector infection rate, (f) entomological inoculation rate and 147 

(g) parasite prevalence rate. The simulation was performed for 20 years from 2000 to 2020, but 148 

here we only show the results from 2010 to 2020 for simplicity. 149 

  150 
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 151 

Figure S12. The distribution of the top two-meter soil types in USDA soil taxonomy from 152 

SoilGrids250m TAXOUSDA dataset. Most soil types in this area are characterized as clay or clay 153 

loam with low permeability ranging from 0.0015 to 0.015 m/h. 154 

 155 

 156 

Figure S13. Comparison of simulated semi-permanent habitats between Default EMOD (black 157 

line) and Integrated EMOD (blue line) in 2018. Earlier rising limb in Default EMOD: (1) no 158 

infiltration, new ponds created instantaneously by rainfall; (2) ponds formed sometime after 159 

rainfall when soil saturation exceeded the threshold. Delayed falling limb in Default EMOD: (3) 160 

habitat area continued to increase with rainfall; (4) pond drained/dried up and soil became 161 

unsaturated after a period without rainfall, new rainfall insufficient to create ponding as soil 162 

saturation remained below threshold. 163 

  164 
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 165 

Figure S14. Simulation results from sensitivity analysis of malaria transmission to different 166 

amplitudes of larval habitat seasonality, 𝜶. Time series include (a) daily temperature, (b) 167 

synthetic sinusoidal larval habitat, (c) habitat larval capacity, (d) adult vector abundance, (e) adult 168 

vector infection rate and (f) parasite prevalence rate. 169 

  170 
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Table S1. Input data for ParFlow-CLM and EMOD. 171 

Variable Resolution Latency Source 

Topography 5-meter -  
ALOS WORLD 3D Topographic Data 
(Takaku et al., 2016; Takaku and 
Tadono, 2017) 

Precipitation 
0.04°×0.04°, 
3-hourly 

∼1 hour 

Precipitation Estimation from 
Remotely Sensed Information using 
Artificial Neural Networks -Cloud 
Classification System- Climate Data 
Record (PERSIANN-CCS-CDR) (Sadeghi 
et al., 2021) 

Surface Solar Radiation 
Downwards 

0.25°×0.25°, 
1-hourly 

5 days 

The Fifth Generation European Centre 
for Medium-Range Weather Forecasts 
Reanalysis (ERA5) (Hersbach et al., 
2020, 2018) 

Surface Thermal 
Radiation Downwards 

0.25°×0.25°, 
1-hourly 

5 days ERA5 

Air Temperature 
(2m above ground 
surface) 

0.25°×0.25°, 
1-hourly 

5 days ERA5 

Skin Temperature 
0.25°×0.25°, 
1-hourly 

5 days ERA5 

Surface Pressure 
0.25°×0.25°, 
1-hourly 

5 days ERA5 

Water-vapor specific 
humidity 

0.25°×0.25°, 
1-hourly 

5 days ERA5 

North-to-South 
Component of Wind 
Speed (10m above 
ground surface) 

0.25°×0.25°, 
1-hourly 

5 days ERA5 

East-to-West 
Component of Wind 
Speed (10m above 
ground surface) 

0.25°×0.25°, 
1-hourly 

5 days ERA5 

Land Use (2000) 30-meter - 
Global Land Cover Mapping Project 
(GlobeLand30) (Chen et al., 2015) 

Land Use (2010) 30-meter - GlobeLand30 

Land Use (2020) 30-meter - GlobeLand30 
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Soil Type 250-meter - 
SoilGrids250m, TAXOUSDA (Hengl et 
al., 2017) 

Depth to Bedrock 250-meter - 
SoilGrids250m, BDRICM (Hengl et al., 
2017) 

Near Surface 
Permeability (< 100 m) 

Regional 
Scale 

- 
GLobal HYdrogeology MaPS 2.0 
(GLHYMPS, 2.0) (Gleeson et al., 2014) 

Table S2. Field data for ParFlow-CLM and EMOD validation. 172 

Variable Period Number of Samples Source 

Land Use July 2021 578 Site survey 

Larval Habitat 2017-2021 769 Site survey 

Population 2018-2021 - Site survey 

Prevalence Rate 
January, October 2018;  
March, October 2019 

4 Site survey 

Clinical Case April 2018-May 2020 26 Site survey 

Table S3. Calibrated parameters in EMOD. 173 

Parameter Value 

Antibody Memory Level 0.298 

Base Sporozoite Survival Fraction 0.1667 

Cytokine Gametocyte Inactivation 0.01335 

Falciparum PfEMP1 Variants 150 

Mean Sporozoites Per Bite 6 

Merozoites Per Hepatocyte 990 

Min Adapted Response 0.0174 

Pyrogenic Threshold 500 

Adult Life Expectancy 20 

Male Life Expectancy 14 

Aquatic Arrhenius 1 85,884,000,000 
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Aquatic Arrhenius 2 7,495 

Infected Arrhenius 1 119,340,000,000 

Infected Arrhenius 2 7,502 

Scaling factor for larval capacity 1.66×10-5 

Table S4. Spatial average of adult vector and parasite prevalence rate from the dry season 174 

(November 2016 to April 2017) and the rainy season (May 2017 to October 2017). 175 

Scenario 
Dry Season Rainy Season 

Adult Vectors 
(# /km2) 

Prevalence 
(Fraction) 

Adult Vectors 
(# /km2) 

Prevalence 
(Fraction) 

Default EMOD 697 0.120 800 0.108 

Integrated EMOD (Non-Irrigation) 451 0.111 961 0.107 

Irrigation 889 0.154 1,140 0.182 

 176 

References 177 

Chen, Jun, Chen, Jin, Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., Zhang, 178 

W., Tong, X., Mills, J., 2015. Global land cover mapping at 30 m resolution: A POK-based 179 

operational approach. ISPRS J. Photogramm. Remote Sens. 103, 7–27. 180 

https://doi.org/10.1016/j.isprsjprs.2014.09.002 181 

Gleeson, T., Moosdorf, N., Hartmann, J., van Beek, L.P.H., 2014. A glimpse beneath earth’s 182 

surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. 183 

Res. Lett. 41, 3891–3898. https://doi.org/10.1002/2014GL059856 184 

Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, 185 

A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B., Guevara, M.A., Vargas, 186 

R., MacMillan, R.A., Batjes, N.H., Leenaars, J.G.B., Ribeiro, E., Wheeler, I., Mantel, S., Kempen, 187 

B., 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLoS 188 

One 12, e0169748. https://doi.org/10.1371/journal.pone.0169748 189 

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, 190 

C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J.-N., 2018. 191 

ERA5 hourly data on single levels from 1959 to present [WWW Document]. Copernicus 192 

Clim. Chang. Serv. Clim. Data Store. https://doi.org/10.24381/cds.adbb2d47 193 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., 194 

Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., 195 

Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., 196 

Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., 197 



 

 

15 

 

Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., 198 

Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.N., 2020. The 199 

ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049. 200 

https://doi.org/10.1002/qj.3803 201 

Hinne, I.A., Attah, S.K., Mensah, B.A., Forson, A.O., Afrane, Y.A., 2021. Larval habitat diversity and 202 

Anopheles mosquito species distribution in different ecological zones in Ghana. Parasites 203 

and Vectors 14, 1–14. https://doi.org/10.1186/s13071-021-04701-w 204 

Kweka, E.J., Zhou, G., Munga, S., Lee, M.C., Atieli, H.E., Nyindo, M., Githeko, A.K., Yan, G., 2012. 205 

Anopheline Larval Habitats Seasonality and Species Distribution: A Prerequisite for Effective 206 

Targeted Larval Habitats Control Programmes. PLoS One 7, e52084. 207 

https://doi.org/10.1371/journal.pone.0052084 208 

Sadeghi, M., Nguyen, P., Naeini, M.R., Hsu, K., Braithwaite, D., Sorooshian, S., 2021. PERSIANN-209 

CCS-CDR, a 3-hourly 0.04° global precipitation climate data record for heavy precipitation 210 

studies. Sci. Data 8, 1–11. https://doi.org/10.1038/s41597-021-00940-9 211 

Takaku, J., Tadono, T., 2017. Quality updates of ‘AW3D’ global DSM generated from ALOS 212 

PRISM, in: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 213 

IEEE, pp. 5666–5669. https://doi.org/10.1109/IGARSS.2017.8128293 214 

Takaku, J., Tadono, T., Tsutsui, K., Ichikawa, M., 2016. Validation of ‘AW3D’ Global DSM 215 

Generated from ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. III–4, 216 

25–31. https://doi.org/10.5194/isprsannals-III-4-25-2016 217 

 218 


