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1. Model data description and evaluation

1.1. Vertical regridding of model output

To account for the bathymetry following native model grid, we perform vertical regrid-

ding before calculating horizontal averages when horizontally coarsening/downsampling

the model output (Sec. 2.1 of main text). We therefore regrid the model output from the

bathymetry following s-level coordinates to z-levels, that is fixed depth levels, within the

upper 500 m. We thereby choose the the z-levels to closely follow the vertical spacing in

the maximally stretched s-level coordinate system. We therefore let the z-levels closely

follow the s-levels at a location of the deepest model bathymetry, which is set to 6500 m

(Fig. S2). This leads to 37 z-levels with a 5 m resolution in the upper 100 m and a grad-

ual increases to a 50 m resolution below 350 m. By fitting the z-levels to the maximally

stretched s-level coordinates, the regridding to z-levels does not add additional interme-

diate depth levels. Vertical temperature profiles from locations where the ocean bottom

is shallower than 6500 m have a higher resolution in s-levels than in z-levels in the upper

500 m.

To test for the sensitivity of our results regarding the vertical resolution, we additionally

coarsen the vertical z-level grid, by using only every second z-level for the MHW analysis,

leading to 19 z-levels (Fig. S2, Section 2.6 of main text).
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1.2. Evaluation of the mean state

The hindcast mean sea surface temperature (SST, 1979-2019) has a small bias of

−0.02 °C compared to World Ocean Atlas 2018 (WOA2018, Boyer et al. (2018)) aver-

aged across the full study area (Fig. S3). In the equatorial Eastern Pacific (EP) and

Peruvian upwelling system, model SST values are locally up to 1.5 °C warmer than ob-

served. The temperature biases are stronger in the subsurface with pronounced regional

differences (Fig. S3). As such, at 200 m (400 m) depth, the tropical EP between 20°S and

20°N is on average too cold by 1.47 °C (0.99 °C), while the subpolar North Pacific north

of 30°N is too warm by 0.41 °C (1.17 °C). At 100 m, we find additional warm biases in the

eastern tropical North Pacific and the subtropical South Pacific with mean anomalies of

up to 1.5 °C. This warm bias is linked to a slightly too deep mixed layer (and thermocline)

in the subtropical gyres (∼10–30 m, Fig. S4a). Across the entire EP, the modeled mixed

layer depth (MLD) is on average 12.4 m deeper than observed (Holte et al., 2017). In

the subpolar NP, ROMS simulates a MLD that is 4.5 m too shallow. ROMS accurately

reproduces the sea surface height (SSH) field structure (spatial correlation of the temporal

mean SSH fields of 0.98 , Fig. S4b), indicating that the mean geostrophic currents are

well reproduced by the model.
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1.3. Evaluation of the temperature variability

We evaluate the variability of the SST anomalies, by analysing their amplitudes and

persistence in ROMS. The anomalies are thereby calculated relative to the seasonally

varying SST climatology calculated for the period 1982–2011 (Fig. S5). For the evaluation,

we compare the standard deviation and the autocorrelation e-decay time scale of the

daily SST anomalies and compare the results to observational OISSTv2 data (Reynolds

et al., 2007). The model reproduces the SST anomaly amplitudes reasonably well with

maximum standard deviations of up to 1.5 °C in the tropical EP (Fig. S5a,b). In the

Peruvian upwelling system the model overestimates the generally high standard deviation

by about 0.5 °C. The persistence of SST anomalies, or the time scale of SST anomaly

variability is also well reproduced by the model with generally longer e-decay times in

the tropical EP, the subtropical NP gyre and the subpolar NP (Fig. S5c,d). However,

the model has a tendency to overestimate the e-decay times, indicating longer persistence

of SST anomalies. This is in agreement with the detection of generally longer but fewer

marine heatwaves (MHWs, Sec. 3 of the main text, Oliver et al. (2021)).
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1.4. Evaluation of temperature trends

We calculate trends in simulated the temperature field at the surface, at 100 m, 200 m,

310 m and 400 m depth over the full hindcast period (1979-2019, Fig. S6).

We find a general simulated cooling trend of around −0.03 °C yr−1 throughout the trop-

ical EP across all depths (Fig. S6a-e). The cooling trend is most pronounced at 100 m

depth (up to −0.05 °C yr−1), that is in the strong thermocline of the tropical EP. This

cooling trend is stronger than comparable temperature trends calculated from the monthly

resolved EN4 data set from 1981–2019 (Good, Martin, and Rayner (2013), Fig. S6f-j).

The analysis of temperature time series shows that the calculation of long-term trends in

the tropical EP is influenced by interannual temperature variability (Fig. S7). For in-

stance, in the northern Humboldt Current System (location c indicated in Figure S6), the

occurrence of fewer strong El Niño related warming events after the year 2000 compared

to the preceding years, manifests in the diagnosis of a general cooling of the EP.

Below 200 m depth the model shows a pronounced cooling between 25°-40°N and 160°-

120°W, which is not found in the EN4 data set from 1981–2019 (Good et al. (2013), Fig.

S6c-e,h-j). The temperature time series within this region (chosen location a, Figure S6),

shows that this cooling trend is relatively independent from interannual variability, but

manifests mostly at the beginning of the hindcast with the strongest temperature decrease

in the first few years (Fig. S7a). This suggests some model adjustment occurring when

switching from the spin-up period to the beginning of the model hindcast. Such spurious

trends in the simulated temperature field have the potential to affect the detection of

extreme temperatures. We however limit the impact of this spurious model trend by

calculating the temperature thresholds based on the years 1982–2011 (Sec. 2.2.1 of main
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text) and thus by not taking the first three hindcast years into account. Nevertheless, as

the MHW detection is performed over the full analysis time period, the spurious model

drift leads locally to higher numbers of subsurface extreme temperatures at the beginning

of the hindcast (Fig. S8, Fig. S9). To assess the influence of the first few hindcast years

on the composite MHW characteristics, we conduct a sensitivity analysis and calculate

the MHW characteristics only for the time period 1982–2019 (case G in Section 4 on

sensitivities analyses). The results of the sensitivity analysis however suggest only limited

impacts on the statistics of the one-dimensional MHW properties (see Fig. S19).
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1.5. Evaluation of subsurface temperature extremes

Only few observations exist, documenting the structure and evolution of MHWs in

the subsurface. This complicates an evaluation of the model’s capability to realistically

simulate subsurface temperature extremes. As we study MHWs in the EP between 1979–

2019 we are able to compare our model results to the subsurface evolution of the “Blob”

as described by Scannell, Johnson, Thompson, Lyman, and Riser (2020) (see Sec. 4.3

of main text). Furthermore, we can make use of the TAO/TRITON mooring array in

the tropical Pacific (McPhaden et al., 2010), which has gathered temperature time series

at multiple locations within the upper 500–750 m of the water column. This type of

temperature time series have already been used to calculate MHW characteristics in the

western tropical Pacific (Hu et al., 2021).

Here we use the available temperature time series from five equatorial TAO/TRITON

moorings east of 155°W, to evaluate the models performance in reproducing the verti-

cal structure of temperature anomalies in the equatorial EP. As a test case we therefore

focus on the 1997–1998 El Niño event (Fig. S10), which was an intense and long last-

ing MHW in the tropical EP (Sen Gupta et al., 2020). For the hindcast simulation and

the TAO/TRITON array, we calculate temperature anomalies relative to the climatology,

which we calculate following Hobday et al. (2016). For the hindcast, the climatology is cal-

culated over the 1982–2011 period, as throughout the main study. For the TAO/TRITON

data, we use all available data to calculate the climatologies, as the mooring data gener-

ally covers varying time spans between 1980 and 2022, but generally amounts to available

data of around 20–25 years. In Figure S10, we show the temperature anomalies at all five

mooring locations from TAO/TRITON and for the corresponding horizontal grid point
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in the hindcast simulation. Despite some gaps in the observational data, a comparison

between model and observations is feasible. In the observations and the model simulation,

the strongest temperature anomalies during the 1997–1998 El Niño are generally found

in the subsurface within the upper 200 m (Fig. S10). The model is able to reproduce

the initial warming anomalies in the subsurface of the equatorial Pacific and shows an

upward migration of the warm anomalies that is similar to observations. Similarly, the

model reproduces how warm anomalies subside again first in the subsurface and turn to

cold anomalies with the onset of the subsequent La Niña. While the model slightly un-

derestimates the anomalous warming, especially towards the eastern mooring locations,

this comparison gives us confidence, that the model realistically reproduces subsurface

warming events in the equatorial Pacific.
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2. Clustering of MHWs

2.1. Clustering methodology

We cluster the MHWs using a k-means clustering algorithm (Pedregosa et al., 2011),

based on a set of their characteristics (see Sec. 2.5 of main text.). To eliminate collinearity

between the clustering features (Fig. S11), we perform a principal component analysis

(PCA). We find only the first three principal components (PCs) to have eigenvalues above

one, which together explain 77.5 % of the variance (Fig. S12). Following Kaiser’s rule

(Kaiser, 1960), we use the standardized first three PCs for the k-means clustering. We

find the optimal number of clusters to be 4 (Fig. S13). This number of clusters maximizes

the Calinski-Habarasz score (Caliński & Harabasz, 1974), minimizes the Davies-Bouldin

score (Davies & Bouldin, 1979) and marks a clear transition in the within-cluster sum of

squared distances (i.e., the Elbow method).

2.2. Clustering results

As described in the main text, we identify four different clusters of deep-reaching MHW

(dMHW) vertical propagation types: a) block-like, b) deepening, c) shoaling, and d) multi-

surfacing MHWs (Fig. 11 of main text). Despite the overall common shape for all ex-

tremes, the within-cluster variability of dMHWs is still substantial. Figure S14 shows 4

randomly selected MHW examples for each cluster. Figure S15 shows the clustering re-

sults for the MHW characteristics that were selected to be used in the principal component

analysis prior to clustering. Both figures highlight the high variability of MHW charac-

teristics within clusters. For comparison, Figure S15 shows the MHW characteristics for

the ML-confined MHWs (sMHWs), which were not considered for the clustering.
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Fig. S16 shows the clustering results, but for the principal components on which the

the clustering was finally performed.

Lastly, Fig. S17 shows the clustering results for secondary MHW characteristics, that

is characteristics that are not directly used for clustering, such as the simple column

duration, surface duration, the mean depth relative to the MLD, the mean depth relative

to the surface, and the mean fraction of the MHW being present in the mixed layer

(ML). Again for comparison, the ML-confined sMHW properties are also shown in Figure

S17. We find that the distinction between the different clusters is also reflected in these

secondary characteristics.

May 25, 2023, 11:09am
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3. Sensitivity Analyses

3.1. MHW characteristics for different MHW detection cases

As outlined in Section 2.6 of the main text, we test for the sensitivity of the detection

and characteristics of MHWs regarding seven different methodological choices (see Fig.

S18 for an overview). In each sensitivity case we solely alter one methodological choice,

while keeping all other choices as in the reference case, which is used throughout the main

manuscript.

Figure S19 shows mapped (composite) MHW characteristics for the reference case and

all seven sensitivity cases. All characteristics (number of surface-only MHWs per year,

number of all MHWs (dMHWs and sMHWs) per year, percentage of MHWs that are

dMHWs, mean dMHW duration, mean dMHW depth below the MLD, and the compos-

ite maximum of the maximum dMHW intensity) show only little variation between the

reference and sensitivity cases. The most striking difference occurs for the sensitivity case

D, with fewer, slightly shorter and slightly shallower MHWs than in the reference case

(Fig. S19e,m,C,L). However, this is to be expected, as the threshold for the extreme

temperature detection is elevated to the 95th percentile in this sensitivity case, leading to

substantially less (∼50 %) grid cells harboring extreme conditions.

3.2. Sensitivity of Boolean array B to morphological operations

Applying the morphological operations to smooth the Boolean array B, as outlined in

Section 2.2.1 of the main text, has the potential to affect the overall number of detected

extreme days. Figure S20 therefore compares the number of extreme days in the un-

smoothed and smoothed Boolean array B at different depth levels (surface, 50 m, 250 m

and 500 m depth). For the surface, we perform the same comparison also for the obser-
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vational SST data set. We find that in the upper ocean, the effect of the morphological

operations on the total number of MHW days is relatively weak. Below 250 m depth, the

tropical EP is however marked by local increases of up to more than 20 % in the total

number of extreme days (Fig. S20). This implies that the unsmoothed extreme signals

in the subsurface tropical EP are often interrupted by short non-extreme periods (shorter

than five days). The morphological operations fill these gaps. Still, sensitivity case F

(Fig. S18) shows only minor differences in the analyzed MHW characteristics between

the smoothed and unsmoothed case (Fig. S19).

3.3. Sensitivity of MHW clustering

We test the robustness of the MHW clusters which we obtained from the k-means

clustering described in Section 2.5 of the main text. We therefore analyze how sensitive

the clusters are with regards to a) an omission of 10–99 % of MHWs and b) the omission

of individual MHW characteristics feeding into the principal component anlysis prior to

clustering (Fig. S21). For each case we compare the cluster agreement for the labeled

MHWs between the standard case and the sensitivity case using Cohen’s Kappa coefficient

(κ, Cohen (1960)). κ = 1 indicates perfect agreement, while κ = 0 suggests agreement

based on random labeling.

As the MHW omission is random, we repeat each sensitivity case (10 % to 99 % of MHWs

omitted) ten times, to avoid accidental high agreement between the reference and the

respective sensitivity case. As we detect in total 1 400 170 MHWs, an omission of 99 % of

MHWs still leaves ∼14 000 MHWs for clustering. For all analyzed MHW omission cases we

find on average very high agreements between the cluster assignment for the reference and

sensitivity cases (κ ≥ 0.99), indicating high robustness of the clustering. The clustering
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consistently assigns the MHWs to the same clusters even under the omission of 99 % of

the detected MHWs.

The respective elimination of one of the six MHW characteristics that feed into the

principal component analysis, has a somewhat bigger impact on the cluster assignment

agreement. In most cases, κ > 0.7. Only for the omission of the “start delay at the

surface” and the “early end at the surface” (normalized with the MHW column duration,

see Fig. 2), κ drops to around 0.65, indicating the important role of these characteristics

in the clustering procedure. Nevertheless, as all sensitivity cases yield κ > 0.6, we deem

the results of the clustering to be also robust to the general choice of MHW characteristics.

4. Linking surface-only MHWs to their associated subsurface structure

Figure S22 shows two-dimensional histograms between surface-only MHW character-

istics and the corresponding characteristics diagnosed for the associated water column

MHWs. Overall, the surface-only MHW characteristics are only moderately correlated

with the corresponding characteristics of the MHWs in the water column. For instance,

the surface-only MHW duration is correlated with a Pearson (Spearman) correlation of

0.46 (0.63) with the associated MHW column duration (Fig. S22a). Correlations for the

severity are similar (Fig. S22c) and somewhat lower for the maximum intensity with

rPearson = 0.36 (rSpearman = 0.55, Fig. S22b). Hence, despite these weak to moderate

correlations, longer lasting, more intense and more severe surface-only MHWs are gen-

erally associated with longer lasting, more intense and more severe MHWs in the water

column, respectively. Yet, the two-dimensional histograms show that the longest last-

ing MHWs in the water column with durations of more than 1000 days are associated

with relatively short-lived surface-only MHWs (less than 100 days, Fig. S22a). Similarly,
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the most intense and severe MHWs in the water column are associated with relatively

moderate surface-only MHWs. These results show the challenges in estimating individual

subsurface MHW characteristics based on the surface MHW signature.

In the main text (Section 4.4), we explore the possibility of identifying dMHWs based on

the properties of their associated surface-only MHWs. We therefore fit logistic regression

models between the binary distinction of the associated MHWs into sMHWs and dMHWs

and the associated surface-only MHW properties, such as duration, maximum intensity

and severity. Figure 10 of the main text shows the model fit and the predictive capacities

of the statistical models fitted for all detected MHWs in the EP. Figure S23 shows the

same analysis but for individual subregions of the EP. As such, we separate the EP into

eight different subregions by drawing separation lines along 5°S, 5°N, 23°N and 40°N. We

distinguish between open ocean regions and coastal regions by using the 700 km distance

from the coast isoline. Only in the equatorial Pacific and the subpolar North Pacific

(west of 135°W) we do not consider a separate coastal region (Fig. S23). We find that

individual regions show higher predictive capacity for the subsurface MHW structure than

across the entire EP (compare with Fig. 10 of the main text), indicated by the confusion

matrices. While all regions show correct dMHW predictions in around 60–75 %, highest

predictive capacity exists in the Equatorial Pacific. There, 77 % (76 %) of MHWs are

correctly predicted based on surface-only MHW severity (duration).
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Figure S1. Telescopic grid of the humpac15 Pacific basin setup. Panel a shows

the model grid dimension (outlined by black lines) and indicates the grid structure by

representing every 50thgrid point by the grey lines. The color shows the grid cell size

(∆x), with finest resolution off Peru and coarsest resolution off Australia. Panel b shows

the ratio of the model grid cell size and the first baroclinic Rossby radius of deformation

(LRo), calculated using a gravity wave speed of c = 2.4 m s−1. Values smaller (larger) than

1 indicate finer (coarser) model resolution than the deformation radius. Orange, green,

and magenta lines indicate value of 1 for c = 2.0, 2.4, and 3.0 m s−1, respectively.
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Figure S2. Vertical regridding of model output from terrain following coordinates

(s-levels) to fixed z-levels. Panel a shows the vertical levels as a function of depth. The

black line shows the model native vertical grid (s-levels) at a location of maximum water

depth, i.e. at a maximally stretched vertical grid. The blue and orange lines show the

“full” and “coarse” z-level grid, respectively. In the “full” grid, 37 z-levels are chosen to

closely follow the maximally stretched s-level depths. The “coarse” z-level grid takes only

every second z-level of the “full” grid, leading to 19 z-levels. The different vertical grids

are visualized in panel b.
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Figure S3. Mean temperature biases of the ROMS model hindcast (1979-2019) at a)

the surface, b) 100 m, c) 200 m and d) 400 m depth. Biases are calculated as ROMS minus

World Ocean Atlas 2018 (Boyer et al., 2018).

Figure S4. Model evaluation of the mixed layer depth (MLD) and sea surface height

(SSH). Panel a shows the hindcast averaged MLD in black contour lines as well as the

hindcast averaged MLD bias (MLD’) in color (compared to Holte et al. (2017). Panel b

compares the hindcast averaged model SSH to satellite altimetry observations (CMEMS,

2019).
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Figure S5. Maps showing the standard deviation (upper) and the auto-correlation e-

decay time (lower) of the de-trended SST anomaly (SST’) field at the ocean surface. Left

panels show the metrics based on observations (OISSTv2 data, Reynolds et al. (2007)),

right panels for the ROMS hindcast. Temperature anomalies are calculated relative to the

daily climatology of sea surface temperatures calculated over the time period 1982-2011

following Hobday et al. (2016).
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Figure S6. Temperature trends in the ROMS hindcast. Upper row (panels a-e) shows

mapped temperature trends calculated over the full hindcast (1979–2019) at different

depth levels (surface, 100 m, 200 m, 310 m, 400 m depth). Lower row (panels f-j) shows

the same, but derived from the monthly EN4 data set between 1981 and 2019. Shown

depths are not identical as in ROMS, but chosen as close as possible. Letters a-d in all

panels indicate locations for which temperature time series are shown in Figure S7.
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Figure S7. Temperature time series from the daily ROMS hindcast (panel a, 1979-2019)

and the monthly EN4 data set (panel b, 1981-2019) at the four locations a-d indicated in

Figure S6. For both data sets the time series are shown at for five depths corresponding

to the depths shown in Figure S6.

Figure S8. Panels show where extreme temperatures are detected at each depth level

on the first day of the hindcast, i.e. Jan 1st, 1979.

May 25, 2023, 11:09am
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Figure S9. Time series of EP area fraction covered by a) all extreme grid cells, b)

extreme grid cells associated with MHWs with a surface imprint, c) extreme grid cells

associated with MHWs without a surface imprint (which are thus discarded in this study).
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KÖHN ET AL.: VERTICAL STRUCTURE & PROPAGATION OF MHWS X - 25

Figure S10. Temperature anomalies relative to the climatology during the 1997 El

Niño event as simulated in the ROMS hindcast (top row) and as recorded with the

TAO/TRITON array (bottom row) at five different mooring locations along the equa-

tor east of 155°W. The panels are arranged by their geographical locations from west to

east. Temperature anomalies are calculated relative to the climatology following Hobday

et al. (2016). For the hindcast, the climatology is calculated over the 1982–2011 period

(as throughout the main study). For the TAO/TRITON data, we use all available data

to calculate the climatologies, as the mooring data generally covers only ∼20–25 years.

May 25, 2023, 11:09am
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Figure S11. Correlation matrix of primary features, showing rank correlations between

all MHW characteristics feeding into the principal component analysis.
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Figure S12. Results of the principal component analysis. Panel a) shows the eigenvalues

associated with each individual principal component (Scree plot). Panel b) shows the

explained variance by each principal component (PC).

Figure S13. Analysis of optimal number of clusters. Clustering is repeatedly per-

formed using 2–19 clusters. For each chosen number of clusters, the Calinski-Harabasz

score (panel a), the Davies-Bouldin score (panel b) and the within-cluster sum of squared

distances (Elbow method, panel c) is calculated.
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Figure S14. Four examples of the time-depth MHW structures for each cluster, i.e.,

block-like (first column), deepening (second column), shoaling (third column), and multi-

surfacing (fourth column) MHWs. Colored areas indicate extreme grid cells. Dashed

black line shows linear fit to the temporal evolution of the upper MHW boundary.
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Figure S15. Cluster results. Violinplots show the six MHW characteristics that were

used in the principal component analysis based on which the four different clusters were

identified (colorcoding/cluster numbering as in Figure 11). Black dots and white lines

indicate the median and the interquartile range of the distribution, respectively. For

comparison, the corresponding distribution and statistics for the mixed layer-confined

sMHWs is shown (denoted by X ), even though they are not considered in the clustering.
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Figure S16. Cluster results. Violinplots show the three clustered PCs (colorcod-

ing/cluster numbering as in Figure 11). Black dots and white lines indicate the median

and the interquartile range of the distribution, respectively.
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Figure S17. Cluster results. Violinplots show the clustering results for five further

MHW characteristics that were not used in the principal component analysis feeding into

the clustering (colorcoding/cluster numbering as in Figure 11). Black dots and white

lines indicate the median and the interquartile range of the distribution, respectively.

For comparison, the corresponding distribution and statistics for the mixed layer-confined

sMHWs is shown (denoted by X ), even though they are not considered in the clustering.
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Figure S18. The different sensitivity cases regarding the MHW detection. The top

row shows the reference case used throughout the main manuscript. In each sensitivity

case A-G, only one of the methodological choices outlined in 2.6 is altered (highlighted in

red).
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KÖHN ET AL.: VERTICAL STRUCTURE & PROPAGATION OF MHWS X - 33

Figure S19. Composite MHW characteristics in different sensitivity cases (see Fig.

S18). For comparability, a minimum duration criterion is applied to case F, in which the

Boolean array B is not filtered using the morphological operations (see Sec. 2.2.1 of main

text). It requires that the MHWs have a surface duration of at least five days.
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Figure S20. Effect of morphological operations on the number of extreme days in sea

surface observations between 1982–2019 (top row, OISSTv2, (Reynolds et al., 2007)) and

below in the 1979–2019 ROMS hindcast (surface, 50 m, 250 m and 500 m depth). Left

(middle) column shows number of extremes days in smoothed (unsmoothed) Boolean

array B. Right column shows the relative difference (smoothed minus unsmoothed) in %.
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Figure S21. Sensitivity analysis of MHW clustering using Cohen’s Kappa coefficient.

In the upper panel, we test for the robustness of the clustering with respect to the omission

of 10 % to 99 % of omitted MHWs. In the lower panel, we test for the robustness of the

clusters with respect to the omission of individual MHW characteristics feeding into the

principal component analysis. In both panels we conduct for each case 10 sensitivity

clusters. We indicate the mean across all 10 cases by the bold black number and the

minimum and maximum value by the numbers below and above, respectively.
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Figure S22. Association between surface-only MHW characteristics and the associated

water column MHW characteristics. Panels a, b and c shows each a two-dimensional his-

togram for the duration (D), maximum intensity (Imax in °C) and severity (S = Imean×D

in days) for surface-only MHWs and their associated water column MHWs, respectively.

Each panel shows the 1:1 (dashed black) line as well as the Pearson and Spearman corre-

lation (r) between the surface-only and associated water column MHWs.
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Figure S23. Confusion matrices for regionalized logistic regression model based pre-

dictions of MHWs that are either deep-reaching (dMHWs) and ML-confined (sMHWs).

Purple, blue and orange matrices show correct/false predictions based on surface only

duration, maximum intensity and severity, respectively. Underlying map shows the dif-

ferent regions, demarcated by the black lines. Coastal boxes extend to 700 km offshore.

Latitudinal regional boundaries are at 5°S, 5°N, 23°N, and 40°N.
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