References
2. Kobayashi T, Nakamura M, Hamaoka F, Nagatani M, Yamazaki H, Nosaka H,
et al. Long-haul WDM transmission with over-1-Tb/s channels using
electrically synthesized high-symbol-rate signals. In: Optical Fiber
Communication Conference (OFC) 2020 [Internet]. Washington, D.C.:
OSA; 2020 [cited 2022 Jun 30]. p. M4K.1. Available from:https://opg.optica.org/abstract.cfm?URI=OFC-2020-M4K.1
3. Moon SR, Sung M, Kim ES, Lee JK, Cho SH, Kim J. RoF-based indoor
distributed antenna system that can simultaneously support 5G mmWave and
6G terahertz services. Opt Express. 2022 Jan 17;30(2):1521.
4. Alsharif MH, Albreem MAM, Solyman AAA, Kim S. Toward 6G Communication
Networks: Terahertz Frequency Challenges and Open Research Issues.
Computers, Materials and Continua [Internet]. 2021 [cited 2022 Jul
18];66(3):2831–42. Available from:http://oak.ulsan.ac.kr/handle/2021.oak/9043
5. Lee W, Han S, Moon SR, Park J, Yoo S, Park H, et al. Coherent
terahertz wireless communication using dual-parallel MZM-based silicon
photonic integrated circuits. Opt Express. 2022 Jan 17;30(2):2547.
6. Seeds AJ, Shams H, Fice MJ, Renaud CC. TeraHertz Photonics for
Wireless Communications. J Lightwave Technol [Internet]. 2015
Feb;33(3):579–87. Available from:http://opg.optica.org/jlt/abstract.cfm?URI=jlt-33-3-579
7. Meshkov IK, Gizatulin AR, Vinogradova IL, Meshkova AG, Sultanov AKh,
Bagmanov VKh, et al. Usage of SDM technology in radio-over-fiber (RoF)
transmission systems in high-speed scalable 6G wireless networks. In:
Andreev VA, Bourdine A v, Burdin VA, Morozov OG, Sultanov ACh, editors.
Optical Technologies for Telecommunications 2020 [Internet]. SPIE;
2021. p. 414 – 419. Available from:https://doi.org/10.1117/12.2593036
8. Zhao J, Liu Y, Xu T. Advanced DSP for Coherent Optical Fiber
Communication. Applied Sciences [Internet]. 2019 Oct 8 [cited 2022
Jun 30];9(19):4192. Available from:https://www.mdpi.com/2076-3417/9/19/4192
9. Irfan M, Ali F, Muhammad F, Habib U, Alwadie AS, Glowacz A, et al.
DSP-Assisted Nonlinear Impairments Tolerant 100 Gbps Optical Backhaul
Network for Long-Haul Transmission. Entropy [Internet]. 2020 Sep 22
[cited 2022 Jun 30];22(9):1062. Available from:https://www.mdpi.com/1099-4300/22/9/1062
10. Shao J, Liang X, Kumar S. Comparison of Split-Step Fourier Schemes
for Simulating Fiber Optic Communication Systems. IEEE Photonics J. 2014
Aug 1;6(4).
11. Sinkin O v., Holzlöhner R, Zweck J, Menyuk CR. Optimization of the
split-step Fourier method in modeling optical-fiber communications
systems. Journal of Lightwave Technology. 2003 Jan;21(1):61–8.
12. Mrabet H, Mhatli S. A reduced complexity Volterra-based nonlinear
equalizer for up to 100 Gb/s coherent optical communications.
Optoelectronics and Advanced Materials-Rapid Communications.
2018;12(4):186–92.
13. Choudhary U, Janyani V, Khan MA. Optical phase conjugation with dual
frame OFDM for dispersion and nonlinearity mitigation over multimode
fiber. Optical and Quantum Electronics 2021 53:2 [Internet]. 2021
Jan 24 [cited 2022 May 30];53(2):1–11. Available from:https://link.springer.com/article/10.1007/s11082-021-02736-y
14. Shakya S. Machine Learning Based Nonlinearity Determination for
Optical Fiber Communication -Review. Journal of Ubiquitous Computing and
Communication Technologies [Internet]. 2019 Dec 30 [cited 2022 May
30];2019(02):121–7. Available from:https://www.irojournals.com/jucct/V1/I2/06.pdf
15. de Koster P, Wahls S. Dispersion and Nonlinearity Identification for
Single-Mode Fibers Using the Nonlinear Fourier Transform. Journal of
Lightwave Technology. 2020 Jun 15;38(12):3252–60.
16. Amari A, Dobre OA, Venkatesan R, Kumar OSS, Ciblat P, Jaouen Y. A
Survey on Fiber Nonlinearity Compensation for 400 Gb/s and Beyond
Optical Communication Systems. IEEE Communications Surveys & Tutorials
[Internet]. 2017 [cited 2022 May 3];19(4):3097–113. Available
from:http://ieeexplore.ieee.org/document/7959045/
17. Bosco G, Carena A, Zefreh MR, Poggiolini P, Forghieri F. Advances in
Modeling and Mitigation of Nonlinear Effects in Uncompensated Coherent
Optical Transmission Systems. In: 2020 European Conference on Optical
Communications (ECOC) [Internet]. IEEE; 2020 [cited 2022 Jun
30]. p. 1–4. Available from:https://ieeexplore.ieee.org/document/9333258/
18. Martins CS, Bertignono L, Nespola A, Carena A, Guiomar FP, Pinto AN.
Low-Complexity Time-Domain DBP Based on Random Step-Size and Partitioned
Quantization. Journal of Lightwave Technology [Internet]. 2018 Jul
15 [cited 2022 Jun 30];36(14):2888–95. Available from:https://ieeexplore.ieee.org/document/8345692/
19. Rafique D, Mussolin M, Forzati M, Mårtensson J, Chugtai MN, Ellis
AD. Compensation of intra-channel nonlinear fibre impairments using
simplified digital back-propagation algorithm. Opt Express
[Internet]. 2011 May 9 [cited 2022 Jun 30];19(10):9453.
Available from:https://opg.optica.org/oe/abstract.cfm?uri=oe-19-10-9453
20. Secondini M, Rommel S, Meloni G, Fresi F, Forestieri E, Potì L.
Single-step digital backpropagation for nonlinearity mitigation.
Photonic Network Communications [Internet]. 2016 Jun 9 [cited 2022
Jun 30];31(3):493–502. Available from:http://link.springer.com/10.1007/s11107-015-0586-z
21. Liang X, Kumar S. Correlated digital back propagation based on
perturbation theory. Opt Express [Internet]. 2015 Jun 1 [cited
2022 Jun 30];23(11):14655. Available from:https://opg.optica.org/abstract.cfm?URI=oe-23-11-14655
22. Jing Shao, Xiaojun Liang, Kumar S. Comparison of Split-Step Fourier
Schemes for Simulating Fiber Optic Communication Systems. IEEE Photonics
J [Internet]. 2014 Aug 1 [cited 2022 Jun 30];6(4):1–15.
Available from:http://ieeexplore.ieee.org/document/6860304/
23. Zhang Q, Hayee MI. Symmetrized Split-Step Fourier Scheme to Control
Global Simulation Accuracy in Fiber-Optic Communication Systems. Journal
of Lightwave Technology [Internet]. 2008 Jan 15 [cited 2022 Jun
30];26(2):302–16. Available from:http://ieeexplore.ieee.org/document/4451240/
24. Bosco G, Carena A, Curri V, Gaudino R, Poggiolini P, Benedetto S.
Suppression of spurious tones induced by the split-step method in fiber
systems simulation. IEEE Photonics Technology Letters [Internet].
2000 May [cited 2022 Jun 30];12(5):489–91. Available from:http://ieeexplore.ieee.org/document/841262/
25. Sinkin OV, Holzlohner R, Zweck J, Menyuk CR. Optimization of the
split-step fourier method in modeling optical-fiber communications
systems. Journal of Lightwave Technology [Internet]. 2003 Jan
[cited 2022 Jun 30];21(1):61–8. Available from:http://ieeexplore.ieee.org/document/1190149/
26. Francia C. Constant step-size analysis in numerical simulation for
correct four-wave-mixing power evaluation in optical fiber transmission
systems. IEEE Photonics Technology Letters [Internet]. 1999 Jan
[cited 2022 Jun 30];11(1):69–71. Available from:http://ieeexplore.ieee.org/document/736394/
27. Dien N v., Son LT, Tuan N v., Tien HP, Vien NDN, Hung NL, et al.
Digital back-propagation optimization for high-baudrate single-channel
optical fiber transmissions. Opt Commun [Internet]. 2021 Jul 15
[cited 2022 Jun 30];491:126913. Available from:https://linkinghub.elsevier.com/retrieve/pii/S0030401821001632
28. Asif R, Lin CY, Schmauss B. Efficient compensation of chromatic
dispersion and nonlinearities using logarithmic digital backward
propagation in N -channel DWDM 1.12Tbit/s DP-QPSK transmission. J
Mod Opt [Internet]. 2012 Jan 20 [cited 2022 Jun
30];59(2):95–101. Available from:http://www.tandfonline.com/doi/abs/10.1080/09500340.2011.631050
29. Zhang J, Li X, Dong Z. Digital Nonlinear Compensation Based on the
Modified Logarithmic Step Size. Journal of Lightwave Technology
[Internet]. 2013 Nov [cited 2022 Jun 30];31(22):3546–55.
Available from:http://ieeexplore.ieee.org/document/6632915/
30. Kazuro Kikuchi. Polarization-demultiplexing algorithm in the digital
coherent receiver. In: 2008 Digest of the IEEE/LEOS Summer Topical
Meetings [Internet]. IEEE; 2008 [cited 2022 Jun 30]. p. 101–2.
Available from:http://ieeexplore.ieee.org/document/4590509/
31. Viterbi AJ, Viterbi AM. Nonlinear estimation of PSK-modulated
carrier phase with application to burst digital transmission. IEEE Trans
Inf Theory [Internet]. 1983 Jul [cited 2022 Jun
30];29(4):543–51. Available from:https://ieeexplore.ieee.org/document/1056713/
32. Behrens C, Killey RI, Savory SJ, Chen M, Bayvel P. Nonlinear
transmission performance of higher-order modulation formats. IEEE
Photonics Technology Letters. 2011;23(6):377–9.
33. Savory SJ. Digital filters for coherent optical receivers. Opt
Express [Internet]. 2008 Jan 21 [cited 2022 May 27];16(2):804.
Available from:https://opg.optica.org/oe/abstract.cfm?uri=oe-16-2-804