References
Aebi, H., 1974. Catalase, Methods of enzymatic analysis. Elsevier, pp. 673-684.
Akerboom, T.P., Sies, H., 1981. [48] Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples, Methods in enzymology. Elsevier, pp. 373-382.
Arinno, A., Shinlapawittayatorn, K., Maneechote, C., Khuanjing, T., Chunchai, T., Prathumsap, N., Ongnok, B., Arunsak, B., Jaiwongkam, T., Kerdphoo, S., Chattipakorn, S., Chattipakorn, N., 2021. Melatonin, Metformin, and Ranolazine Protect Heart against Doxorubicin-Induced Cardiotoxicity through Modulating Cardiac Mitochondrial Dynamics in Rats. Journal of the American College of Cardiology 77, 3301-3301.
Aslankoç, R., Demirci, D., İnan, Ü., Yıldız, M., Öztürk, A., Çetin, M., Savran, E., Yılmaz, B., 2019. The role of antioxidant enzymes in oxidative stress-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Med J SDU 26, 362-369.
Babiak, R.M., Campello, A.P., Carnieri, E.G., Oliveira, M.B., 1998. Methotrexate: pentose cycle and oxidative stress. Cell Biochem Funct 16, 283-293.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
Chaitman, B.R., Pepine, C.J., Parker, J.O., Skopal, J., Chumakova, G., Kuch, J., Wang, W., Skettino, S.L., Wolff, A.A., Combination Assessment of Ranolazine In Stable Angina, I., 2004. Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. Jama 291, 309-316.
Chladek, J., Martinkova, J., Sispera, L., 1997. An in vitro study on methotrexate hydroxylation in rat and human liver. Physiol Res 46, 371-379.
Colak, C., Parlakpinar, H., Ermis, N., Tagluk, M.E., Colak, C., Sarihan, E., Dilek, O.F., Turan, B., Bakir, S., Acet, A., 2012. Effects of electromagnetic radiation from 3G mobile phone on heart rate, blood pressure and ECG parameters in rats. Toxicol Ind Health 28, 629-638.
Dalaklioglu, S., Genc, G.E., Aksoy, N.H., Akcit, F., Gumuslu, S., 2013. Resveratrol ameliorates methotrexate-induced hepatotoxicity in rats via inhibition of lipid peroxidation. Hum Exp Toxicol 32, 662-671.
El-Sheikh, A.A., Morsy, M.A., Abdalla, A.M., Hamouda, A.H., Alhaider, I.A., 2015. Mechanisms of Thymoquinone Hepatorenal Protection in Methotrexate-Induced Toxicity in Rats. Mediators Inflamm 2015, 859383.
Esenboga, K., Kurtul, A., Nazman, H., Tekin, C.G., Ozyuncu, N., Tan, T.S., Tutar, E., Turhan, S.T., 2022. Evaluation of the Impact of Ranolazine Treatment on Liver Function Tests in Patients With Coronary Heart Disease and Nonalcoholic Fatty Liver Disease. Angiology 73, 73-78.
Ghoneum, M., El-Gerbed, M.S.A., 2021. Human placental extract ameliorates methotrexate-induced hepatotoxicity in rats via regulating antioxidative and anti-inflammatory responses. Cancer Chemother Pharmacol 88, 961-971.
Han, Y., Forfia, P.R., Vaidya, A., Mazurek, J.A., Park, M.H., Ramani, G., Chan, S.Y., Waxman, A.B., 2018. Rationale and design of the ranolazine PH-RV study: a multicentred randomised and placebo-controlled study of ranolazine to improve RV function in patients with non-group 2 pulmonary hypertension. Open Heart 5, e000736.
Imprialos, K.P., Stavropoulos, K., Doumas, M., Athyros, V.G., 2022. The Impact of Ranolazine Treatment on Liver Tests in Patients With Coronary Artery Disease and Nonalcoholic Fatty Liver Disease. SAGE Publications Sage CA: Los Angeles, CA, pp. 5-6.
Jaeschke, H., Gores, G.J., Cederbaum, A.I., Hinson, J.A., Pessayre, D., Lemasters, J.J., 2002. Mechanisms of hepatotoxicity. Toxicol Sci 65, 166-176.
Jahovic, N., Cevik, H., Sehirli, A.O., Yegen, B.C., Sener, G., 2003. Melatonin prevents methotrexate-induced hepatorenal oxidative injury in rats. J Pineal Res 34, 282-287.
Kamen, B.A., Nylen, P.A., Camitta, B.M., Bertino, J.R., 1981. Methotrexate accumulation and folate depletion in cells as a possible mechanism of chronic toxicity to the drug. Br J Haematol 49, 355-360.
Kisaoglu, A., Borekci, B., Yapca, O.E., Bilen, H., Suleyman, H., 2013. Tissue damage and oxidant/antioxidant balance. Eurasian J Med 45, 47-49.
Koroglu, O.F., Gunata, M., Vardi, N., Yildiz, A., Ates, B., Colak, C., Tanriverdi, L.H., Parlakpinar, H., 2021. Protective effects of naringin on valproic acid-induced hepatotoxicity in rats. Tissue Cell 72, 101526.
Krishna, J.R., Kumar, V., Kumar, N., Indrani, G., 2016. Is the Pleotropic Effect of Ranolazine is Due to its Antioxidant Action. Indian Journal of Cardiovascular Disease in Women-WINCARS 1, 014-021.
Likozar, A.R., Å ebeÅ, M., 2021. Ranolazine, But not Trimetazidine, Influences Markers of Inflammation in Patients with Stable Coronary Artery Disease. Biomedical Journal of Scientific & Technical Research 34, 27027-27034.
Matsumura, H., Hara, A., Hashizume, H., Maruyama, K., Abiko, Y., 1998. Protective effects of ranolazine, a novel anti-ischemic drug, on the hydrogen peroxide-induced derangements in isolated, perfused rat heart: comparison with dichloroacetate. Jpn J Pharmacol 77, 31-39.
McCord, J.M., Fridovich, I., 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049-6055.
McGill, M.R., 2016. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI J 15, 817-828.
Mito, M.S., Constantin, J., de Castro, C.V., Yamamoto, N.S., Bracht, A., 2010. Effects of ranolazine on fatty acid transformation in the isolated perfused rat liver. Mol Cell Biochem 345, 35-44.
Naveena, R., Hashilkar, N.K., Davangeri, R., Majagi, S.I., 2018. Effect of anti-inflammatory activity of ranolazine in rat model of inflammation. Indian J Med Res 148, 743-747.
Pannu, A.K., 2019. Methotrexate overdose in clinical practice. Curr Drug Metab 20, 714-719.
Pivovarov, K., Zipursky, J.S., 2019. Low-dose methotrexate toxicity. CMAJ 191, E423.
Placer, Z.A., Cushman, L.L., Johnson, B.C., 1966. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 16, 359-364.
Ramakrishna, J., Jyotsna, M., Rao, D.S., 2014. Is the pleotropic effect of ranolazine is due to its antioxidant action? indian heart journal 66, S81.
Samdanci, E.T., Huz, M., Ozhan, O., Tanbek, K., Pamukcu, E., Akatli, A.N., Parlakpinar, H., 2019. Cytoprotective effects of molsidomine against methotrexate-induced hepatotoxicity: an experimental rat study. Drug design, development & therapy 13, 13-21.
Song, Y., Shryock, J.C., Wagner, S., Maier, L.S., Belardinelli, L., 2006. Blocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction. J Pharmacol Exp Ther 318, 214-222.
Spolarics, Z., 1998. Endotoxemia, pentose cycle, and the oxidant/antioxidant balance in the hepatic sinusoid. J Leukoc Biol 63, 534-541.
ullah Baig, M.N., Alvi, S.B., Alvala, M., Sama, V., Padmavathi, Y., Ramadevi, P., Alvala, R., 2020. Ranolazine as a Protective Agent Against Lung Cancer: A Translational Approach. Asian Journal of Pharmaceutical and Health Sciences 10.
Uraz, S., Tahan, V., Aygun, C., Eren, F., Unluguzel, G., Yuksel, M., Senturk, O., Avsar, E., Haklar, G., Celikel, C., Hulagu, S., Tozun, N., 2008. Role of ursodeoxycholic acid in prevention of methotrexate-induced liver toxicity. Dig Dis Sci 53, 1071-1077.
Vardi, N., Parlakpinar, H., Ates, B., 2012. Beneficial effects of chlorogenic acid on methotrexate-induced cerebellar Purkinje cell damage in rats. J Chem Neuroanat 43, 43-47.
Vardi, N., Parlakpinar, H., Ates, B., Cetin, A., Otlu, A., 2013. The protective effects of Prunus armeniaca L (apricot) against methotrexate-induced oxidative damage and apoptosis in rat kidney. J Physiol Biochem 69, 371-381.
Vardi, N., Parlakpinar, H., Cetin, A., Erdogan, A., Cetin Ozturk, I., 2010. Protective effect of beta-carotene on methotrexate-induced oxidative liver damage. Toxicol Pathol 38, 592-597.
Wyatt, K.M., Skene, C., Veitch, K., Hue, L., Mccormack, J.G., 1995. The Antianginal Agent Ranolazine Is a Weak Inhibitor of the Respiratory Complex-I, but with Greater Potency in Broken or Uncoupled Than in Coupled Mitochondria. Biochemical pharmacology 50, 1599-1606.
Zhang, X.Y., Lambert, J.C., Doll, M.A., Walraven, J.M., Arteel, G.E., Hein, D.W., 2006. 4,4’-Methylenedianiline-induced hepatotoxicity is modified by N-acetyltransferase 2 (NAT2) acetylator polymorphism in the rat. Journal of Pharmacology and Experimental Therapeutics 316, 289-294.