References
Aebi, H., 1974. Catalase, Methods of enzymatic analysis. Elsevier, pp.
673-684.
Akerboom, T.P., Sies, H., 1981. [48] Assay of glutathione,
glutathione disulfide, and glutathione mixed disulfides in biological
samples, Methods in enzymology. Elsevier, pp. 373-382.
Arinno, A., Shinlapawittayatorn, K., Maneechote, C., Khuanjing, T.,
Chunchai, T., Prathumsap, N., Ongnok, B., Arunsak, B., Jaiwongkam, T.,
Kerdphoo, S., Chattipakorn, S., Chattipakorn, N., 2021. Melatonin,
Metformin, and Ranolazine Protect Heart against Doxorubicin-Induced
Cardiotoxicity through Modulating Cardiac Mitochondrial Dynamics in
Rats. Journal of the American College of Cardiology 77, 3301-3301.
Aslankoç, R., Demirci, D., İnan, Ü., Yıldız, M., Öztürk, A., Çetin, M.,
Savran, E., Yılmaz, B., 2019. The role of antioxidant enzymes in
oxidative stress-superoxide dismutase (SOD), catalase (CAT) and
glutathione peroxidase (GPx). Med J SDU 26, 362-369.
Babiak, R.M., Campello, A.P., Carnieri, E.G., Oliveira, M.B., 1998.
Methotrexate: pentose cycle and oxidative stress. Cell Biochem Funct 16,
283-293.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation
of microgram quantities of protein utilizing the principle of
protein-dye binding. Anal Biochem 72, 248-254.
Chaitman, B.R., Pepine, C.J., Parker, J.O., Skopal, J., Chumakova, G.,
Kuch, J., Wang, W., Skettino, S.L., Wolff, A.A., Combination Assessment
of Ranolazine In Stable Angina, I., 2004. Effects of ranolazine with
atenolol, amlodipine, or diltiazem on exercise tolerance and angina
frequency in patients with severe chronic angina: a randomized
controlled trial. Jama 291, 309-316.
Chladek, J., Martinkova, J., Sispera, L., 1997. An in vitro study on
methotrexate hydroxylation in rat and human liver. Physiol Res 46,
371-379.
Colak, C., Parlakpinar, H., Ermis, N., Tagluk, M.E., Colak, C., Sarihan,
E., Dilek, O.F., Turan, B., Bakir, S., Acet, A., 2012. Effects of
electromagnetic radiation from 3G mobile phone on heart rate, blood
pressure and ECG parameters in rats. Toxicol Ind Health 28, 629-638.
Dalaklioglu, S., Genc, G.E., Aksoy, N.H., Akcit, F., Gumuslu, S., 2013.
Resveratrol ameliorates methotrexate-induced hepatotoxicity in rats via
inhibition of lipid peroxidation. Hum Exp Toxicol 32, 662-671.
El-Sheikh, A.A., Morsy, M.A., Abdalla, A.M., Hamouda, A.H., Alhaider,
I.A., 2015. Mechanisms of Thymoquinone Hepatorenal Protection in
Methotrexate-Induced Toxicity in Rats. Mediators Inflamm 2015, 859383.
Esenboga, K., Kurtul, A., Nazman, H., Tekin, C.G., Ozyuncu, N., Tan,
T.S., Tutar, E., Turhan, S.T., 2022. Evaluation of the Impact of
Ranolazine Treatment on Liver Function Tests in Patients With Coronary
Heart Disease and Nonalcoholic Fatty Liver Disease. Angiology 73, 73-78.
Ghoneum, M., El-Gerbed, M.S.A., 2021. Human placental extract
ameliorates methotrexate-induced hepatotoxicity in rats via regulating
antioxidative and anti-inflammatory responses. Cancer Chemother
Pharmacol 88, 961-971.
Han, Y., Forfia, P.R., Vaidya, A., Mazurek, J.A., Park, M.H., Ramani,
G., Chan, S.Y., Waxman, A.B., 2018. Rationale and design of the
ranolazine PH-RV study: a multicentred randomised and placebo-controlled
study of ranolazine to improve RV function in patients with non-group 2
pulmonary hypertension. Open Heart 5, e000736.
Imprialos, K.P., Stavropoulos, K., Doumas, M., Athyros, V.G., 2022. The
Impact of Ranolazine Treatment on Liver Tests in Patients With Coronary
Artery Disease and Nonalcoholic Fatty Liver Disease. SAGE Publications
Sage CA: Los Angeles, CA, pp. 5-6.
Jaeschke, H., Gores, G.J., Cederbaum, A.I., Hinson, J.A., Pessayre, D.,
Lemasters, J.J., 2002. Mechanisms of hepatotoxicity. Toxicol Sci 65,
166-176.
Jahovic, N., Cevik, H., Sehirli, A.O., Yegen, B.C., Sener, G., 2003.
Melatonin prevents methotrexate-induced hepatorenal oxidative injury in
rats. J Pineal Res 34, 282-287.
Kamen, B.A., Nylen, P.A., Camitta, B.M., Bertino, J.R., 1981.
Methotrexate accumulation and folate depletion in cells as a possible
mechanism of chronic toxicity to the drug. Br J Haematol 49, 355-360.
Kisaoglu, A., Borekci, B., Yapca, O.E., Bilen, H., Suleyman, H., 2013.
Tissue damage and oxidant/antioxidant balance. Eurasian J Med 45, 47-49.
Koroglu, O.F., Gunata, M., Vardi, N., Yildiz, A., Ates, B., Colak, C.,
Tanriverdi, L.H., Parlakpinar, H., 2021. Protective effects of naringin
on valproic acid-induced hepatotoxicity in rats. Tissue Cell 72, 101526.
Krishna, J.R., Kumar, V., Kumar, N., Indrani, G., 2016. Is the
Pleotropic Effect of Ranolazine is Due to its Antioxidant Action. Indian
Journal of Cardiovascular Disease in Women-WINCARS 1, 014-021.
Likozar, A.R., Å ebeÅ, M., 2021. Ranolazine, But not Trimetazidine,
Influences Markers of Inflammation in Patients with Stable Coronary
Artery Disease. Biomedical Journal of Scientific & Technical Research
34, 27027-27034.
Matsumura, H., Hara, A., Hashizume, H., Maruyama, K., Abiko, Y., 1998.
Protective effects of ranolazine, a novel anti-ischemic drug, on the
hydrogen peroxide-induced derangements in isolated, perfused rat heart:
comparison with dichloroacetate. Jpn J Pharmacol 77, 31-39.
McCord, J.M., Fridovich, I., 1969. Superoxide dismutase. An enzymic
function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049-6055.
McGill, M.R., 2016. The past and present of serum aminotransferases and
the future of liver injury biomarkers. EXCLI J 15, 817-828.
Mito, M.S., Constantin, J., de Castro, C.V., Yamamoto, N.S., Bracht, A.,
2010. Effects of ranolazine on fatty acid transformation in the isolated
perfused rat liver. Mol Cell Biochem 345, 35-44.
Naveena, R., Hashilkar, N.K., Davangeri, R., Majagi, S.I., 2018. Effect
of anti-inflammatory activity of ranolazine in rat model of
inflammation. Indian J Med Res 148, 743-747.
Pannu, A.K., 2019. Methotrexate overdose in clinical practice. Curr Drug
Metab 20, 714-719.
Pivovarov, K., Zipursky, J.S., 2019. Low-dose methotrexate toxicity.
CMAJ 191, E423.
Placer, Z.A., Cushman, L.L., Johnson, B.C., 1966. Estimation of product
of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal
Biochem 16, 359-364.
Ramakrishna, J., Jyotsna, M., Rao, D.S., 2014. Is the pleotropic effect
of ranolazine is due to its antioxidant action? indian heart journal 66,
S81.
Samdanci, E.T., Huz, M., Ozhan, O., Tanbek, K., Pamukcu, E., Akatli,
A.N., Parlakpinar, H., 2019. Cytoprotective effects of molsidomine
against methotrexate-induced hepatotoxicity: an experimental rat study.
Drug design, development & therapy 13, 13-21.
Song, Y., Shryock, J.C., Wagner, S., Maier, L.S., Belardinelli, L.,
2006. Blocking late sodium current reduces hydrogen peroxide-induced
arrhythmogenic activity and contractile dysfunction. J Pharmacol Exp
Ther 318, 214-222.
Spolarics, Z., 1998. Endotoxemia, pentose cycle, and the
oxidant/antioxidant balance in the hepatic sinusoid. J Leukoc Biol 63,
534-541.
ullah Baig, M.N., Alvi, S.B., Alvala, M., Sama, V., Padmavathi, Y.,
Ramadevi, P., Alvala, R., 2020. Ranolazine as a Protective Agent Against
Lung Cancer: A Translational Approach. Asian Journal of Pharmaceutical
and Health Sciences 10.
Uraz, S., Tahan, V., Aygun, C., Eren, F., Unluguzel, G., Yuksel, M.,
Senturk, O., Avsar, E., Haklar, G., Celikel, C., Hulagu, S., Tozun, N.,
2008. Role of ursodeoxycholic acid in prevention of methotrexate-induced
liver toxicity. Dig Dis Sci 53, 1071-1077.
Vardi, N., Parlakpinar, H., Ates, B., 2012. Beneficial effects of
chlorogenic acid on methotrexate-induced cerebellar Purkinje cell damage
in rats. J Chem Neuroanat 43, 43-47.
Vardi, N., Parlakpinar, H., Ates, B., Cetin, A., Otlu, A., 2013. The
protective effects of Prunus armeniaca L (apricot) against
methotrexate-induced oxidative damage and apoptosis in rat kidney. J
Physiol Biochem 69, 371-381.
Vardi, N., Parlakpinar, H., Cetin, A., Erdogan, A., Cetin Ozturk, I.,
2010. Protective effect of beta-carotene on methotrexate-induced
oxidative liver damage. Toxicol Pathol 38, 592-597.
Wyatt, K.M., Skene, C., Veitch, K., Hue, L., Mccormack, J.G., 1995. The
Antianginal Agent Ranolazine Is a Weak Inhibitor of the Respiratory
Complex-I, but with Greater Potency in Broken or Uncoupled Than in
Coupled Mitochondria. Biochemical pharmacology 50, 1599-1606.
Zhang, X.Y., Lambert, J.C., Doll, M.A., Walraven, J.M., Arteel, G.E.,
Hein, D.W., 2006. 4,4’-Methylenedianiline-induced hepatotoxicity is
modified by N-acetyltransferase 2 (NAT2) acetylator polymorphism in the
rat. Journal of Pharmacology and Experimental Therapeutics 316, 289-294.