References

1. Chiang C-E, Naditch-Brûlé L, Murin J, Goethals M, Inoue H, O’Neill J, et al. Distribution and risk profile of paroxysmal, persistent, and permanent atrial fibrillation in routine clinical practice: insight from the real-life global survey evaluating patients with atrial fibrillation international registry. Circ Arrhythm Electrophysiol. 2012 Aug 1;5(4):632–9.
2. Duytschaever M, Vijgen J, De Potter T, Scherr D, Van Herendael H, Knecht S, et al. Standardized pulmonary vein isolation workflow to enclose veins with contiguous lesions: the multicentre VISTAX trial. Europace. 2020 Nov 1;22(11):1645–52.
3. Reinsch N, Füting A, Buchholz J, Ruprecht U, Holzendorf V, Buschmeier F, et al. One-year outcome and durability of pulmonary vein isolation after prospective use of ablation index for catheter ablation in patients with persistent atrial fibrillation. J Interv Card Electrophysiol. 2021 Oct;62(1):143–51.
4. Kalin A, Usher-Smith J, Jones VJ, Huang CL-H, Sabir IN. Cardiac Arrhythmia: A Simple Conceptual Framework. Trends Cardiovasc Med. 2010 Apr;20(3):103–7.
5. Haïssaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G, et al. Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. N Engl J Med. 1998 Sep 3;339(10):659–66.
6. Hocini M, Jaïs P, Sanders P, Takahashi Y, Rotter M, Rostock T, et al. Techniques, Evaluation, and Consequences of Linear Block at the Left Atrial Roof in Paroxysmal Atrial Fibrillation. Circulation. 2005 Dec 13;112(24):3688–96.
7. Jaïs P, Hocini M, Hsu L-F, Sanders P, Scavee C, Weerasooriya R, et al. Technique and Results of Linear Ablation at the Mitral Isthmus. Circulation. 2004 Nov 9;110(19):2996–3002.
8. Sheikh I, Krum D, Cooley R, Dhala A, Blanck Z, Bhatia A, et al. Pulmonary vein isolation and linear lesions in atrial fibrillation ablation. J Interv Card Electrophysiol. 2006 Nov;17(2):103–9.
9. Nademanee K, McKenzie J, Kosar E, Schwab M, Sunsaneewitayakul B, Vasavakul T, et al. A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J Am Coll Cardiol. 2004 Jun 2;43(11):2044–53.
10. Narayan SM, Krummen DE, Rappel W-J. Clinical Mapping Approach To Diagnose Electrical Rotors and Focal Impulse Sources for Human Atrial Fibrillation. J Cardiovasc Electrophysiol. 2012 May;23(5):447–54.
11. Buch E, Share M, Tung R, Benharash P, Sharma P, Koneru J, et al. Long-term clinical outcomes of focal impulse and rotor modulation for treatment of atrial fibrillation: A multicenter experience. Hear Rhythm. 2016 Mar;13(3):636–41.
12. Verma A, Jiang C, Betts TR, Chen J, Deisenhofer I, Mantovan R, et al. Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med. 2015 May 7;372(19):1812–22.
13. Morillo CA, Klein GJ, Jones DL, Guiraudon CM. Chronic Rapid Atrial Pacing. Circulation [Internet]. 1995 Mar 1 [cited 2022 Nov 28];91(5):1588–95. Available from: https://www.ahajournals.org/doi/abs/10.1161/01.cir.91.5.1588
14. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995 Oct 1;92(7):1954–68.
15. Davies MJ, Pomerance A. Pathology of atrial fibrillation in man. Br Hear [Internet]. 1972 [cited 2022 Nov 28];34:520–5. Available from: http://heart.bmj.com/
16. Frustaci A, Chimenti C, Bellocci F, Morgante E, Russo MA, Maseri A. Histological Substrate of Atrial Biopsies in Patients With Lone Atrial Fibrillation. Circulation [Internet]. 1997 Aug 19 [cited 2022 Nov 28];96(4):1180–4. Available from: https://www.ahajournals.org/doi/abs/10.1161/01.cir.96.4.1180
17. Oakes RS, Badger TJ, Kholmovski EG, Akoum N, Burgon NS, Fish EN, et al. Detection and Quantification of Left Atrial Structural Remodeling Using Delayed Enhancement MRI in Patients with Atrial Fibrillation. Circulation [Internet]. 2009 Apr 4 [cited 2022 Nov 28];119(13):1758. Available from: /pmc/articles/PMC2725019/
18. Rolf S, Kircher S, Arya A, Eitel C, Sommer P, Richter S, et al. Tailored atrial substrate modification based on low-voltage areas in catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2014 Oct;7(5):825–33.
19. Cutler MJ, Johnson J, Abozguia K, Rowan S, Lewis W, Costantini O, et al. Impact of Voltage Mapping to Guide Whether to Perform Ablation of the Posterior Wall in Patients With Persistent Atrial Fibrillation. J Cardiovasc Electrophysiol. 2016 Jan;27(1):13–21.
20. Cutler MJ, Sattayaprasert P, Pivato E, Jabri A, AlMahameed ST, Ziv O. Low voltage-guided ablation of posterior wall improves 5-year arrhythmia-free survival in persistent atrial fibrillation. J Cardiovasc Electrophysiol [Internet]. 2022 [cited 2022 Nov 28]; Available from: https://pubmed.ncbi.nlm.nih.gov/35332610/
21. Jadidi AS, Lehrmann H, Keyl C, Sorrel J, Markstein V, Minners J, et al. Ablation of Persistent Atrial Fibrillation Targeting Low-Voltage Areas With Selective Activation Characteristics. Circ Arrhythm Electrophysiol [Internet]. 2016 Mar 1 [cited 2022 Nov 28];9(3). Available from: https://pubmed.ncbi.nlm.nih.gov/26966286/
22. Yagishita A, Gimbel JR, De Oliveira S, Manyam H, Sparano D, Cakulev I, et al. Long-Term Outcome of Left Atrial Voltage-Guided Substrate Ablation During Atrial Fibrillation: A Novel Adjunctive Ablation Strategy. J Cardiovasc Electrophysiol [Internet]. 2017 Feb 1 [cited 2022 Nov 28];28(2):147–55. Available from: https://pubmed.ncbi.nlm.nih.gov/27862561/
23. Yang G, Yang B, Wei Y, Zhang F, Ju W, Chen H, et al. Catheter Ablation of Nonparoxysmal Atrial Fibrillation Using Electrophysiologically Guided Substrate Modification During Sinus Rhythm After Pulmonary Vein Isolation. Circ Arrhythm Electrophysiol [Internet]. 2016 Feb 1 [cited 2022 Nov 28];9(2). Available from: https://pubmed.ncbi.nlm.nih.gov/26857907/
24. Wang XH, Li Z, Mao JL, He B. A novel individualized substrate modification approach for the treatment of long-standing persistent atrial fibrillation: preliminary results. Int J Cardiol [Internet]. 2014 Jul 15 [cited 2022 Nov 28];175(1):162–8. Available from: https://pubmed.ncbi.nlm.nih.gov/24874911/
25. Kircher S, Arya A, Altmann D, Rolf S, Bollmann A, Sommer P, et al. Individually tailored vs. standardized substrate modification during radiofrequency catheter ablation for atrial fibrillation: a randomized study. Europace [Internet]. 2018 Nov 1 [cited 2022 Nov 28];20(11):1766–75. Available from: https://pubmed.ncbi.nlm.nih.gov/29177475/
26. Huo Y, Gaspar T, Schönbauer R, Wójcik M, Fiedler L, Roithinger FX, et al. Low-Voltage Myocardium-Guided Ablation Trial of Persistent Atrial Fibrillation. NEJM Evid [Internet]. 2022 Oct 19 [cited 2022 Nov 28];1(11). Available from: https://evidence.nejm.org/doi/full/10.1056/EVIDoa2200141
27. Yang B, Jiang C, Lin Y, Yang G, Chu H, Cai H, et al. STABLE-SR (Electrophysiological Substrate Ablation in the Left Atrium During Sinus Rhythm) for the Treatment of Nonparoxysmal Atrial Fibrillation: A Prospective, Multicenter Randomized Clinical Trial. Circ Arrhythm Electrophysiol [Internet]. 2017 Jan 8 [cited 2022 Nov 28];10(11). Available from: https://pubmed.ncbi.nlm.nih.gov/29141843/
28. Kumagai K, Toyama H, Zhang B. Effects of additional ablation of low-voltage areas after Box isolation for persistent atrial fibrillation. J arrhythmia [Internet]. 2019 Apr 1 [cited 2022 Nov 28];35(2):197–204. Available from: https://pubmed.ncbi.nlm.nih.gov/31007783/
29. Masuda M, Asai M, Iida O, Okamoto S, Ishihara T, Nanto K, et al. Additional Low-Voltage-Area Ablation in Patients With Paroxysmal Atrial Fibrillation: Results of the Randomized Controlled VOLCANO Trial. J Am Heart Assoc [Internet]. 2020 Jul 7 [cited 2022 Nov 28];9(13). Available from: https://pubmed.ncbi.nlm.nih.gov/32578466/
30. Kanda T, Masuda M, Asai M, Iida O, Okamoto S, Ishihara T, et al. Impact of left atrial low-voltage areas during initial ablation procedures on very late recurrence of atrial fibrillation. J Cardiovasc Electrophysiol [Internet]. 2022 Aug 1 [cited 2022 Nov 28];33(8):1697–704. Available from: https://pubmed.ncbi.nlm.nih.gov/35748348/
31. Blandino A, Bianchi F, Grossi S, Biondi-Zoccai G, Conte MR, Gaido L, et al. Left Atrial Substrate Modification Targeting Low-Voltage Areas for Catheter Ablation of Atrial Fibrillation: A Systematic Review and Meta-Analysis. Pacing Clin Electrophysiol [Internet]. 2017 Feb 1 [cited 2022 Nov 28];40(2):199–212. Available from: https://pubmed.ncbi.nlm.nih.gov/28054377/
32. Junarta J, Siddiqui MU, Riley JM, Dikdan SJ, Patel A, Frisch DR. Low-voltage area substrate modification for atrial fibrillation ablation: a systematic review and meta-analysis of clinical trials. Europace [Internet]. 2022 Oct 13 [cited 2022 Nov 28];24(10):1585–98. Available from: https://pubmed.ncbi.nlm.nih.gov/35696286/
33. Aimé-Sempé C, Folliguet T, Rücker-Martin C, Krajewska M, Krajewski S, Heimburger M, et al. Myocardial cell death in fibrillating and dilated human right atria. J Am Coll Cardiol [Internet]. 1999 Nov 1 [cited 2022 Nov 28];34(5):1577–86. Available from: https://pubmed.ncbi.nlm.nih.gov/10551709/
34. Boldt A, Wetzel U, Lauschke J, Weigl J, Gummert J, Hindricks G, et al. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart [Internet]. 2004 Apr 1 [cited 2022 Nov 28];90(4):400–5. Available from: https://heart.bmj.com/content/90/4/400
35. Xu J, Cui G, Esmailian F, Plunkett M, Marelli D, Ardehali A, et al. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation [Internet]. 2004 Jan 27 [cited 2022 Nov 28];109(3):363–8. Available from: https://pubmed.ncbi.nlm.nih.gov/14732752/
36. Mariscalco G, Engström KG, Ferrarese S, Cozzi G, Bruno VD, Sessa F, et al. Relationship between atrial histopathology and atrial fibrillation after coronary bypass surgery. J Thorac Cardiovasc Surg [Internet]. 2006 Jun [cited 2022 Nov 28];131(6):1364–72. Available from: https://pubmed.ncbi.nlm.nih.gov/16733171/
37. Nakai T, Chandy J, Nakai K, Bellows WH, Flachsbart K, Lee RJ, et al. Histologic assessment of right atrial appendage myocardium in patients with atrial fibrillation after coronary artery bypass graft surgery. Cardiology [Internet]. 2007 Aug [cited 2022 Nov 28];108(2):90–6. Available from: https://pubmed.ncbi.nlm.nih.gov/17008797/
38. Kostin S, Klein G, Szalay Z, Hein S, Bauer EP, Schaper J. Structural correlate of atrial fibrillation in human patients. Cardiovasc Res [Internet]. 2002 [cited 2022 Nov 28];54(2):361–79. Available from: https://pubmed.ncbi.nlm.nih.gov/12062341/
39. Luo MH, Li YS, Yang KP. Fibrosis of collagen I and remodeling of connexin 43 in atrial myocardium of patients with atrial fibrillation. Cardiology [Internet]. 2007 May [cited 2022 Nov 28];107(4):248–53. Available from: https://pubmed.ncbi.nlm.nih.gov/16953110/
40. Poelzing S, Rosenbaum DS. Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol Heart Circ Physiol [Internet]. 2004 Oct [cited 2022 Nov 28];287(4). Available from: https://pubmed.ncbi.nlm.nih.gov/15205174/
41. Louault C, Benamer N, Faivre JF, Potreau D, Bescond J. Implication of connexins 40 and 43 in functional coupling between mouse cardiac fibroblasts in primary culture. Biochim Biophys Acta [Internet]. 2008 Oct [cited 2022 Nov 28];1778(10):2097–104. Available from: https://pubmed.ncbi.nlm.nih.gov/18482576/
42. Miragoli M, Gaudesius G, Rohr S. Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circ Res [Internet]. 2006 Mar [cited 2022 Nov 28];98(6):801–10. Available from: https://pubmed.ncbi.nlm.nih.gov/16484613/
43. Kamkin A, Kiseleva I, Wagner KD, Pylaev A, Leiterer KP, Theres H, et al. A possible role for atrial fibroblasts in postinfarction bradycardia. Am J Physiol Heart Circ Physiol [Internet]. 2002 [cited 2022 Nov 28];282(3). Available from: https://pubmed.ncbi.nlm.nih.gov/11834477/
44. Nguyen TP, Xie Y, Garfinkel A, Qu Z, Weiss JN. Arrhythmogenic consequences of myofibroblast–myocyte coupling. Cardiovasc Res [Internet]. 2012 Feb 1 [cited 2022 Nov 28];93(2):242–51. Available from: https://academic.oup.com/cardiovascres/article/93/2/242/300891
45. Zlochiver S, Muñoz V, Vikstrom KL, Taffet SM, Berenfeld O, Jalife J. Electrotonic myofibroblast-to-myocyte coupling increases propensity to reentrant arrhythmias in two-dimensional cardiac monolayers. Biophys J [Internet]. 2008 Nov 1 [cited 2022 Nov 28];95(9):4469–80. Available from: https://pubmed.ncbi.nlm.nih.gov/18658226/
46. King JH, Huang CLH, Fraser JA. Determinants of myocardial conduction velocity: implications for arrhythmogenesis. Front Physiol [Internet]. 2013 [cited 2022 Nov 28];4. Available from: https://pubmed.ncbi.nlm.nih.gov/23825462/
47. Gaudesius G, Miragoli M, Thomas SP, Rohr S. Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ Res [Internet]. 2003 Sep 5 [cited 2022 Nov 28];93(5):421–8. Available from: https://pubmed.ncbi.nlm.nih.gov/12893743/
48. Quinn TA, Camelliti P, Rog-Zielinska EA, Siedlecka U, Poggioli T, O’Toole ET, et al. Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proc Natl Acad Sci U S A [Internet]. 2016 Dec 20 [cited 2022 Nov 28];113(51):14852–7. Available from: https://pubmed.ncbi.nlm.nih.gov/27930302/
49. Rubart M, Tao W, Lu XL, Conway SJ, Reuter SP, Lin SF, et al. Electrical coupling between ventricular myocytes and myofibroblasts in the infarcted mouse heart. Cardiovasc Res [Internet]. 2018 Mar 1 [cited 2022 Nov 28];114(3):389–400. Available from: https://pubmed.ncbi.nlm.nih.gov/29016731/
50. Fareh S, Villemaire C, Nattel S. Importance of refractoriness heterogeneity in the enhanced vulnerability to atrial fibrillation induction caused by tachycardia-induced atrial electrical remodeling. Circulation [Internet]. 1998 Nov 17 [cited 2022 Nov 29];98(20):2202–9. Available from: https://pubmed.ncbi.nlm.nih.gov/9815876/
51. Miragoli M, Salvarani N, Rohr S. Myofibroblasts induce ectopic activity in cardiac tissue. Circ Res [Internet]. 2007 Oct [cited 2022 Nov 29];101(8):755–8. Available from: https://pubmed.ncbi.nlm.nih.gov/17872460/
52. Xie Y, Garfinkel A, Camelliti P, Kohl P, Weiss JN, Qu Z. Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study. Hear Rhythm [Internet]. 2009 Nov [cited 2022 Nov 29];6(11):1641–9. Available from: https://pubmed.ncbi.nlm.nih.gov/19879544/
53. Li D, Fareh S, Leung TK, Nattel S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation [Internet]. 1999 Jul 6 [cited 2022 Nov 29];100(1):87–95. Available from: https://pubmed.ncbi.nlm.nih.gov/10393686/
54. Filgueiras-Rama D, Price NF, Martins RP, Yamazaki M, Avula UMR, Kaur K, et al. Long-term frequency gradients during persistent atrial fibrillation in sheep are associated with stable sources in the left atrium. Circ Arrhythm Electrophysiol [Internet]. 2012 Dec [cited 2022 Nov 29];5(6):1160–7. Available from: https://pubmed.ncbi.nlm.nih.gov/23051840/
55. Everett IV TH, Li H, Mangrum JM, McRury ID, Mitchell MA, Redick JA, et al. Electrical, morphological, and ultrastructural remodeling and reverse remodeling in a canine model of chronic atrial fibrillation. Circulation [Internet]. 2000 Sep 19 [cited 2022 Nov 29];102(12):1454–60. Available from: https://pubmed.ncbi.nlm.nih.gov/10993867/
56. Van Der Velden HMW, Ausma J, Rook MB, Hellemons AJCGM, Van Veen TAAB, Allessie MA, et al. Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovasc Res [Internet]. 2000 Jun [cited 2022 Nov 29];46(3):476–86. Available from: https://pubmed.ncbi.nlm.nih.gov/10912458/
57. Wetzel U, Boldt A, Lauschke J, Weigl J, Schirdewahn P, Dorszewski A, et al. Expression of connexins 40 and 43 in human left atrium in atrial fibrillation of different aetiologies. Heart [Internet]. 2005 Feb [cited 2022 Nov 29];91(2):166–70. Available from: https://pubmed.ncbi.nlm.nih.gov/15657225/
58. Platonov PG, Mitrofanova LB, Orshanskaya V, Ho SY. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age. J Am Coll Cardiol [Internet]. 2011 Nov 15 [cited 2022 Nov 29];58(21):2225–32. Available from: https://pubmed.ncbi.nlm.nih.gov/22078429/
59. Corradi D, Callegari S, Manotti L, Ferrara D, Goldoni M, Alinovi R, et al. Persistent lone atrial fibrillation: clinicopathologic study of 19 cases. Hear Rhythm [Internet]. 2014 [cited 2022 Nov 29];11(7):1250–8. Available from: https://pubmed.ncbi.nlm.nih.gov/24560692/
60. Hanna N, Cardin S, Leung TK, Nattel S. Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovasc Res [Internet]. 2004 Aug 1 [cited 2022 Nov 29];63(2):236–44. Available from: https://pubmed.ncbi.nlm.nih.gov/15249181/
61. de Boer RA, De Keulenaer G, Bauersachs J, Brutsaert D, Cleland JG, Diez J, et al. Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur J Heart Fail [Internet]. 2019 Mar 1 [cited 2022 Nov 29];21(3):272–85. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/ejhf.1406
62. Krul SPJ, Berger WR, Smit NW, Van Amersfoorth SCM, Driessen AHG, Van Boven WJ, et al. Atrial fibrosis and conduction slowing in the left atrial appendage of patients undergoing thoracoscopic surgical pulmonary vein isolation for atrial fibrillation. Circ Arrhythm Electrophysiol [Internet]. 2015 Apr 20 [cited 2022 Nov 29];8(2):288–95. Available from: https://pubmed.ncbi.nlm.nih.gov/25673630/
63. Chen S, Zhang L, Bryant RM, Vincent GM, Flippin M, Lee JC, et al. KCNQ1 mutations in patients with a family history of lethal cardiac arrhythmias and sudden death. Clin Genet [Internet]. 2003 Apr 1 [cited 2022 Nov 29];63(4):273–82. Available from: https://pubmed.ncbi.nlm.nih.gov/12702160/
64. Hong K, Bjerregaard P, Gussak I, Brugada R. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol [Internet]. 2005 Apr [cited 2022 Nov 29];16(4):394–6. Available from: https://pubmed.ncbi.nlm.nih.gov/15828882/
65. Mann SA, Otway R, Guo G, Soka M, Karlsdotter L, Trivedi G, et al. Epistatic effects of potassium channel variation on cardiac repolarization and atrial fibrillation risk. J Am Coll Cardiol [Internet]. 2012 Mar 13 [cited 2022 Nov 29];59(11):1017–25. Available from: https://pubmed.ncbi.nlm.nih.gov/22402074/
66. Olesen MS, Yuan L, Liang B, Hols AG, Nielsen N, Nielsen JB, et al. High prevalence of long QT syndrome-associated SCN5A variants in patients with early-onset lone atrial fibrillation. Circ Cardiovasc Genet [Internet]. 2012 Aug [cited 2022 Nov 29];5(4):450–9. Available from: https://pubmed.ncbi.nlm.nih.gov/22685113/
67. Watanabe H, Darbar D, Kaiser DW, Jiramongkolchai K, Chopra S, Donahue BS, et al. Mutations in sodium channel β1- and β2-subunits associated with atrial fibrillation. Circ Arrhythm Electrophysiol [Internet]. 2009 Jun [cited 2022 Nov 29];2(3):268–75. Available from: https://pubmed.ncbi.nlm.nih.gov/19808477/
68. Daoud EG, Bogun F, Goyal R, Harvey M, Ching Man K, Adam Strickberger S, et al. Effect of atrial fibrillation on atrial refractoriness in humans. Circulation [Internet]. 1996 [cited 2022 Nov 29];94(7):1600–6. Available from: https://pubmed.ncbi.nlm.nih.gov/8840850/
69. Kumagai K, Akimitsu S, Kawahira K, Kawanami F, Yamanouchi Y, Hiroki T, et al. Electrophysiological properties in chronic lone atrial fibrillation. Circulation [Internet]. 1991 [cited 2022 Nov 29];84(4):1662–8. Available from: https://pubmed.ncbi.nlm.nih.gov/1914105/
70. Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kühlkamp V. Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res [Internet]. 1999 Oct [cited 2022 Nov 29];44(1):121–31. Available from: https://pubmed.ncbi.nlm.nih.gov/10615396/
71. Boutjdir M, Le Heuzey JY, Lavergne T, Chauvaud S, Guize L, Carpentier A, et al. Inhomogeneity of cellular refractoriness in human atrium: factor of arrhythmia? Pacing Clin Electrophysiol [Internet]. 1986 [cited 2022 Nov 29];9(6):1095–100. Available from: https://pubmed.ncbi.nlm.nih.gov/2432515/
72. Van Wagoner DR, Pond AL, McCarthy PM, Trimmer JS, Nerbonne JM. Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res [Internet]. 1997 [cited 2022 Nov 29];80(6):772–81. Available from: https://pubmed.ncbi.nlm.nih.gov/9168779/
73. Brundel BJJM, Van Gelder IC, Henning RH, Tuinenburg AE, Deelman LE, Tieleman RG, et al. Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc Res [Internet]. 1999 May [cited 2022 Nov 29];42(2):443–54. Available from: https://pubmed.ncbi.nlm.nih.gov/10533580/
74. Lai LP, Su MJ, Lin JL, Lin FY, Tsai CH, Chen YS, et al. Down-regulation of L-type calcium channel and sarcoplasmic reticular Ca(2+)-ATPase mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor, calsequestrin and phospholamban: an insight into the mechanism of atrial electrical remodeling. J Am Coll Cardiol [Internet]. 1999 Apr [cited 2022 Nov 29];33(5):1231–7. Available from: https://pubmed.ncbi.nlm.nih.gov/10193721/
75. Dobrev D, Friedrich A, Voigt N, Jost N, Wettwer E, Christ T, et al. The G protein-gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation [Internet]. 2005 Dec [cited 2022 Nov 29];112(24):3697–706. Available from: https://pubmed.ncbi.nlm.nih.gov/16330682/
76. Courtemanche M, Ramirez RJ, Nattel S. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol [Internet]. 1998 [cited 2022 Nov 29];275(1). Available from: https://pubmed.ncbi.nlm.nih.gov/9688927/
77. Wettwer E, Hála O, Christ T, Heubach JF, Dobrev D, Knaut M, et al. Role of IKur in controlling action potential shape and contractility in the human atrium: influence of chronic atrial fibrillation. Circulation [Internet]. 2004 Oct 19 [cited 2022 Nov 29];110(16):2299–306. Available from: https://pubmed.ncbi.nlm.nih.gov/15477405/
78. Verma A, Wazni OM, Marrouche NF, Martin DO, Kilicaslan F, Minor S, et al. Pre-existent left atrial scarring in patients undergoing pulmonary vein antrum isolation: an independent predictor of procedural failure. J Am Coll Cardiol [Internet]. 2005 Jan 18 [cited 2022 Nov 29];45(2):285–92. Available from: https://pubmed.ncbi.nlm.nih.gov/15653029/
79. Kumagai K, Minami K, Kutsuzawa D, Oshima S. Evaluation of the characteristics of rotational activation at high-dominant frequency and complex fractionated atrial electrogram sites during atrial fibrillation. J arrhythmia [Internet]. 2017 Feb 1 [cited 2022 Nov 29];33(1):49–55. Available from: https://pubmed.ncbi.nlm.nih.gov/28217229/
80. Ahmed-Jushuf F, Murgatroyd F, Dhillon P, Scott PA. The impact of the presence of left atrial low voltage areas on outcomes from pulmonary vein isolation. J arrhythmia [Internet]. 2019 Apr 1 [cited 2022 Nov 28];35(2):205–14. Available from: https://pubmed.ncbi.nlm.nih.gov/31007784/
81. Masuda M, Fujita M, Iida O, Okamoto S, Ishihara T, Nanto K, et al. Left atrial low-voltage areas predict atrial fibrillation recurrence after catheter ablation in patients with paroxysmal atrial fibrillation. Int J Cardiol [Internet]. 2018 Apr 15 [cited 2022 Nov 29];257:97–101. Available from: https://pubmed.ncbi.nlm.nih.gov/29506746/
82. Wang X hua, Li Z, Mao J liang, Zang M hua, Pu J. Low voltage areas in paroxysmal atrial fibrillation: The prevalence, risk factors and impact on the effectiveness of catheter ablation. Int J Cardiol [Internet]. 2018 Oct 15 [cited 2022 Nov 29];269:139–44. Available from: https://pubmed.ncbi.nlm.nih.gov/30060968/
83. Sanders P, Berenfeld O, Hocini M, Jaïs P, Vaidyanathan R, Hsu LF, et al. Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation [Internet]. 2005 Aug 9 [cited 2022 Nov 29];112(6):789–97. Available from: https://pubmed.ncbi.nlm.nih.gov/16061740/
84. Honarbakhsh S, Schilling RJ, Orini M, Providencia R, Keating E, Finlay M, et al. Structural remodeling and conduction velocity dynamics in the human left atrium: Relationship with reentrant mechanisms sustaining atrial fibrillation. Hear Rhythm [Internet]. 2019 Jan 1 [cited 2022 Nov 29];16(1):18–25. Available from: https://pubmed.ncbi.nlm.nih.gov/30026014/
85. Miyamoto K, Tsuchiya T, Narita S, Yamaguchi T, Nagamoto Y, Ando SI, et al. Bipolar electrogram amplitudes in the left atrium are related to local conduction velocity in patients with atrial fibrillation. Europace [Internet]. 2009 Dec [cited 2022 Nov 29];11(12):1597–605. Available from: https://pubmed.ncbi.nlm.nih.gov/19910315/
86. Ghoraani B, Dalvi R, Gizurarson S, Das M, Ha A, Suszko A, et al. Localized rotational activation in the left atrium during human atrial fibrillation: relationship to complex fractionated atrial electrograms and low-voltage zones. Hear Rhythm [Internet]. 2013 Dec [cited 2022 Nov 29];10(12):1830–8. Available from: https://pubmed.ncbi.nlm.nih.gov/24016695/
87. Kawai S, Mukai Y, Inoue S, Yakabe D, Nagaoka K, Sakamoto K, et al. Non-Pulmonary Vein Triggers of Atrial Fibrillation Are Likely to Arise from Low-Voltage Areas in the Left Atrium. Sci Rep [Internet]. 2019 Dec 1 [cited 2022 Nov 29];9(1). Available from: https://pubmed.ncbi.nlm.nih.gov/31439861/
88. Yagishita A, De Oliveira S, Cakulev I, Gimbel JR, Sparano D, Manyam H, et al. Correlation of Left Atrial Voltage Distribution Between Sinus Rhythm and Atrial Fibrillation: Identifying Structural Remodeling by 3-D Electroanatomic Mapping Irrespective of the Rhythm. J Cardiovasc Electrophysiol [Internet]. 2016 [cited 2022 Nov 29];27(8):905–12. Available from: https://pubmed.ncbi.nlm.nih.gov/27135965/
89. Huang D, Li J bo, Zghaib T, Gucuk Ipek E, Balouch M, Spragg DD, et al. The Extent of Left Atrial Low-Voltage Areas Included in Pulmonary Vein Isolation Is Associated With Freedom from Recurrent Atrial Arrhythmia. Can J Cardiol [Internet]. 2018 Jan 1 [cited 2022 Nov 29];34(1):73–9. Available from: https://pubmed.ncbi.nlm.nih.gov/29275886/
90. Ammar-Busch S, Buiatti A, Tatzber A, Reents T, Bourier F, Semmler V, et al. Predictors of low voltage areas in persistent atrial fibrillation: is it really a matter of time? J Interv Card Electrophysiol [Internet]. 2020 Apr 1 [cited 2022 Nov 29];57(3):345–52. Available from: https://pubmed.ncbi.nlm.nih.gov/30374659/
91. Nery PB, Al Dawood W, Nair GM, Redpath CJ, Sadek MM, Chen L, et al. Characterization of Low-Voltage Areas in Patients With Atrial Fibrillation: Insights From High-Density Intracardiac Mapping. Can J Cardiol [Internet]. 2018 Aug 1 [cited 2022 Nov 29];34(8):1033–40. Available from: https://pubmed.ncbi.nlm.nih.gov/30056843/
92. Zhou W, Wang L, Zhou B, Wu L. Catheter ablation of paroxysmal atrial fibrillation using high-density mapping-guided substrate modification. Pacing Clin Electrophysiol [Internet]. 2018 Dec 1 [cited 2022 Nov 28];41(12):1630–4. Available from: https://pubmed.ncbi.nlm.nih.gov/30353561/
93. Charitos EI, Pürerfellner H, Glotzer T V., Ziegler PD. Clinical classifications of atrial fibrillation poorly reflect its temporal persistence: insights from 1,195 patients continuously monitored with implantable devices. J Am Coll Cardiol [Internet]. 2014 Jul 1 [cited 2022 Nov 29];63(25 Pt A):2840–8. Available from: https://pubmed.ncbi.nlm.nih.gov/24814497/
94. Charitos EI, Ziegler PD, Stierle U, Robinson DR, Graf B, Sievers HH, et al. Atrial fibrillation burden estimates derived from intermittent rhythm monitoring are unreliable estimates of the true atrial fibrillation burden. Pacing Clin Electrophysiol [Internet]. 2014 Sep 1 [cited 2022 Nov 29];37(9):1210–8. Available from: https://pubmed.ncbi.nlm.nih.gov/24665972/
95. Hwang M, Kim J, Lim B, Song JS, Joung B, Shim EB, et al. Multiple factors influence the morphology of the bipolar electrogram: An in silico modeling study. PLoS Comput Biol [Internet]. 2019 [cited 2022 Nov 29];15(4). Available from: https://pubmed.ncbi.nlm.nih.gov/30951529/
96. Mori H, Kato R, Ikeda Y, Goto K, Tanaka S, Asano S, et al. The influence of the electrodes spacing of a mapping catheter on the atrial voltage substrate map. J Cardiol [Internet]. 2018 Nov 1 [cited 2022 Nov 29];72(5):434–42. Available from: https://pubmed.ncbi.nlm.nih.gov/29859827/
97. Beheshti M, Magtibay K, Massé S, Porta-Sanchez A, Haldar S, Bhaskaran A, et al. Determinants of atrial bipolar voltage: Inter electrode distance and wavefront angle. Comput Biol Med [Internet]. 2018 Nov 1 [cited 2022 Nov 29];102:449–57. Available from: https://pubmed.ncbi.nlm.nih.gov/30316448/
98. Stinnett-Donnelly JM, Thompson N, Habel N, Petrov-Kondratov V, Correa De Sa DD, Bates JHT, et al. Effects of electrode size and spacing on the resolution of intracardiac electrograms. Coron Artery Dis [Internet]. 2012 Mar [cited 2022 Nov 29];23(2):126–32. Available from: https://pubmed.ncbi.nlm.nih.gov/22258280/
99. Kumar S, Chan M, Lee J, Wong MCG, Yudi M, Morton JB, et al. Catheter-tissue contact force determines atrial electrogram characteristics before and lesion efficacy after antral pulmonary vein isolation in humans. J Cardiovasc Electrophysiol [Internet]. 2014 Feb [cited 2022 Nov 29];25(2):122–9. Available from: https://pubmed.ncbi.nlm.nih.gov/24102727/
100. Sasaki N, Okumura Y, Watanabe I, Sonoda K, Kogawa R, Takahashi K, et al. Relations between contact force, bipolar voltage amplitude, and mapping point distance from the left atrial surfaces of 3D ultrasound- and merged 3D CT-derived images: Implication for atrial fibrillation mapping and ablation. Hear Rhythm [Internet]. 2015 Jan 1 [cited 2022 Nov 29];12(1):36–43. Available from: https://pubmed.ncbi.nlm.nih.gov/25218838/
101. Marcus GM, Yang Y, Varosy PD, Ordovas K, Tseng ZH, Badhwar N, et al. Regional Left Atrial Voltage in Patients with Atrial Fibrillation. Heart Rhythm [Internet]. 2007 Feb [cited 2022 Nov 29];4(2):138. Available from: /pmc/articles/PMC1868443/
102. Huemer M, Qaiyumi D, Attanasio P, Parwani A, Pieske B, Blaschke F, et al. Does the extent of left atrial arrhythmogenic substrate depend on the electroanatomical mapping technique: impact of pulmonary vein mapping catheter vs. ablation catheter. Europace [Internet]. 2017 Aug 1 [cited 2022 Nov 29];19(8):1293–301. Available from: https://pubmed.ncbi.nlm.nih.gov/27738066/
103. Liang JJ, Elafros MA, Muser D, Pathak RK, Santangeli P, Supple GE, et al. Comparison of Left Atrial Bipolar Voltage and Scar Using Multielectrode Fast Automated Mapping versus Point-by-Point Contact Electroanatomic Mapping in Patients With Atrial Fibrillation Undergoing Repeat Ablation. J Cardiovasc Electrophysiol [Internet]. 2017 Mar 1 [cited 2022 Nov 29];28(3):280–8. Available from: https://pubmed.ncbi.nlm.nih.gov/27997060/
104. Anter E, Tschabrunn CM, Josephson ME. High-resolution mapping of scar-related atrial arrhythmias using smaller electrodes with closer interelectrode spacing. Circ Arrhythm Electrophysiol [Internet]. 2015 Jun 4 [cited 2022 Nov 29];8(3):537–45. Available from: https://pubmed.ncbi.nlm.nih.gov/25792508/
105. Zghaib T, Keramati A, Chrispin J, Huang D, Balouch MA, Ciuffo L, et al. Multimodal Examination of Atrial Fibrillation Substrate: Correlation of Left Atrial Bipolar Voltage Using Multi-Electrode Fast Automated Mapping, Point-by-Point Mapping, and Magnetic Resonance Image Intensity Ratio. JACC Clin Electrophysiol [Internet]. 2018 Jan 1 [cited 2023 May 10];4(1):59–68. Available from: https://pubmed.ncbi.nlm.nih.gov/29520376/
106. Masuda M, Asai M, Iida O, Okamoto S, Ishihara T, Nanto K, et al. Comparison of electrogram waveforms between a multielectrode mapping catheter and a linear ablation catheter. Pacing Clin Electrophysiol [Internet]. 2019 May 1 [cited 2022 Nov 29];42(5):515–20. Available from: https://pubmed.ncbi.nlm.nih.gov/30882916/
107. Jaïs P, Shah DC, Haïssaguerre M, Hocini M, Peng JT, Takahashi A, et al. Mapping and Ablation of Left Atrial Flutters. Circulation [Internet]. 2000 Jun 27 [cited 2022 Nov 29];101(25):2928–34. Available from: https://www.ahajournals.org/doi/abs/10.1161/01.cir.101.25.2928
108. Chang SL, Tai CT, Lin YJ, Wongcharoen W, Lo LW, Tuan TC, et al. Biatrial Substrate Properties in Patients with Atrial Fibrillation. J Cardiovasc Electrophysiol [Internet]. 2007 Nov 1 [cited 2022 Nov 29];18(11):1134–9. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1540-8167.2007.00941.x
109. Sanders P, Morton JB, Davidson NC, Spence SJ, Vohra JK, Sparks PB, et al. Electrical Remodeling of the Atria in Congestive Heart Failure. Circulation [Internet]. 2003 Sep 23 [cited 2022 Nov 29];108(12):1461–8. Available from: https://www.ahajournals.org/doi/abs/10.1161/01.CIR.0000090688.49283.67
110. Kapa S, Desjardins B, Callans DJ, Marchlinski FE, Dixit S. Contact electroanatomic mapping derived voltage criteria for characterizing left atrial scar in patients undergoing ablation for atrial fibrillation. J Cardiovasc Electrophysiol [Internet]. 2014 Oct 1 [cited 2022 Nov 29];25(10):1044–52. Available from: https://pubmed.ncbi.nlm.nih.gov/24832482/
111. Saghy L, Callans DJ, Garcia F, Lin D, Marchlinski FE, Riley M, et al. Is there a relationship between complex fractionated atrial electrograms recorded during atrial fibrillation and sinus rhythm fractionation? Hear Rhythm [Internet]. 2012 Feb [cited 2022 Nov 29];9(2):181–8. Available from: https://pubmed.ncbi.nlm.nih.gov/21946341/
112. Lin Y, Yang B, Garcia FC, Ju W, Zhang F, Chen H, et al. Comparison of left atrial electrophysiologic abnormalities during sinus rhythm in patients with different type of atrial fibrillation. J Interv Card Electrophysiol [Internet]. 2014 Jan [cited 2022 Nov 29];39(1):57–67. Available from: https://pubmed.ncbi.nlm.nih.gov/24113851/
113. Stiles MK, John B, Wong CX, Kuklik P, Brooks AG, Lau DH, et al. Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: characterizing the “second factor.” J Am Coll Cardiol [Internet]. 2009 Apr 7 [cited 2022 Nov 29];53(14):1182–91. Available from: https://pubmed.ncbi.nlm.nih.gov/19341858/
114. Kogawa R, Okumura Y, Watanabe I, Nagashima K, Takahashi K, Iso K, et al. Left atrial remodeling: Regional differences between paroxysmal and persistent atrial fibrillation. J arrhythmia [Internet]. 2017 Oct 1 [cited 2022 Nov 29];33(5):483–7. Available from: https://pubmed.ncbi.nlm.nih.gov/29021854/
115. Teh AW, Kistler PM, Lee G, Medi C, Heck PM, Spence SJ, et al. Electroanatomic remodeling of the left atrium in paroxysmal and persistent atrial fibrillation patients without structural heart disease. J Cardiovasc Electrophysiol [Internet]. 2012 Mar [cited 2022 Nov 29];23(3):232–8. Available from: https://pubmed.ncbi.nlm.nih.gov/21955090/
116. Hall B, Jeevanantham V, Simon R, Filippone J, Vorobiof G, Daubert J. Variation in left atrial transmural wall thickness at sites commonly targeted for ablation of atrial fibrillation. J Interv Card Electrophysiol [Internet]. 2006 Mar 15 [cited 2022 Nov 29];17(2):127–32. Available from: https://pubmed.ncbi.nlm.nih.gov/17226084/
117. Ho SY, Sanchez-Quintana D, Cabrera JA, Anderson RH. Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. J Cardiovasc Electrophysiol [Internet]. 1999 [cited 2022 Nov 29];10(11):1525–33. Available from: https://pubmed.ncbi.nlm.nih.gov/10571372/
118. Schuessler RB, Kawamoto T, Hand DE, Mitsuno M, Bromberg BI, Cox JL, et al. Simultaneous epicardial and endocardial activation sequence mapping in the isolated canine right atrium. Circulation [Internet]. 1993 Jul [cited 2022 Nov 29];88(1):250–63. Available from: https://pubmed.ncbi.nlm.nih.gov/8319340/
119. Nakatani Y, Sakamoto T, Yamaguchi Y, Tsujino Y, Kataoka N, Kinugawa K. Left atrial wall thickness is associated with the low-voltage area in patients with paroxysmal atrial fibrillation. J Interv Card Electrophysiol [Internet]. 2020 Sep 13 [cited 2022 Nov 29];58(3):315–21. Available from: https://pubmed.ncbi.nlm.nih.gov/31410703/
120. Pashakhanloo F, Herzka DA, Ashikaga H, Mori S, Gai N, Bluemke DA, et al. Myofiber Architecture of the Human Atria as Revealed by Submillimeter Diffusion Tensor Imaging. Circ Arrhythm Electrophysiol [Internet]. 2016 Apr 1 [cited 2022 Nov 29];9(4). Available from: https://pubmed.ncbi.nlm.nih.gov/27071829/
121. Hunter RJ, Liu Y, Lu Y, Wang W, Schilling RJ. Left atrial wall stress distribution and its relationship to electrophysiologic remodeling in persistent atrial fibrillation. Circ Arrhythm Electrophysiol [Internet]. 2012 Apr [cited 2022 Nov 29];5(2):351–60. Available from: https://pubmed.ncbi.nlm.nih.gov/22294615/
122. Hori Y, Nakahara S, Tsukada N, Nakagawa A, Hayashi A, Komatsu T, et al. The influence of the external structures in atrial fibrillation patients: Relationship to focal low voltage areas in the left atrium. Int J Cardiol [Internet]. 2015 Feb 15 [cited 2022 Nov 29];181:225–31. Available from: https://pubmed.ncbi.nlm.nih.gov/25528317/
123. Nedios S, Sanatkhani S, Oladosu M, Seewöster T, Richter S, Arya A, et al. Association of low-voltage areas with the regional wall deformation and the left atrial shape in patients with atrial fibrillation: A proof of concept study. Int J Cardiol Hear Vasc [Internet]. 2021 Apr 1 [cited 2022 Nov 29];33. Available from: https://pubmed.ncbi.nlm.nih.gov/33718586/
124. John B, Stiles MK, Kuklik P, Brooks AG, Chandy ST, Kalman JM, et al. Reverse remodeling of the atria after treatment of chronic stretch in humans: implications for the atrial fibrillation substrate. J Am Coll Cardiol [Internet]. 2010 Mar 23 [cited 2022 Nov 29];55(12):1217–26. Available from: https://pubmed.ncbi.nlm.nih.gov/20298929/
125. Gaborit N, Steenman M, Lamirault G, Le Meur N, Le Bouter S, Lande G, et al. Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation [Internet]. 2005 Jul 26 [cited 2022 Nov 29];112(4):471–81. Available from: https://pubmed.ncbi.nlm.nih.gov/16027256/
126. Ruknudin A, Sachs F, Bustamante JO. Stretch-activated ion channels in tissue-cultured chick heart. Am J Physiol [Internet]. 1993 [cited 2022 Nov 29];264(3 Pt 2). Available from: https://pubmed.ncbi.nlm.nih.gov/7681265/
127. Ndrepepa G, Schneider MAE, Karch MR, Weber S, Schreieck J, Zrenner B, et al. Impact of atrial fibrillation on the voltage of bipolar signals acquired from the left and right atria. Pacing Clin Electrophysiol [Internet]. 2003 Apr 1 [cited 2022 Nov 29];26(4 Pt 1):862–9. Available from: https://pubmed.ncbi.nlm.nih.gov/12715847/
128. Bradfield JS, Huang W, Tung R, Buch E, Okhovat JP, Fujimura O, et al. Tissue voltage discordance during tachycardia versus sinus rhythm: implications for catheter ablation. Hear Rhythm [Internet]. 2013 [cited 2022 Nov 29];10(6):800–4. Available from: https://pubmed.ncbi.nlm.nih.gov/23434619/
129. Rodríguez-Mañero M, Valderrábano M, Baluja A, Kreidieh O, Martínez-Sande JL, García-Seara J, et al. Validating Left Atrial Low Voltage Areas During Atrial Fibrillation and Atrial Flutter Using Multielectrode Automated Electroanatomic Mapping. JACC Clin Electrophysiol [Internet]. 2018 Dec 1 [cited 2022 Nov 29];4(12):1541–52. Available from: https://pubmed.ncbi.nlm.nih.gov/30573117/
130. Masuda M, Fujita M, Iida O, Okamoto S, Ishihara T, Nanto K, et al. Comparison of Left Atrial Voltage between Sinus Rhythm and Atrial Fibrillation in Association with Electrogram Waveform. Pacing Clin Electrophysiol [Internet]. 2017 May 1 [cited 2022 Nov 29];40(5):559–67. Available from: https://pubmed.ncbi.nlm.nih.gov/28211132/
131. Chang CJ, Lin YJ, Higa S, Chang SL, Lo LW, Tuan TC, et al. The disparities in the electrogram voltage measurement during atrial fibrillation and sinus rhythm. J Cardiovasc Electrophysiol [Internet]. 2010 [cited 2022 Nov 29];21(4):393–8. Available from: https://pubmed.ncbi.nlm.nih.gov/19909388/
132. Sivagangabalan G, Pouliopoulos J, Huang K, Lu J, Barry MA, Thiagalingam A, et al. Comparison of electroanatomic contact and noncontact mapping of ventricular scar in a postinfarct ovine model with intramural needle electrode recording and histological validation. Circ Arrhythm Electrophysiol [Internet]. 2008 [cited 2022 Nov 29];1(5):363–9. Available from: https://pubmed.ncbi.nlm.nih.gov/19808431/
133. Harrison JL, Jensen HK, Peel SA, Chiribiri A, Grondal AK, Bloch LO, et al. Cardiac magnetic resonance and electroanatomical mapping of acute and chronic atrial ablation injury: a histological validation study. Eur Heart J [Internet]. 2014 Jun 7 [cited 2022 Nov 29];35(22):1486–95. Available from: https://pubmed.ncbi.nlm.nih.gov/24419806/
134. Yamaguchi T, Otsubo T, Takahashi Y, Nakashima K, Fukui A, Hirota K, et al. Atrial Structural Remodeling in Patients With Atrial Fibrillation Is a Diffuse Fibrotic Process: Evidence From High-Density Voltage Mapping and Atrial Biopsy. J Am Heart Assoc [Internet]. 2022 Mar 15 [cited 2022 Nov 29];11(6). Available from: https://pubmed.ncbi.nlm.nih.gov/35261287/
135. Ramos KS, Pool L, van Schie MS, Wijdeveld LFJM, van der Does WFB, Baks L, et al. Degree of Fibrosis in Human Atrial Tissue Is Not the Hallmark Driving AF. Cells [Internet]. 2022 Feb 1 [cited 2022 Nov 29];11(3). Available from: https://pubmed.ncbi.nlm.nih.gov/35159236/
136. Hwang J, Park HS, Han S, Lee CH, Kim IC, Cho YK, et al. Ablation of persistent atrial fibrillation based on high density voltage mapping and complex fractionated atrial electrograms: A randomized controlled trial. Medicine (Baltimore) [Internet]. 2021 Aug 6 [cited 2022 Nov 29];100(31):e26702. Available from: https://pubmed.ncbi.nlm.nih.gov/34397805/
137. Jadidi A, Nothstein M, Chen J, Lehrmann H, Dössel O, Allgeier J, et al. Specific Electrogram Characteristics Identify the Extra-Pulmonary Vein Arrhythmogenic Sources of Persistent Atrial Fibrillation - Characterization of the Arrhythmogenic Electrogram Patterns During Atrial Fibrillation and Sinus Rhythm. Sci Rep [Internet]. 2020 Dec 1 [cited 2022 Nov 29];10(1). Available from: https://pubmed.ncbi.nlm.nih.gov/32499483/
138. Malaczynska-Rajpold K, Jarman J, Shi R, Wright P, Wong T, Markides V. Beyond pulmonary vein isolation for persistent atrial fibrillation: sequential high-resolution mapping to guide ablation. J Interv Card Electrophysiol [Internet]. 2022 Oct 1 [cited 2022 Nov 29];65(1):53–62. Available from: https://pubmed.ncbi.nlm.nih.gov/35000099/
139. Shi R, Chen Z, Pope MTB, Zaman JAB, Debney M, Marinelli A, et al. Individualized ablation strategy to treat persistent atrial fibrillation: Core-to-boundary approach guided by charge-density mapping. Hear Rhythm [Internet]. 2021 Jun 1 [cited 2022 Nov 29];18(6):862–70. Available from: https://pubmed.ncbi.nlm.nih.gov/33610744/
140. Qureshi NA, Kim SJ, Cantwell CD, Afonso VX, Bai W, Ali RL, et al. Voltage during atrial fibrillation is superior to voltage during sinus rhythm in localizing areas of delayed enhancement on magnetic resonance imaging: An assessment of the posterior left atrium in patients with persistent atrial fibrillation. Hear Rhythm [Internet]. 2019 Sep 1 [cited 2022 Nov 29];16(9):1357–67. Available from: https://pubmed.ncbi.nlm.nih.gov/31170484/
141. Deno DC, Balachandran R, Morgan D, Ahmad F, Masse S, Nanthakumar K. Orientation-Independent Catheter-Based Characterization of Myocardial Activation. IEEE Trans Biomed Eng [Internet]. 2017 May 1 [cited 2022 Nov 29];64(5):1067–177. Available from: https://pubmed.ncbi.nlm.nih.gov/27411215/
142. Massé S, Magtibay K, Jackson N, Asta J, Kusha M, Zhang B, et al. Resolving myocardial activation with novel omnipolar electrograms. Circ Arrhythmia Electrophysiol [Internet]. 2016 Jul 1 [cited 2022 Nov 29];9(7). Available from: https://pubmed.ncbi.nlm.nih.gov/27406608/
143. Magtibay K, Massé S, Asta J, Kusha M, Lai PFH, Azam MA, et al. Physiological Assessment of Ventricular Myocardial Voltage Using Omnipolar Electrograms. J Am Heart Assoc [Internet]. 2017 Aug 1 [cited 2022 Nov 29];6(8). Available from: https://pubmed.ncbi.nlm.nih.gov/28862942/
144. Haldar SK, Magtibay K, Porta-Sanchez A, Massé S, Mitsakakis N, Lai PFH, et al. Resolving Bipolar Electrogram Voltages During Atrial Fibrillation Using Omnipolar Mapping. Circ Arrhythm Electrophysiol [Internet]. 2017 Sep 1 [cited 2022 Nov 29];10(9). Available from: https://pubmed.ncbi.nlm.nih.gov/28887362/
145. Rillo M, Palamà Z, Punzi R, Vitanza S, Aloisio A, Polini S, et al. A new interpretation of nonpulmonary vein substrates of the left atrium in patients with atrial fibrillation. J arrhythmia [Internet]. 2021 Apr 1 [cited 2022 Nov 29];37(2):338–47. Available from: https://pubmed.ncbi.nlm.nih.gov/33850575/
146. Marchlinski FE, Callans DJ, Gottlieb CD, Zado E. Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation [Internet]. 2000 Mar 21 [cited 2023 May 19];101(11):1288–96. Available from: https://pubmed.ncbi.nlm.nih.gov/10725289/
147. Cassidy DM, Vassallo JA, Miller JM, Poll DS, Buxton AE, Marchlinski FE, et al. Endocardial catheter mapping in patients in sinus rhythm: relationship to underlying heart disease and ventricular arrhythmias. Circulation [Internet]. 1986 [cited 2022 Nov 29];73(4):645–52. Available from: https://pubmed.ncbi.nlm.nih.gov/3948367/
148. Vergara P, Trevisi N, Ricco A, Petracca F, Baratto F, Cireddu M, et al. Late potentials abolition as an additional technique for reduction of arrhythmia recurrence in scar related ventricular tachycardia ablation. J Cardiovasc Electrophysiol [Internet]. 2012 Jun [cited 2022 Nov 29];23(6):621–7. Available from: https://pubmed.ncbi.nlm.nih.gov/22486970/
149. Tschabrunn CM, Roujol S, Nezafat R, Faulkner-Jones B, Buxton AE, Josephson ME, et al. A swine model of infarct-related reentrant ventricular tachycardia: Electroanatomic, magnetic resonance, and histopathological characterization. Hear Rhythm [Internet]. 2016 Jan 1 [cited 2022 Nov 29];13(1):262–73. Available from: https://pubmed.ncbi.nlm.nih.gov/26226214/
150. Pogwizd SM, Hoyt RH, Saffitz JE, Corr PB, Cox JL, Cain ME. Reentrant and focal mechanisms underlying ventricular tachycardia in the human heart. Circulation [Internet]. 1992 [cited 2022 Nov 29];86(6):1872–87. Available from: https://pubmed.ncbi.nlm.nih.gov/1451259/
151. Segal OR, Chow AWC, Peters NS, Davies DW. Mechanisms that initiate ventricular tachycardia in the infarcted human heart. Hear Rhythm [Internet]. 2010 Jan [cited 2022 Nov 29];7(1):57–64. Available from: https://pubmed.ncbi.nlm.nih.gov/20129286/
152. Brunckhorst CB, Stevenson WG, Jackman WM, Kuck KH, Soejima K, Nakagawa H, et al. Ventricular mapping during atrial and ventricular pacing. Relationship of multipotential electrograms to ventricular tachycardia reentry circuits after myocardial infarction. Eur Heart J [Internet]. 2002 Jul [cited 2022 Nov 29];23(14):1131–8. Available from: https://pubmed.ncbi.nlm.nih.gov/12090752/
153. Porta-Sánchez A, Jackson N, Lukac P, Kristiansen SB, Nielsen JM, Gizurarson S, et al. Multicenter Study of Ischemic Ventricular Tachycardia Ablation With Decrement-Evoked Potential (DEEP) Mapping With Extra Stimulus. JACC Clin Electrophysiol [Internet]. 2018 Mar 1 [cited 2022 Nov 29];4(3):307–15. Available from: https://pubmed.ncbi.nlm.nih.gov/30089555/
154. Jackson N, Gizurarson S, Viswanathan K, King B, Massé S, Kusha M, et al. Decrement Evoked Potential Mapping: Basis of a Mechanistic Strategy for Ventricular Tachycardia Ablation. Circ Arrhythm Electrophysiol. 2015 Dec;8(6):1433–42.
155. Srinivasan NT, Garcia J, Schilling RJ, Ahsan S, Babu GG, Ang R, et al. Multicenter Study of Dynamic High-Density Functional Substrate Mapping Improves Identification of Substrate Targets for Ischemic Ventricular Tachycardia Ablation. JACC Clin Electrophysiol [Internet]. 2020 Dec 1 [cited 2022 Nov 29];6(14):1783–93. Available from: https://pubmed.ncbi.nlm.nih.gov/33357574/
156. Wong GR, Nalliah CJ, Lee G, Voskoboinik A, Prabhu S, Parameswaran R, et al. Dynamic Atrial Substrate During High-Density Mapping of Paroxysmal and Persistent AF: Implications for Substrate Ablation. JACC Clin Electrophysiol [Internet]. 2019 Nov 1 [cited 2022 Nov 29];5(11):1265–77. Available from: https://pubmed.ncbi.nlm.nih.gov/31753431/
157. Kim BS, Kim YH, Hwang GS, Pak HN, Lee SC, Shim WJ, et al. Action potential duration restitution kinetics in human atrial fibrillation. J Am Coll Cardiol [Internet]. 2002 Apr 17 [cited 2022 Nov 29];39(8):1329–36. Available from: https://pubmed.ncbi.nlm.nih.gov/11955851/
158. Williams SE, Linton NWF, Harrison J, Chubb H, Whitaker J, Gill J, et al. Intra-Atrial Conduction Delay Revealed by Multisite Incremental Atrial Pacing is an Independent Marker of Remodeling in Human Atrial Fibrillation. JACC Clin Electrophysiol [Internet]. 2017 Sep 1 [cited 2022 Nov 29];3(9):1006–17. Available from: https://pubmed.ncbi.nlm.nih.gov/28966986/
159. Yamaji H, Higashiya S, Murakami T, Hina K, Kawamura H, Murakami M, et al. Efficacy of an Adjunctive Electrophysiological Test-Guided Left Atrial Posterior Wall Isolation in Persistent Atrial Fibrillation Without a Left Atrial Low-Voltage Area. Circ Arrhythm Electrophysiol [Internet]. 2020 Aug 1 [cited 2022 Nov 29];13(8):E008191. Available from: https://pubmed.ncbi.nlm.nih.gov/32660260/
160. Giorgios T, Antonio F, Limite LR, Felicia L, Zweiker D, Cireddu M, et al. Bi-atrial characterization of the electrical substrate in patients with atrial fibrillation. Pacing Clin Electrophysiol [Internet]. 2022 Jun 1 [cited 2022 Nov 29];45(6):752–60. Available from: https://pubmed.ncbi.nlm.nih.gov/35403246/
161. Piorkowski c, Kronborg M, Hourdain J, Piorkowski J, Kirstein B, Neudeck S, et al. Endo-/Epicardial Catheter Ablation of Atrial Fibrillation: Feasibility, Outcome, and Insights Into Arrhythmia Mechanisms. Circ Arrhythm Electrophysiol [Internet]. 2018 Apr [cited 2022 Dec 6];11(2):151–7. Available from: https://pubmed.ncbi.nlm.nih.gov/29439000/
162. Van Schie MS, Knops P, Zhang L, Van Schaagen FRN, Taverne YJHJ, De Groot NMS. Detection of endo-epicardial atrial low-voltage areas using unipolar and omnipolar voltage mapping. Front Physiol [Internet]. 2022 Oct 6 [cited 2022 Dec 6];13. Available from: https://pubmed.ncbi.nlm.nih.gov/36277177/
163. Kottkamp H, Berg J, Bender R, Rieger A, Schreiber D. Box Isolation of Fibrotic Areas (BIFA): A Patient-Tailored Substrate Modification Approach for Ablation of Atrial Fibrillation. J Cardiovasc Electrophysiol [Internet]. 2016 Jan [cited 2022 Nov 28];27(1):22–30. Available from: https://pubmed.ncbi.nlm.nih.gov/26511713/
164. Yamaguchi T, Tsuchiya T, Nakahara S, Fukui A, Nagamoto Y, Murotani K, et al. Efficacy of Left Atrial Voltage-Based Catheter Ablation of Persistent Atrial Fibrillation. J Cardiovasc Electrophysiol [Internet]. 2016 Sep 1 [cited 2022 Nov 28];27(9):1055–63. Available from: https://pubmed.ncbi.nlm.nih.gov/27235000/
165. Mohanty S, Mohanty P, Di Biase L, Trivedi C, Morris EH, Gianni C, et al. Long-term follow-up of patients with paroxysmal atrial fibrillation and severe left atrial scarring: comparison between pulmonary vein antrum isolation only or pulmonary vein isolation combined with either scar homogenization or trigger ablation. Europace [Internet]. 2017 Nov 1 [cited 2022 Nov 28];19(11):1790–7. Available from: https://pubmed.ncbi.nlm.nih.gov/28039211/
166. Schreiber D, Rieger A, Moser F, Kottkamp H. Catheter ablation of atrial fibrillation with box isolation of fibrotic areas: Lessons on fibrosis distribution and extent, clinical characteristics, and their impact on long-term outcome. J Cardiovasc Electrophysiol [Internet]. 2017 Sep 1 [cited 2022 Nov 28];28(9):971–83. Available from: https://pubmed.ncbi.nlm.nih.gov/28635186/
167. Yamaguchi T, Tsuchiya T, Fukui A, Kawano Y, Otsubo T, Takahashi Y, et al. Impact of the extent of low-voltage zone on outcomes after voltage-based catheter ablation for persistent atrial fibrillation. J Cardiol [Internet]. 2018 Nov 1 [cited 2022 Nov 28];72(5):427–33. Available from: https://pubmed.ncbi.nlm.nih.gov/29807864/
168. Kumagai K, Minami K, Sugai Y, Sumiyoshi T, Komaru T. Effect of ablation at high-dominant frequency sites overlapping with low-voltage areas after pulmonary vein isolation of nonparoxysmal atrial fibrillation. J Cardiovasc Electrophysiol [Internet]. 2019 Oct 1 [cited 2022 Nov 28];30(10):1850–9. Available from: https://pubmed.ncbi.nlm.nih.gov/31361055/
169. Efremidis M, Vlachos K, Letsas KP, Bazoukis G, Martin R, Frontera A, et al. Targeted ablation of specific electrogram patterns in low-voltage areas after pulmonary vein antral isolation in persistent atrial fibrillation: Termination to an organized rhythm reduces atrial fibrillation recurrence. J Cardiovasc Electrophysiol [Internet]. 2019 Jan 1 [cited 2022 Nov 28];30(1):47–57. Available from: https://pubmed.ncbi.nlm.nih.gov/30288830/