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Abstract14

Though tropical cyclone (TC) models have been routinely evaluated against track and in-15

tensity observations, little work has been performed to validate modeled TC wind fields16

over land. In this paper, we present a simple framework for evaluating simulated low-level17

inland winds with in-situ observations and existing TC structure theory. The Automated18

Surface Observing Systems, Florida Coastal Monitoring Program, and best track data are19

used to generate a theory-predicted wind profile that reasonably represents the observed20

radial distribution of TC wind speeds. We quantitatively and qualitatively evaluated the21

modeled inland TC wind fields, and described the model performance with a set of sim-22

ple indicators. The framework was used to examine the performance of a high-resolution23

two-way nested Geophysical Fluid Dynamics Laboratory model on recent U.S. landfalling24

TCs. Results demonstrate the capacity of using this framework to assess the modeled TC25

low-level wind field in the absence of dense inland observations.26

Plain Language Summary27

Some of the biggest human impacts of tropical cyclone (TC) winds come after the28

TC makes landfall. A skillful prediction of the radial distribution of winds is essential for29

forecasting TC-induced inland hazards. However, the forecast skill of numerical hurricane30

models on inland TC wind fields has rarely been evaluated since it is challenging to collect31

wind observations during landfall, and the network of regular weather observations is too32

spread out to capture the strongest winds associated with a TC. This inhibits the improve-33

ment of forecast models and limits our understanding of the TC’s inland evolution. Our34

work combines available inland in-situ wind observations over the southeastern U.S. with35

existing TC structure theory, and presents a new ”optimal” estimate of the post-landfall36

winds. Our framework is found to be useful for evaluating the post-landfall TC winds in37

hurricane forecast models. In addition, the new evaluation technique can intuitively demon-38

strate how well the model simulates TC intensity and structure.39

1 Introduction40

Landfalling tropical cyclones (TCs) bring significant hazards and cause enormous eco-41

nomic losses (Villarini et al., 2014; Rappaport, 2014). These impacts could be amplified42

in a changing climate, given the potential that landfalling TCs may move and decay more43

slowly in a warming climate (Kossin, 2018, 2019; Li & Chakraborty, 2020; Chan et al.,44

2022), and compound hazards may increases under climate change (Gori & Lin, 2022; Feng45

et al., 2022). Beyond that, research suggests that TCs may make landfall in unusual regions46

that are more vulnerable to TC hazards due to a shift in landfall location and to a possible47

poleward shift in the latitude of maximum intensity in a warmer future climate (Kossin et48

al., 2014; Knutson & Coauthors, 2020). Indeed, even without the effects of climate change,49

TC damage is likely to double in the future as development of coastal regions increases and50

more people and assets are exposed to the landfalling storms (Mendelsohn et al., 2012).51

Therefore, it is urgent to evaluate the post-landfall performance of hurricane models, espe-52

cially for predicting the low-level TC wind field, since inland hazards and weather extremes53

are intimately linked to the wind field structure (Zhai & Jiang, 2014).54

Though in-situ observations are essential for evaluating the simulation of inland TC55

low-level wind fields (Nolan et al., 2021), our community lacks dense and systematic obser-56

vations of the TC low-level wind field after landfall. As such, it is necessary to introduce57

alternative analyses for the evaluation of modeled inland TC winds. In this work, we form58

a framework assessing the model performance on predicting inland TC wind fields using59

observation-based, theory-predicted wind profiles. This wind profile is generated from ex-60

isting TC structure models given observable TC parameters obtained primarily from the61

available observations. Beyond the widely-used International Best Track Archive for Cli-62

mate Stewardship (IBTrACS version 4, Knapp et al. (2010)) for TC intensity and track, the63
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minute-by-minute, near-surface observations provided by the Automated Surface Weather64

Observations (ASOS) and the Florida Coastal Monitoring Program (FCMP) are also used.65

The model evaluated in this work is the Tropical Atlantic version of Geophysical Fluid Dy-66

namics Laboratory (GFDL)’s System for High-resolution prediction on Earth-to-Local Do-67

mains (T-SHiELD hereafter), which will be introduced in the following section. T-SHiELD68

has shown skillful predictions of TC track and intensity (Harris et al., 2020; Gao et al.,69

2021, 2023). Since T-SHiELD shares much of the code with the NOAA’s next-generation70

Hurricane Analysis and Forecast System (HAFS) and also includes parameter tunings made71

at GFDL for better hurricane predictions, it serves as a good representative model for the72

evaluation (Gao et al., 2023). Moreover, this work attempts to summarize and quantify the73

performance of the model on simulated wind fields via a set of time-dependent indicators74

that describe the characteristics of the forecast error. The simple indicators make it much75

easier to identify systematic biases and to compare structures across different models and76

model versions than would a detailed wind field analysis.77

In this paper, we first introduce the datasets, the GFDL T-SHiELD model, and the78

assessment framework (Section 2). Then we analyze the performance of the simulated T-79

SHiELD inland wind fields via the evaluation framework and the performance indicators80

(Section 3). We end with a summary and discussion (Section 4).81

2 Data and Methods82

2.1 Observation and model data83

We use TC track and intensity data from IBTrACS version 4 for selected 2020–202284

landfalling storms in the contiguous United States. Recent studies suggest that the data ac-85

curacy has been improved through years with advanced technology (Landsea, 2007; Landsea86

& Frankin, 2013; Zhu & Collins, 2021). Therefore, this work considers the IBTrACS reports87

as a baseline reference for the inland TC track and intensity change. Six representative land-88

falling cases that made landfall along the coastlines of the Gulf of Mexico and the Florida89

peninsula are selected from the 2020-2022 hurricane seasons: Laura (2020), Sally (2020),90

Delta (2020), Fred (2021), Ida (2021), and Ian (2022) (Figure 1). Except for Fred, which91

represents a low-intensity landfalling TC, selection of landfall cases is defined following the92

criteria used in Zhu and Collins (2021), but with a few modifications, including that the93

TC intensity upon first U.S. inland point must be Category 1 or higher (maximum wind94

speed ≥ 64 kts), and the intensity remains higher than 34 kts for at least 12 hours before95

dissipation or extratropical transition. This criteria enables a close and sufficiently lengthy96

examination after landfall while excluding the influences on TC intensity and structure from97

extratropical transition at higher latitudes (Evans & Hart, 2003). Landfalling storms that98

meet the criteria but lack data or have low impact are excluded from this work.99

We use several in-situ datasets for wind observations in addition to the IBTrACS: 1)100

ASOS wind data at each 5-min interval across 11 southeastern states obtained from the Na-101

tional Centers for Environmental Information (NCEI) and processed by Iowa Environmental102

Mesonet at Iowa State University (Figure 2a). Due to the destructive power of TC winds,103

ASOS sites near the eyewall may be missing validated wind records during the landfall. 2)104

the FCMP mobile tower observations of Hurricane Ida’s wind speed every 0.1s for additional105

analysis (Masters et al., 2010; Balderrama et al., 2011)(Supplementary Figure 5). The two106

towers, T1 and T5 are deployed at 29.44N,90.26W and 29.76N,90.56W, respectively.107

The dynamical model to be evaluated is the GFDL T-SHiELD that is initialized by108

six-hourly National Centers for Environmental Prediction (NCEP) Global Forecast System109

(GFS) analyses, which is used to provide near real-time forecasts during recent hurricane110

season (Harris et al., 2020; Gao et al., 2021). The model applies the non-hydrostatic Finite-111

Volume Cubed-Sphere Dynamical Core (FV3) with a 3-km-resolution nested domain cov-112

ering the southeast U.S. and western Atlantic and 75 vertical levels (J. Chen et al., 2019;113
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Figure 1. T-SHiELD tracks of six selected 2020-2022 U.S. landfalling hurricanes initialized

every six hours (colored tracks), and the corresponding IBTrACS tracks (thick black track). The

evolution of the predicted mean intensity averaged over the successive T-SHiELD forecasts (red)

and the selected T-SHiELD forecast (yellow) are compared to the IBTrACS intensity (dark blue)

in the right panel. The selected T-SHiELD forecast initiated 12 hours before the landfall in each

case is used for the assessment in this study. The evolution time shown in the X-axis is referenced

by each landfall time reported by the IBTrACS (labeled on the dividing line). The two FCMP

mobile towers T1 (29.44N,90.26W) and T5 (29.76N,90.56W) for Hurricane Ida (2021) are marked

on the map with red triangles. The surface roughness (Z0) obtained from the Fifth generation of

ECMWF atmospheric reanalyses of the global climate (ERA5) will be used to calculate the surface

drag coefficient in this work (see Appendix A).

Zhou et al., 2019; Gao et al., 2021; Harris et al., 2021). For representative cases in this work,114

forecasts initialized from different times before landfall show consistent intensity and track115

prediction. To avoid a weakening of the wind field characteristics when using the mean wind116

field averaged over the successive T-SHiELD forecasts (Figure 1 left), and to avoid artificially117

picking a “perfect” simulation from successive times, we consistently choose the T-SHiELD118

forecast initialized 12 hours prior to the observed landfall time for each case. This approach119

allows the model sufficient time to spin up while also ensuring that the predicted timing and120

location of landfall are comparable to the observations. We produce model output every 15121

minutes for comparison to high-frequency ASOS data.122

2.2 The evaluation framework123

2.2.1 Wind speed radial distribution124

ASOS sites are unevenly distributed and sparse. To alleviate this problem, we produce125

radial wind speed distributions from ASOS sites in each TC quadrant. The four earth-126

relative quadrants are identified by the observed, time-dependent TC center (Figure 2a-b,127

blue). Given that IBTrACS provides TC location every 3 or 6 hours, the ASOS radial128

wind distribution is also generated every 3 or 6 hours. Correspondingly, the nearest T-129

SHiELD grid points to each ASOS site are selected and formed into the radial wind speed130
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distributions based on simulated TC locations at each observed time (Figure 2a-b, red). In131

rare cases, adjacent ASOS sites may have the same nearest T-SHiELD grid point. For a132

more consistent comparison, the maximum wind speed recorded by each ASOS site during133

the analyzed observation hour will be selected from its twelve records at each 5-minute134

interval to represent the hourly wind speed, and similarly, the T-SHiELD modeled wind135

speed maxima during the same hourly period are selected from the outputs.136

2.2.2 The observation-based, theory-predicted wind profile137

In addition to the direct site-by-site wind comparison between ASOS and T-SHiELD as138

shown in Fig.2b, we introduce an observation-based, theory-predicted inland TC wind profile139

for further quantitative assessments. The Chavas et al. (2015) wind field model (referred140

to as C15 hereafter) is a simple theoretical model formed by mathematically merging the141

Emanuel and Rotunno (2011) inner wind field model and Emanuel (2004) outer wind field142

model. With a small number of physical parameters, C15 captures the structure of the143

observed TC wind field over the ocean, and has been applied in TC surge risk simulations144

and analysis (Xi et al., 2020; Lin et al., 2020; Wang et al., 2022). For post-landfall TC145

evolution, the C15 model well-reproduces the simulated wind field in response to idealized146

landfalls (J. Chen & Chavas, 2023). Using the observed parameters to generate a theoretical147

post-landfall wind field is a natural attempt to link the theoretical understanding to the148

real-world applications. Essential observational parameters required to generate the radial149

wind profile are the TC intensity (vm) and any wind radius (e.g., radius of 10 ms−1 wind,150

referred to as r10 hereafter). The full solutions of using the C15, including how environmental151

approximations are calculated are provided in the Appendix A.152

Here we use our observed wind profiles to generate the required input parameters for the153

C15 wind profile. Given the ASOS wind speed radial distribution, we first fit a cubic spline154

to identify the representative r10(τ), or r5(τ) when r10(τ) is not applicable, for the wind field155

in each quadrant (Figure 2c, dash line), where τ is the time since TC landfall. For the TC156

intensity after landfall, vm(τ), which is not reliably captured by the ASOS or FCMP, we use157

the widely-applied sustained maximum wind speed from IBTrACS. We call this theoretical158

inland TC wind profile in each quadrant the observation-based, theory-predicted wind profile159

(Obs-Theo hereafter). For further quantitative assessment, the Obs-Theo wind profile will160

be used to verify the T-SHiELD wind profile as in Figure 2d, as long as the required161

parameters are available from the observational datasets. In the quantitative evaluation,162

the T-SHiELD wind profile is azimuthally-averaged based on all model grid points in each163

quadrant, and smoothed by averaging over every several points along each selected arc to164

reduce noise from various maxima and minima in the wind data, which is necessary for a165

high-resolution model.166

Notably, with just size parameters from the cubic spline fit, the Obs-Theo wind profile167

well represents the observed wind speed distribution in the outer region (r = 200− 600 km)168

with a small root-mean-square error (2-3 ms−1) that slightly increases with the forecast169

time in selected landfall case (Supplementary Figure 1). For the inner region, where we170

lack a dense network of ASOS observations, the Obs-Theo profile is primarily determined171

by the IBTrACS vm. As shown in Supplementary Figure 2a, at 1800UTC 29 Aug 2021, the172

Obs-Theo inner wind profile can vary remarkably given IBTrACS vm or FCMP-recorded vm173

that differ significantly (Supplementary Figure 2b). In the absence of dense observations, it174

is challenging to verify the Obs-Theo inner wind profile. FCMP along the landfall track is175

not routinely provided for every landfall TC. Future work could explore using an alternative176

vm other than that from IBTrACS, or testing the Obs-Theo profile against specific cases177

with dense inner region observations.178
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Figure 2. Schematic for the evaluation framework using Hurricane Ida at 1800UTC 29 Aug

2021 (3 hours after landfall) as an example. (a) The locations of the validated ASOS sites and

their corresponding nearest T-SHiELD grid points. The analyzed area (r ≤ 600 km) from the

observed TC center is divided into four earth-relative quadrants. (b) In each quadrant of (a), the

hourly-maximum wind speed values of all the ASOS sites and T-SHiELD grid points are lined

into a wind speed radial distribution based on their distance to the observed or simulated TC

center, respectively. (c) The observation-based, theory-predicted (Obs-Theo) wind profile (solid

curve) for Ida at this time, where the maximum wind speed vm is obtained from IBTrACS, the

representative radius r10 for the wind field in each quadrant is obtained from the cubic spline (dash

curve) of the ASOS wind speed radial distribution. The average root-mean-square deviation of

ASOS observations from the Obs-Theo wind profile is 2 ms−1. (d) A comparison of the Obs-Theo

and the T-SHiELD wind profiles in each quadrant at this time for Ida. The T-SHiELD wind profile

is generated based on all model grid points in each quadrant.
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3 Assessing the T-SHiELD performance on inland TC wind field179

Hurricane Ida (2021), a destructive Category 4 hurricane, is the second most-damaging180

hurricane to hit Louisiana in history (Beven et al., 2021). The post-landfall remnants of Ida181

also caused catastrophic damages from flooding and thunderstorms across the Northeastern182

states (Smith et al., 2023). Here we use Ida as an example to show the evaluation framework.183

The direct comparison of the Ida inland wind speed radial distributions between ASOS184

observations and T-SHiELD forecast, similar to Figure 2b, are provided in the supplemen-185

tary materials, along with the results of other representative cases (Supplementary Figure 3-186

5). Overall, the T-SHiELD forecast reproduces the observed post-landfall structural change187

of the wind speed radial distribution. However, the direct comparison of the wind speed188

radial distribution cannot quantitatively show the performance of the T-SHiELD forecast,189

especially when ASOS lacks validated data near the eyewall or over the ocean. Therefore, we190

evaluate the T-SHiELD wind profile with the Obs-Theo wind profile for further quantitative191

assessments as introduced in Figure 2c-d.192

3.1 Wind profile comparison: using model performance indicators193

To ensure a uniform comparison across cases with varying storm structures and sizes,194

characteristic wind profiles, ṽ (r̃), are used here (Chavas & Knaff, 2022; Klotzbach et al.,195

2022), where the wind speed is normalized by the observed maximum wind speed vm from196

IBTrACS as ṽ = v/vm, and radius is normalized by the radius of maximum wind speed rm197

identified by the Obs-Theo wind profile as r̃ = r/rm. We only assess the wind field outside198

rm (r̃ > 1) since neither the theory nor the forecast model can well describe or simulate199

the wind field inside rm. We divide the wind field into inner region (1 < r̃ < 3) and outer200

region (r̃ > 3) for more in-depth analysis.201

Using Hurricane Ida at 1800UTC 29 Aug 2021 as an example, the characteristic wind202

profiles of Obs-Theo and T-SHiELD are compared in each quadrant, respectively (Figure203

3). The wind speed difference △ṽ between the T-SHiELD forecast and Obs-Theo along the204

characteristic radius r̃ is defined as the error profile, △ṽ(r̃). In this way, the shape of the205

error profile explains the performance of T-SHiELD on the inland wind field simulation. We206

use a simple linear fit to the error profile in each region, as207

△ṽ =

{
βi(r̃ − 1) + αi, 1 < r̃ < 3
βo(r̃ − 3) + αo, r̃ > 3

(1)

where the two indicators, α and β together describe characteristics of the error profile —the208

performance of the T-SHiELD wind field forecast—at a single time for a selected storm.209

The subscripts “i” and “o” indicate the inner and outer region, respectively.210

We name α, the y-intercept, as the wind field bias indicator, the value of which reflects211

the normalized T-SHiELD forecast bias at r̃ = 1 or 3. Negative α indicates a weaker212

wind field forecast at the starting point of inner or outer wind region. β, the slope of213

△ṽ(r̃), describes how the forecast error changes along the radius from the starting point of214

each region, and is defined as the wind profile shape indicator. For both α and β, lower215

magnitudes suggest better wind field simulations, as (α, β = 0) indicates the modeled wind216

profile exactly matching the observed one. In this work, ”best forecast” is defined by both217

indicators that have a magnitude smaller than O(10−2). For example, the near-zero αo and218

βo in the outer regions suggest a T-SHiELD simulation comparable to the corresponding219

Obs-Theo wind profiles in the NE, SE, and NW quadrants (Figure 3a, b and d, purple fit220

curves). However, in the SW quadrant, the higher magnitude of αo (∼ −10−1) and the near-221

zero βo indicates a uniform weaker wind field simulation among the outer region (Figure222

3c). In contrast to the well-simulated outer region, T-SHiELD shows a weaker forecast bias223

gradually increasing towards the rm within the inner region (Figure 3, yellow fit curve). In224

this Ida example, the IBTrACS vm = 64.3 ms−1 at 1800UTC, thus the value of inner-region225
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Figure 3. The comparison of characteristic wind profile ṽ (r̃) between the Obs-Theo profile

(blue line) and the T-SHiELD wind profile (red line) for Hurricane Ida at 1800UTC 29 Aug 2021 (3

hours after landfall). The error profile △ṽ(r̃) (dash curve) is linearly fitted among the inner region

(yellow line, 1 < r̃ < 3) and outer region (purple line, r̃ > 3), respectively. α is defined as the wind

field bias and β is defined as the wind profile shape indicator. The subscripts “i” and “o” of α and

β indicate the inner and outer region, respectively.

vm = 64.3 ms−1 is obtained from the IBTrACS.

αi can be translated into a weaker intensity bias up to tens of ms−1 at r̃ = 1. More examples226

interpreting the values of α and β are shown in Supplementary Figure 6.227

3.2 Composite results of 2020-2022 selected Hurricanes228

Given the value of averaged α(τ) and β(τ) in each quadrant of all representative TCs,229

where τ indicates the time since the observed landfall, we can examine the overall perfor-230

mance of T-SHiELD simulated inland wind field for the 2020-2022 selected hurricanes.231

For inner regions, α and β do not fall in the “best forecast” interval (Figure 4a-d, grey232

shaded area). The values of α and β indicate that T-SHiELD underestimates the maximum233

wind speed vm, leading to a weaker wind field forecast where the forecast error increases234

towards the rm (Similar to Figure 3a). There is no clear trend for α(τ) and β(τ) in each235

quadrant after landfall, suggesting that the T-SHiELD performance on the inner wind field236

does not change significantly after landfall. However, for the outer region, T-SHiELD wind237

profiles are comparable to the Obs-Theo in each quadrant (Figure 4e-h). Despite the NW238

quadrant (Figure 4e), both α and β largely fall in the ”best forecast” interval after the239

landfall, indicating a well simulated outer wind field across different cases.240

To summarize, the value of indicators α(τ) and β(τ) suggests that T-SHiELD mostly241

struggles with representing the inner-core wind structure of landfalling TCs. The relatively242

large negative α(τ) values (Fig. 4a-d) suggest the structural biases are related to the negative243
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Figure 4. The averaged α(τ) and β(τ) and their corresponding ranges of six 2020-2022 major

hurricanes at discrete lead times after their corresponding landfalls, which describe the T-SHiELD

performance on predicting the inland low-level wind field. Left panels show the inner region wind

field (1 < r̃ < 3), and right panels for the outer wind field (r̃ > 3). α indicates the normalized

intensity bias of the T-SHiELD forecasts compared to the observations at r̃ = 1 or 3, while β

indicates the shape similarity between the observed and T-SHiELD wind profiles. The indicator

magnitudes ranging from −0.1 to 0.1 are shaded, where 0 indicates a perfect simulation (no forecast

error). Indicators falling in the shaded interval suggest a ”best forecast” in this work.

model intensity biases (Figure 1). Therefore, improving the T-SHIELD intensity forecasts,244

for example, through a vortex-specific initialization technique or testing model PBL physics245

and model resolutions, may significantly improve its performance on the inner-core structure246

and overall wind field forecast (Hazelton & Coauthors, 2022; X. Chen et al., 2023). However,247

the negative intensity bias may also be raised by the uncertainty or errors associated with248

IBTrACS intensity at and after the landfall.249

4 Summary250

This work presents a novel framework for assessing the model performance on predicting251

the inland TC low-level wind using the observation-based, theory-predicted wind profile that252

combines the ASOS observations and the existing theoretical TC wind field model. Although253

the evaluation in this paper only focuses on the performance of the GFDL T-SHiELD on254

six major landfalling hurricanes in the continental U.S. along the Gulf of Mexico coast255

from 2020 to 2022, the evaluation framework can be generalized to other model evaluations256

emphasizing the TC wind field.257

In our framework, we introduce several observation-based evaluation approaches into258

the wind field assessment. The ASOS wind speed radial distribution, which generally de-259

picts the TC asymmetric structural change shortly after landfall, can directly be used to260

qualitatively evaluate the model overall forecast of the inland TC wind field. Then, the wind261

profile in each quadrant generated by the theoretical wind field model given observable TC262

parameters (r10, vm) obtained from ASOS and IBTrACS enables further quantitative eval-263

uations for the simulated inland wind field. This Obs-Theo wind profile well represents the264

observed wind speed distribution in the outer region. Finally, the forecast error along the265
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radius (i.e., error profile) is linearly fitted among the inner and outer regions, described266

by the wind field bias indicator and wind profile shape indicator of the fitted lines. These267

indicators quantitatively reveal the performance of the model on inland TCs, and can also268

be used in future work to reveal the improvement in wind field forecast skill associated with269

the model development.270

Compared to TC track and intensity, the post-landfall evolution of the TC low-level271

wind field has not received much attention until recent years due to the complexity of the272

TC structural change and the lack of in-situ inland wind field observations (Nolan et al.,273

2021; Hendricks et al., 2021). This wind field evaluation framework provides an alternative274

approach assessing the model directly with in-situ observations taking advantage of existing275

TC structure theory. However, our community still needs to advance the post-landfall TC276

observations, especially among the eyewall region, and provide reliable routinely-used TC277

datasets to strengthen our studies on inland TC hazards and their evolution.278

5 Open Research279

The GFDL T-SHiELD outputs, processed ASOS data, and the observation-based,280

theory-predicted wind profile data used in this work are available on Zenedo (DOI 10.5281/zen-281

odo.7937697). The IBTrACS data is available at https://climatedataguide.ucar.edu/282

climate-data/ibtracs-tropical-cyclone-best-track-data. The ASOS data applied283

in this work is available at Iowa State University (https://mesonet.agron.iastate.edu/284

ASOS/). The FCMP data of hurricane Ida is is available by contacting Prof. David Nolan285

at University of Miami. The C15 wind structure model is available at https://doi.org/286

doi:10.4231/CZ4P-D448.287

Appendix A C15 wind field model288

The C15 model mathematically merged the Emanuel and Rotunno (2011) inner wind289

field model (Eq.36 therein) and Emanuel (2004) outer wind field model (Eq.31-33 therein)290

solution to produce a model for the complete azimuthal wind profile. This merging yields a291

unique solution; the process is described in C15 (Eq.2-10 therein). Using C15, parameters292

required to solve the differential equations for the wind profile are: storm intensity vm,293

radius of maximum wind speed rm for the inner region, the intensity and radius of the294

merge point connecting the inner and outer region, va and ra, and a specified radius input295

rfit, χ and Coriolis parameter f for the environmental conditions where χ = 2Cd

Wcool
. Cd296

is the exchange coefficients of momentum, Wcool is the free tropospheric subsidence rate.297

The value of Wcool is constrained by the thermodynamics of the free troposphere and can be298

estimated from the ambient stratification and radiative cooling rate via radiative-subsidence299

balance. Given the environmental parameters χ and f , one only needs to know two storm300

parameters – the intensity vm and any wind radius (e.g. rm, r17, or r10) – to specify the301

model solution.302

In this work, vm and r10 are primarily obtained from IBTrACS and ASOS observa-303

tions. f is calculated by the TC location provided by IBTrACS; Cd is calculated from the304

Fifth generation of ECMWF atmospheric reanalyses of the global climate (ERA5) surface305

roughness (Hersbach, 2010) and then averaged within r = 0 − 600 km to yield a single306

value within each of the four earth-relative quadrants (Figure 1). Though the relatively307

coarse ERA5 surface roughness data may not be aligned with those at ASOS stations, it308

can generally reflect the averaged Cd of the selected area in each quadrant. Alternative309

surface roughness data with high resolution can also be used to generate the mean Cd for310

each region. Meanwhile, the observed size input partially reflects the TC structure change311

in response to the inland surface condition in this case. Previous work testing C15 against312

idealized landfall suggests that, the wind field solution is not very sensitive to Wcool except313

for at large radii. Thus, the radiative-subsidence rate Wcool is set to 0.002 ms−1, which is314
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the median of the best-fit value for observed storms (Chavas et al., 2015) and identical to315

idealized experiments in J. Chen and Chavas (2023) and related studies.316
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