
manuscript submitted to Earth and Space Science 

 

Applicability of Object Detection to Microfossil Research: Implications from Deep 1 
Learning Models to Detect Microfossil Fish Teeth and Denticles Using YOLO-v7 2 

K. Mimura1,2, K. Nakamura3,2,1, K. Yasukawa3,2, E. C. Sibert4, J. Ohta3,5,1, T. Kitazawa2, Y. 3 
Kato2,1,6  4 

1Ocean Resources Research Center for Next Generation, Chiba Institute of Technology, 2-17-1 5 
Tsudanuma, Narashino, Chiba 275-0016, Japan. 6 
2Department of Systems Innovation, School of Engineering, The University of Tokyo, 7-3-1 7 
Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. 8 
3Frontier Research Center for Energy and Resources, School of Engineering, The University of 9 
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. 10 
4Department of Geology & Geophysics, Woods Hole Oceanographic Institution, 266 Woods 11 
Hole Rd MS 22, Woods Hole, MA 02543, USA. 12 
5Volcanoes and Earth’s Interior Research Center, Research Institute for Marine Geodynamics, 13 
Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, 14 
Yokosuka, Kanagawa, 237-0061, Japan. 15 
6Submarine Resources Research Center, Research Institute for Marine Resources Utilization, 16 
Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, 17 
Yokosuka, Kanagawa, 237-0061, Japan. 18 

 19 

Corresponding author: Kentaro Nakamura (kentaron@sys.t.u-tokyo.ac.jp)  20 

Key Points: 21 

● We trained object detection models under different conditions to detect microfossil fish 22 
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● Object detection may improve the observation efficiency of a wide array of microfossils. 25 
  26 

about:blank


manuscript submitted to Earth and Space Science 

 

Abstract 27 

Microfossils of fish teeth and denticles, referred to as ichthyoliths, provide critical information 28 
for depositional ages, paleo-environments, and marine ecosystems, especially in pelagic realms. 29 
However, owing to their small size and rarity, it is time-consuming and difficult to analyze large 30 
numbers of ichthyoliths from sediment samples, limiting their use in scientific studies. Here, we 31 
propose a method to automatically detect ichthyoliths from microscopic images using a deep 32 
learning technique. We applied YOLO-v7, one of the latest object detection architectures, and 33 
trained several models under different conditions. The model trained under appropriate 34 
conditions with an original dataset achieved an F1 score of 0.87. We then enhanced the dataset 35 
efficiently using the pre-trained model. We validated the practical applicability of the model by 36 
comparing the number of ichthyoliths detected by the model with those counted manually. This 37 
revealed that the best model can predict the number of triangular teeth without manual check, 38 
and those of denticles and irregularly shaped teeth with manual check. This object detection 39 
method can extend the applicability of deep learning to a wider array of microfossils and has the 40 
potential to dramatically increase the spatiotemporal resolution of ichthyolith records for 41 
applications across disciplines. 42 

Plain Language Summary 43 

Fossils of fish teeth and denticles, referred to as ichthyoliths, can be used to study the 44 
environmental changes of marine conditions throughout Earth’s history. However, it is time-45 
consuming and difficult to analyze large numbers of ichthyoliths from sediment samples, 46 
limiting their use in scientific studies. Here, we trained several artificial intelligence models to 47 
automatically detect ichthyoliths from microscopic images. The best model is suitable for 48 
counting the number of fish teeth, denticles, and irregularly shaped teeth fragments with minimal 49 
human intervention. We propose that object detection, a deep learning technique used in this 50 
study, can be applicable for the study of various microfossils, as well as for increasing the 51 
spatiotemporal resolution of ichthyolith records. 52 

1 Introduction 53 

Microfossils such as foraminifers, coccolithophores,radiolaria, and diatoms, have been 54 
used to constrain depositional ages and environments of various kinds of seafloor sediments, as 55 
well as to provide high-resolution and detailed records of evolutionary processes (Armstrong & 56 
Brasier, 2005). Among them, microfossil fish teeth and denticles, referred to as ichthyoliths, are 57 
composed of calcium phosphate, which is resistant to dissolution on the deep seafloor (Doyle & 58 
Riedel, 1985; Sibert et al., 2017). Therefore, ichthyoliths are observed from almost all types of 59 
seafloor sediments, including pelagic clay, where other siliceous and calcareous microfossils are 60 
rarely observed. Taking advantage of this, ichthyoliths have provided key constraints for 61 
depositional ages (Doyle & Riedel, 1979, 1985; Ohta et al., 2020) and marine environments 62 
and/or ecosystems (Britten & Sibert, 2020; Sibert et al., 2014, 2016, 2021) especially in pelagic 63 
realms. In addition, ichthyoliths preserve a variety of geochemical systems, including strontium 64 
and neodymium isotopes, which can provide additional age constraints on sediments (e.g., 65 
Gleason et al., 2002; Ingram, 1992) and insights into deep water circulation patterns and origin 66 
of sedimentary components (e.g., Huck et al., 2016; Martin & Haley, 2000; Scher & Martin, 67 
2004; Tanaka et al., 2022; Thomas et al., 2014). Oxygen isotopes in ichthyoliths have also been 68 
used to reconstruct changes in ocean temperature (e.g., MacLeod et al., 2018). However, 69 
traditional observation methods rely on “handpicking,” in which an observer picks fossils 70 
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individually under a stereomicroscope (Ohta et al., 2020; Sibert et al., 2017; Tanaka et al., 2022). 71 
This process is time-consuming and can only be conducted by a skilled observer, making it 72 
difficult to analyze large numbers of ichthyoliths from various sediment samples.  73 

Computer vision technologies are developing rapidly. In particular, image processing 74 
using deep learning has been applied to various fields, including earth science (Hoeser & 75 
Kuenzer, 2020; Mimura et al., 2023a). Automating previous manual observation processes saves 76 
time and provides opportunities for discoveries by increasing the number of fossils that can be 77 
observed and processed. The application of deep learning techniques for the classification of 78 
foraminifers (Hsiang et al., 2019) and radiolarians (Itaki et al., 2020b; Tetard et al., 2020; 79 
Carlsson et al. 2022, 2023), and coccolithophores (Beaufort et al., 2022) is enhancing the 80 
resolution in paleoenvironmental studies. These studies detect particles by thresholding and 81 
recognize their classes using classification models. However, this method is difficult to directly 82 
apply to ichthyoliths because it is sometimes challenging to identify the outline of ichthyoliths by 83 
thresholding method (Figure 1). To solve this problem, we have proposed an automated 84 
detection of ichthyoliths in microscopic images by combining the object detection model “Mask 85 
R-CNN” (He et al., 2017) and image classification model “EfficientNet-V2,” both of which are 86 
based on deep-learning techniques (Mimura et al., 2022). Although the system showed a good 87 
performance, two problems remained. First, due to the scarcity of the learning dataset, the system 88 
could only detect triangular teeth, leaving denticles and saw-toothed ichthyoliths undetected 89 
(Figure 1). Second, there was a time loss in the combined system, as a well-trained object 90 
detection model can distinguish classes without using the classification model.  91 

Recently, we compared the performances of object detection models “Mask R-CNN” and 92 
“YOLOv5” (Jocher et al., 2022) in detecting signals of hydrothermal activity in echo sounder 93 
images (Mimura et al., 2023a) and showed that the YOLOv5 model achieved much higher 94 
performance than that of the Mask R-CNN model. Here, with reference to this, we applied 95 
“YOLOv7” (Wang et al., 2022), one of the latest versions of YOLO (You Only Look Once, 96 
Redmon et al., 2016), to solve the problem of ichthyolith detection. To overcome the problems 97 
associated with the previous system developed by us, we aimed to detect teeth, denticles, and 98 
irregular shapes of teeth in a single step. 99 
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 100 

Figure 1. Examples of ichthyolith images categorized into three classes used in this study. 101 
Images of teeth considered challenging to detect under the thresholding-based method but can be 102 
detected using object detection models are also shown.   103 
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2 Materials and Methods 104 

2.1 Sample description 105 

We used pelagic clay samples obtained from the Deep Sea Drilling Project (DSDP) Site 106 
576, Ocean Drilling Program (ODP) Site 1149, Integrated Ocean Drilling Program (IODP) Sites 107 
U1366 and U1370, and piston cores KR13-02 PC04 and MR14-E02 PC11. All cores were 108 
recovered from the Pacific Ocean at water depths of more than 5,000 m (Table S1). We aimed to 109 
cover a variety of depositional ages from the late Cretaceous to the present using 110 
DSDP/ODP/IODP samples and to enhance the number of irregular teeth called Rectangular saw-111 
toothed (Figure 1) by collecting images from specific horizons of the two piston cores. 112 

2.2 Slide preparation and imaging 113 

Glass slides were prepared from the samples as described by Mimura et al. (2022). 114 
Approximately 3−10 g of the sample was mixed well with deionized water and sieved using a 115 
62-μm mesh. Larger particles were collected in a centrifuge, mixed with sodium polytungstate 116 
with a specific gravity of approximately 2.8 g/cm3, and centrifuged at 1,000–1,500 rpm to collect 117 
heavier particles, which were proposed by Sibert et al. (2017). The collected particles were 118 
washed with deionized water, moved onto glass slides using a pipette, dried at 40 °C, and sealed 119 
with a cover glass using a light-curing adhesive. 120 

Imaging of glass slides was also performed as described previously (Mimura et al., 2022). 121 
Using a digital microscope RX-100 (Hirox Co., Ltd.), the whole part of the observation realm 122 
(~24×36 mm) was divided into ~1,000 squares (~1.15 × 1.15 mm / 1,200 × 1,200 pixels). The z-123 
stack images were automatically acquired using motorized x, y, and z stages. To capture as many 124 
ichthyoliths as possible in a complete form, each image overlaps with adjoining images by 20%. 125 

2.3 Generation of datasets 126 

Out of more than 1 million (M) images of the microscopic field of view, 12,219 were 127 
selected for “original” datasets. The locations and classes of the ichthyoliths within the images 128 
were annotated manually. Ichthyoliths were classified into three classes (Figure 1): triangular 129 
tooth (class name: “tooth”), denticle (“denticle”), and forms similar to Rectangular saw-toothed 130 
(“saw-toothed”).  131 

Two datasets were generated from these images and annotations. The dataset 132 
“original_selected” comprised 6,945 images with ichthyoliths, and the dataset “original_all” 133 
comprised 6,945 images with ichthyoliths and 5274 images without ichthyoliths (Mimura et al., 134 
2023b). The datasets contained 7,705 triangular teeth, 533 denticles, and 103 saw-toothed 135 
shapes. The images and corresponding annotation files were randomly split into three subsets: 136 
80% for training, 10% for validation, and 10% for testing. We note here that images in each 137 
subset are the same between the two datasets, except for the image that does not contain 138 
ichthyoliths. This enabled us to conduct performance tests on the same dataset (i.e., models 139 
trained on the training subset of dataset original_selected can be tested by the testing subset of 140 
the dataset original_all). 141 
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2.4 Tuning of hyperparameters 142 

We conducted hyperparameter tuning by training the “YOLOv7” model under different 143 
initial learning rates (“lr0” in YOLOv7’s parameter file) and the final one-cycle learning rates 144 
(“lrf”). A stochastic gradient descent algorithm with a momentum fixed at 0.937 was applied for 145 
training. The image size was fixed at 640 × 640 pixels and the batch size at 8. The models were 146 
trained on a local Windows PC with a single graphic board with 16 GB of memory (GeForce 147 
RTXTM 3080 Ti, NVIDIA Inc.).  148 

2.5 Training conditions 149 

YOLOv7 provides several models with various numbers of trainable parameters. In this 150 
study, we compared five models, “YOLOv7-tiny,” “YOLOv7,” “YOLOv7-X,” “YOLOv7-W6,” 151 
and “YOLOv7-E6,” each having 6.2M, 36.9M, 71.3M, 70.4M, and 97.2M parameters, 152 
respectively. Training of YOLOv7-tiny and YOLOv7 models was conducted on the local 153 
Windows PC, while training of the higher models was conducted on the cloud computing 154 
platform “Google Colaboratory” (Carneiro et al., 2018). The image size was set to 640 × 640 155 
pixels. However, we also trained YOLOv7-W6 models with a larger image size set to 1,280 × 156 
1,280 pixels, as Wang et al. (2022) proposed for larger models. In all training cases, the batch 157 
size was fixed at 8. The models were trained on either the local Windows PC, a local Linux PC 158 
with two graphic boards having 24 GB memory (GeForce RTXTM 3090 Ti, NVIDIA Inc.), or 159 
Google Colaboratory (see Table 2). 160 

Following YOLOv7’s online augmentation method, the images were randomly flipped 161 
vertically and/or horizontally, and the colors, scales, and shear of the images were randomly 162 
changed every time the training images were loaded.  163 

2.6 Practical test 164 

In the datasets described in Section 2.3, more than half of the images contained at least 165 
one ichthyolith, whereas only tens to one hundred ichthyoliths are observed from ~1,000 images 166 
in actual observation. We, therefore, conducted a practical test to evaluate the performance of the 167 
trained models under more practical conditions. 168 

Three samples at DSDP Site 576, not used in the original datasets described in Section 169 
2.3 or the extended dataset described in Section 3.3, were selected for the practical test. The 170 
models detected ichthyoliths from the whole field-of-view images (30,826 in total) taken from 28 171 
slides. Since microscopic images were taken with overlap, duplicated detections were excluded 172 
by calculating absolute coordinates in the entire slide (Figure 2). Simultaneously, the slides were 173 
manually observed under a polarization microscope. We tested the practical applicability of the 174 
trained models by comparing the number of ichthyoliths counted by the models with that 175 
observed manually. 176 
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 177 

Figure 2. An illustration explaining the algorithm for excluding duplicate detections in this 178 
study.   179 
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3 Results and Discussion 180 

3.1 Hyperparameter tuning and iteration test 181 

F1 scores of YOLOv7 models trained with different hyperparameters on dataset 182 
“original_all” are presented in Table 1. The initial learning rate of 0.0007 and final one-cycle 183 
learning rate of 0.05 were the most suitable conditions in this study. Under the same condition, 184 
we then conducted and evaluated five training iterations and observed that one standard error (1 185 
SE) of the F1 score was 0.008 (Table S2). When comparing the performance of the models in the 186 
following discussion, a difference in F1 scores greater than 2 SE (0.016) was considered 187 
significant. 188 

 189 
Table 1. F1 scores of the models trained on different hyperparameters of initial learning rate 190 
(“lr0”) and final one-cycle learning rate (“lrf”). 191 
 192 

F1 score 
lrf 

0.1 0.05 0.01 

lr0 
0.001 0.08 0.29 0.75 
0.0007 0.46 0.82 0.55 
0.0004 0.68 0.13 0.21 

 193 

3.2 Comparison of performances under different training conditions 194 

The performance of the models trained on different models and datasets is detailed in #1 to #12 195 
of Table 2. We evaluated the performance of models based on averaged F1 scores of the three 196 
classes (macro-F1 score). Comparing the number of parameters (Figure 3a), models with ~70M 197 
trainable parameters (YOLOv7-X, YOLOv7-W6) exhibited the highest F1 score, suggesting that 198 
these models are suitable for this study. Comparing the image sizes (Figure 3b), we observed that 199 
the models trained with the input image size set at 640 exhibited higher F1 scores than those 200 
trained with an image size of 1,280. Although the difference in the dataset “selected” is less than 201 
2SE, we suggest that the suitable input image size is 640, as larger input size increases the risk of 202 
overfitting (e.g., Sabottke and Spieler, 2020). Finally, comparing the dataset type (Figure 3c), the 203 
results exhibited a variety of trends. However, following the discussion above, if we focus on the 204 
cases with a number of parameters around 70M and input image size at 640, models trained on 205 
the dataset “all” showed higher F1 scores than those trained on the dataset “selected.” Thus, we 206 
concluded that the suitable training condition in this study is (1) to use models with ~70M 207 
parameters (YOLOv7-X or YOLOv7-W6), (2) to set the input image size at 640, and (3) to train 208 
on a dataset “all,” which is composed of both images containing ichthyoliths and images that do 209 
not contain ichthyoliths.  210 
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Table 2. Performances of the training with different models and datasets. 211 
Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Condition 

Datas
et original_selected original_all extended 

_all 

Envir
onme

nt 

Wind
ows 

Wind
ows Colab Ubun

tu 
Ubun

tu 
Ubun

tu 
Wind
ows 

Wind
ows Colab Ubun

tu 
Ubun

tu 
Ubun

tu 
Ubun

tu 
Ubunt

u 

Mode
l 

YOL
Ov7-
tiny 

YOL
Ov7 

YOL
Ov7-

X 

YOL
Ov7-
W6 

YOL
Ov7-
W6 

YOL
Ov7-
E6 

YOL
Ov7-
tiny 

YOL
Ov7 

YOL
Ov7-

X 

YOL
Ov7-
W6 

YOL
Ov7-
W6 

YOL
Ov7-
E6 

YOL
Ov7-

X 

YOL
Ov7-
W6 

#Para
m. 

(M) 
6.2 36.9 71.3 70.4 70.4 97.2 6.2 36.9 71.3 70.4 70.4 97.2 71.3 70.4 

image 
size 640 640 640 640 1280 640 640 640 640 640 1280 640 640 640 

Precision 

tooth 0.814 0.885 0.885 0.882 0.778 0.760 0.641 0.868 0.857 0.778 0.791 0.768 0.910 0.931 
dentic

le 0.671 0.829 0.859 0.803 0.712 0.702 0.672 0.852 0.853 0.756 0.668 0.653 0.832 0.895 

saw-
toothe

d 
0.778 0.875 0.799 0.888 0.817 0.714 0.694 0.800 0.900 0.833 0.727 0.833 0.778 0.887 

avera
ge 0.754 0.863 0.848 0.858 0.769 0.725 0.669 0.840 0.870 0.789 0.728 0.751 0.840 0.904 

Recall 

tooth 0.789 0.832 0.857 0.850 0.907 0.862 0.880 0.859 0.896 0.908 0.916 0.870 0.843 0.813 
dentic

le 0.755 0.837 0.869 0.776 0.857 0.755 0.837 0.776 0.831 0.918 0.857 0.776 0.878 0.878 

saw-
toothe

d 
0.699 0.698 0.800 0.800 0.893 0.500 0.682 0.800 0.899 0.999 0.797 0.500 0.700 0.800 

avera
ge 0.748 0.789 0.842 0.888 0.886 0.706 0.800 0.811 0.875 0.942 0.857 0.715 0.807 0.830 

f1 score 

tooth 0.801 0.858 0.871 0.866 0.838 0.808 0.742 0.863 0.876 0.838 0.849 0.816 0.875 0.868 

dentic
le 0.711 0.833 0.864 0.789 0.778 0.728 0.745 0.812 0.842 0.829 0.751 0.709 0.854 0.886 

saw-
toothe

d 
0.736 0.777 0.799 0.842 0.853 0.588 0.688 0.800 0.899 0.908 0.760 0.625 0.737 0.841 

avera
ge 0.749 0.822 0.845 0.832 0.823 0.708 0.725 0.825 0.872 0.859 0.787 0.717 0.822 0.865 

 212 
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 213 

Figure 3. F1 scores compared by training conditions. The x-axis of each graph represents (a) the 214 
number of trainable parameters, (b) image sizes, and (c) the type of dataset. Error bars represent 215 
± 1 SE. 216 

3.3 Efficient production of training dataset using detection results 217 

YOLOv7 can output results as text files in the same format as the training labels. Taking 218 
advantage of this, we enhanced the sizes of datasets by first predicting a trained model and then 219 
checking the result manually. Using the YOLOv7-X model trained on the dataset “all” with an 220 
image size of 640 (#9 of Table 2), the existence of ichthyoliths was predicted from ~1,100,000 221 
images generated from the six sites considered in this study. Images from three samples at Site 222 
576 used for the practical test were excluded. We collected 4,463 images in which the model 223 
predicted the existence of the class “denticle” or “saw-toothed,” which were relatively small 224 
compared to the class “tooth. After the manual check of detection results for the 4,463 images, 225 
2,528 images contained ichthyoliths, and 1,935 did not have ichthyoliths; of those containing 226 
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ichthyoliths, 1,657 teeth, 1,282 denticles, and 108 saw-toothed ichthyoliths were identified. Of 227 
these, the “denticle” was more than twice the number in the original dataset, and the “saw-228 
toothed” was almost the same as the number in the original dataset. As well as the original 229 
datasets, images, and annotation information were randomly split into training (80%), validation 230 
(10%), and testing (10%) subsets. 231 

The dataset “extended_all” was generated by combining the dataset collected by the 232 
above process and the dataset “original_all” (Mimura et al., 2023b). Considering the discussion 233 
in Section 3.2, we trained the two models, YOLOv7-X and YOLOv7-W6, on the dataset 234 
“extended_all” with an input image size set at 640. The performances of the trained models are 235 
shown in #13 and #14 of Table 2.  236 

3.4 Practical test 237 

We conducted a practical test for the four models: YOLOv7-X trained on the datasets 238 
“original_all” (#9 of Table 2) and “extended_all” (#13), YOLOv7-w6 trained on the datasets 239 
“original_all” (#10) and “extended_all” (#14). The number of ichthyoliths detected by these 240 
models and that are manually counted are shown in Table S3. We also calculated the root mean 241 
square percentage error (RMSPE), using the following equation: 242 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ �𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖
�
2

𝑛𝑛
𝑖𝑖=1 × 100 [%]… (1) 243 

where n, 𝑦𝑦�𝑖𝑖, and 𝑦𝑦𝑖𝑖 indicate the number of samples, the predicted ichthyoliths, and the manually 244 
observed ichthyoliths, respectively. 245 

Comparing the models trained on the dataset “original_all” (#9, #10) and “extended_all” 246 
(#13, #14), models trained on “extended_all” showed trends closer to y = x for classes tooth and 247 
denticle (Figure 4a, b). The high performance of the model trained with the “extended_all” 248 
dataset may be attributed to the high variation of false patterns in practical conditions. We 249 
realized that models trained on the original dataset confused various triangular particles or 250 
patterns with teeth (Figure S1). Since the “extended_all” dataset contains many images that the 251 
preliminary model misdetected, the model trained with this dataset is considered to learn false 252 
positives efficiently. RMSPEs suggest that using the v7-w6_extended_all model (#14), the 253 
number of teeth and denticles from a sample can be estimated with ~7% and ~24% error rates, 254 
respectively. On the other hand, RMSPEs for the “saw-toothed” class are > 70%. Furthermore, 255 
no clear trend was observed (Figure 4c), indicating that the number of “saw-toothed” cannot be 256 
accurately estimated based solely on the model’s detection result. 257 

We also manually checked the images detected by models #13 and #14 and removed 258 
false positives and duplications that could not be excluded by the algorithm described in Figure 259 
2. After checking model #13’s detection, we observed a trend closer to y=x (Figure 4d–f), 260 
indicating that combining manual review with model #13 is preferable. Model #13, with manual 261 
check, achieved an RMSPE of ~3%, ~9%, and almost no error for counting the number of teeth, 262 
denticles, and saw-toothed ichthyoliths, respectively (Table S3). 263 
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 264 

Figure 4. Comparison of the number of ichthyoliths counted manually and those detected by 265 
models trained in this study. The black solid lines indicate y = x, which means that the model’s 266 
detections are identical to manual observations. Plots below and above the y = x line indicate that 267 
the model made false negative and false positive errors, respectively. (a–c) Scatter diagram of the 268 
number of models’ detection and manual count. Regression lines are only indicated in class 269 
“tooth” (a), as no clear trend was observed in class “denticle” (b) and class “saw-toothed” (c). 270 
(e–f) Comparison between the number of ichthyoliths that a human observer recounted after the 271 
best model’s detection and the manually counted number. The numbers were compared per slide 272 
for teeth, but per sampling horizon for classes denticle and saw-toothed, particles in these slides 273 
were contained in only a few slides. Regression lines were obtained using Excel (Microsoft® 274 
Excel® for Microsoft 365 MSO, version 2310). 275 

3.5 Advantages of object detection method using YOLO-v7 276 

The application of deep learning to microfossil observations has attracted increasing 277 
attention recently (Hsiang et al., 2019; Salonen et al., 2019; Mitra et al., 2019; Romero et al., 278 
2020; Itaki et al., 2020a; Marchant et al., 2020; Tetard et al., 2020; Classon et al., 2022, 2023). A 279 
commonly used method in particle detection is to apply rule-based thresholding to detect each 280 
particle and subsequently classify them using an image classification model. Although these 281 
methods require less work to prepare a dataset, deep learning-based detection has advantages 282 
over traditional methods in finding “challenging” particles. While traditional rule-based 283 
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thresholding methods struggle to detect particles that overlap, have drastic changes in brightness, 284 
or have almost similar brightness to the background (Figure 1) in ichthyolith slides, deep 285 
learning-based methods can accurately detect them. Therefore, we propose that object detection 286 
would broaden the range of deep learning applications in microfossil studies. 287 

Compared to our previous method (Mimura et al., 2022), which required two steps, 288 
object detection by Mask R-CNN and image classification by EfficieneNet-V2, the new method 289 
can detect ichthyolith in a single step, which enhances the efficiency of observation. We 290 
measured the detection times for processing 10,884 slide images using the two methods on 291 
Google Colaboratory. While the previous method required 11,250 s in total, 7,230 s for detection 292 
using Mask R-CNN, and 4,020 s for classification using EfficientNet-V2, the new method 293 
required only 1,040 s in total process, indicating that the new method is approximately ten times 294 
faster than the previous method.  295 

3.6 Implications for biostratigraphic and paleoecological studies using ichthyoliths 296 

We expect the new observation method to make the biostratigraphy of ichthyoliths more 297 
precise, advancing progress in paleoceanography and resource geology related to pelagic (red) 298 
clay. Pelagic clay covers over one-third of the global ocean (Dutkiewicz et al., 2015) and has 299 
huge variation in bulk geochemistry (Dunlea et al., 2015; Mimura et al., 2019). Therefore, 300 
pelagic clay is a good recorder of long-term and global/regional environmental changes (Zhou 301 
and Kyte, 1992; Kyte et al., 1993; Tanaka et al., 2022; Yasukawa et al., 2023). Moreover, 302 
pelagic clay is also attracting attention as a promising resource for rare-earth elements (Kato et 303 
al., 2011; Yasukawa et al., 2014; Takaya et al., 2018; Ren et al., 2021). However, the scarcity of 304 
microfossils except for ichthyoliths has hampered making precise age models of pelagic clay. 305 
Letting machines perform much of the time-consuming observations, substantial amounts of 306 
ichthyoliths can be observed, and more accurate age models will be established. This should 307 
provide numerous insights into the evolution of pelagic environments from paleoceanographic 308 
viewpoints, as well as the ore genesis and potential distributions of the prospective deep-sea 309 
mineral resource. 310 

We also expect that this tool will improve our understanding in biological and ecological 311 
studies. As a demonstration, we show a downhole variation of denticle/tooth (D/T) ratios at 312 
DSDP Site 576 in the western North Pacific Ocean (Table 3, Figure 5), which were generated 313 
from the detection results of model #13 combined with manual check. D/T ratio is an index for 314 
relative ratios of shark and ray-fined fish, an indicator of marine vertebrate community stability 315 
(Sibert et al., 2016). By manual counting in a previous study (Sibert et al., 2016), three stages in 316 
the D/T ratios from the late Cretaceous to the present were proposed. Cretaceous ocean (i.e., 317 
older than 66 Ma) was characterized by high D/T ratios, reflecting a relatively small number of 318 
ray-fined fishes compared to the present ocean. Subsequently, Paleogene ocean (from 66 to ~20 319 
Ma) showed moderate D/T ratios, reflecting the evolution of ray-finned fish after the K/Pg 320 
boundary (Sibert and Norris, 2015). Finally, the modern ocean (from ~20 Ma to the present) is 321 
characterized by low D/T ratios, which may reflect an extinction event of sharks in the early 322 
Miocene (Sibert et al., 2020) and the consequent predominance of ray-finned fish. In the 323 
previous study, the trend was clearly exhibited from the South Pacific (DSDP Site 596), but the 324 
evidence from the North Pacific (ODP Site 886) was somewhat limited due to the huge hiatus in 325 
the Paleogene (Figure 5). Using our deep learning-based image processing method, we found 326 
D/T ratios results that were consistent with the previous study from DSDP Site 576 in the North 327 



manuscript submitted to Earth and Space Science 

 

Pacific site that has continuous Paleogene sedimentation, supporting the pelagic vertebrate 328 
community structure proposed in Sibert et al. (2016). While this method is still developing, high 329 
throughput data collection provides the opportunity for elucidating the interaction between 330 
environmental change and the marine vertebrate community.  331 

 332 
Table 3. The total count of ichthyoliths in the three classes was detected by model #13 (YOLOv7-X. trained on the 333 
dataset “extended_all” with an image size of 640. Results after the manual check are also provided.  334 

Sample depth 
(mbsf) Age weight 

(g) 
v7x_extended_all v7x_extended_all + manual check 

Outlier 
tooth denticle sawToothed tooth denticle sawToothed 

576B_01_02_77 2.28 P-Qa 2.53 2 1 0 2 0 0 1b 

576B_01_06_52 8.03 P-Qa 3.45 16 0 1 13 0 1  

576B_02_03_125 12.46 P-Qa 2.99 44 4 2 36 1 0  

576B_02_07_23 17.44 P-Qa 6.40 89 3 8 76 1 1  

576B_03_03_125 21.96 Miocene 2.19 12 1 0 9 0 0 1b 

576B_03_06_81 26.02 Miocene 3.81 123 5 5 101 3 3  

576B_04_01_75 27.96 Oligocene 2.72 38 3 2 31 2 1 1b 

576B_04_02_25 28.96 Oligocene 3.26 151 5 6 124 4 2  

576B_04_03_25 30.46 Oligocene 3.65 191 9 6 164 9 1  

576B_04_03_75 30.96 Oligocene 3.75 194 7 8 165 4 3  

576B_04_04_75 32.46 Oligocene 5.71 526 15 7 472 9 3  

576B_04_05_75 33.97 Oligocene 4.24 542 32 4 472 24 2  

576B_04_06_21 34.93 Oligocene 4.04 1099 78 17 969 61 3  

576B_04_07_27 36.485 Oligocene 4.84 517 46 3 451 39 1  

576B_05_01_25 36.96 Eocene 3.71 455 44 3 391 32 2  

576B_05_02_75 38.96 Eocene 5.29 497 40 1 417 35 1  

576B_05_03_75 40.47 Eocene 5.26 635 55 4 519 43 4  

576B_05_04_75 41.97 Eocene 4.43 115 13 0 96 12 0  

576B_05_05_25 42.97 Eocene 5.52 294 31 1 223 26 0  

576B_05_06_75 44.97 Eocene 4.63 413 21 0 345 13 0  

576B_06_02_75 48.47 Paleocene 2.85 373 16 0 330 13 0  

576B_06_04_23 50.95 Paleocene 3.89 28 10 0 23 8 0 1b 

576B_06_04_140 52.11 Cretaceous 3.42 438 52 1 357 47 0  

576B_06_06_140 55.11 Cretaceous 4.16 486 82 0 392 68 0  

576B_07_03_139 60.105 Cretaceous 4.51 444 53 0 308 46 0  

576B_07_07_30 65.01 Cretaceous 2.48 239 21 0 164 18 0   

Note. aPliocene–Quaternary. bToo small #tooth compared to uppler/lower horizons. 
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 335 

Figure 5. A downhole variation of denticle/tooth ratios at DSDP Site 576, hole 576B, obtained 336 
by the detection model proposed in this study. The age model at Site 576 is based on ichthyolith 337 
biostratigraphy (Shipboard Scientific Party, 1985) corrected by Ir anomaly (Kyte et al., 1995). 338 
The results of three samples with two small numbers of teeth compared to upper and lower 339 
horizons were excluded from the plot. D/T ratios obtained by manual counting at DSDP Site 596 340 
(South Pacific) and ODP Site 886 (North Pacific) are also shown.  341 

4 Conclusions 342 

In this study, we proposed a new and efficient method for the observation of ichthyoliths, 343 
which is approximately ten times faster than our previous method. Using this method, we expect 344 
that studies using ichthyoliths, including biostratigraphy, geochemistry, paleoecology, and the 345 
evolution of fishes, will become more precise due to improved sample throughput and 346 
identification. Conventional studies on ichthyolith stratigraphy have focused mainly on the 347 
presence or absence of each ichthyolith species. In contrast, ratios of the species were hardly 348 
considered, possibly due to the enormous amount of manual work required to count the total 349 
number of fossils in a discrete sediment sample under a microscope. Since the object detection 350 
method is capable of counting the total number of ichthyoliths in a sample, as well as classifying 351 
them to a particular type (here, teeth, denticles, or saw-toothed teeth), it can rapidly calculate a 352 
ratio of each ichthyolith species within an entire sample slide glass. This tool enables research 353 
focusing on quantitative changes in the occurrence of each ichthyolith morphotype, which in turn 354 
will provide more accurate depositional ages on pelagic clays, improve geochemical 355 
reconstructions, and open the possibilities for high-resolution ecological and evolutionary studies 356 
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of fish and sharks at significantly increased spatiotemporal resolution. Finally, while we focused 357 
here on ichthyoliths, which are understudied compared to other microfossil groups, the 358 
automated deep learning methods presented here can be applied broadly to a wide array of 359 
microfossil groups, increasing the throughput of data across many fields of study.  360 
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