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Abstract16

The use of machine learning (ML) for the online correction of coarse-resolution atmo-17

spheric models has proven effective in reducing biases in near-surface temperature and18

precipitation rate. However, this often introduces biases in the upper atmosphere and19

improvements are not always reliable across ML-corrective models trained with differ-20

ent random seeds. Furthermore, ML corrections can feed back on the baseline physics21

of the atmospheric model and produce profiles that are outside the distribution of sam-22

ples used in training, leading to low confidence in the predicted corrections. This study23

introduces the use of a novelty detector to mask the predicted corrections when the at-24

mospheric state is deemed out-of-sample. The novelty detector is trained on profiles of25

temperature and specific humidity in a semi-supervised fashion using samples from the26

coarsened reference fine-resolution simulation. Offline, the novelty detector determines27

more columns to be out-of-sample in simulations which are known, using simple met-28

rics like mean bias, to drift further from the reference simulation. Without novelty de-29

tection, corrective ML leads to the development of undesirably large climate biases for30

some ML random seeds but not others. Novelty detection deems about 21% of columns31

to be novelties in year-long simulations. The spread in the root mean square error (RMSE)32

of time-mean spatial patterns of surface temperature and precipitation rate across a ran-33

dom seed ensemble is sharply reduced when using novelty detection. In particular, the34

random seed with the worst RMSE is improved by up to 60% (depending on the vari-35

able) while the best seed maintains its low RMSE.36

Plain Language Summary37

Corrective machine learning can improve the prediction accuracy of coarse-grid cli-38

mate models, but also makes them more vulnerable to inputs lying outside the range of39

training data for the machine learning algorithm. For such inputs, the machine learn-40

ing may give unreliable results. Using a separate machine learning scheme, we identify41

out-of-sample data and disable the machine learning correction for these cases. We find42

that this robustly improves the time-mean temperature and precipitation patterns pre-43

dicted by ML-corrected climate simulations to be 30-50% better than similar simulations44

without ML. By improving the accuracy of coarse-grid climate models, this work helps45

make accurate climate models accessible to researchers without massive computational46

resources.47

1 Introduction48

Accurate, reliable climate models are essential for projecting climate change and49

its impacts. To explore a range of scenarios and account for natural climate variability,50

climate models must also be computationally quick and affordable. This is typically achieved51

by using relatively coarse grid resolutions (typically between 50 km and 200 km) and rep-52

resenting processes that operate at finer spatial scales by somewhat empirical human-53

designed ‘subgrid parameterizations’.54

The use of machine learning in atmospheric modeling has taken various forms, in-55

cluding emulating existing physical parameterizations (e.g. Krasnopolsky et al., 2010;56

Chantry et al., 2021), replacing physics parameterizations by learning from a high-resolution57

model (e.g. Rasp et al., 2018; Brenowitz & Bretherton, 2019; Yuval & O’Gorman, 2020;58

Wang et al., 2022), or using ML for online correction of a complete atmospheric model59

(Watt-Meyer et al., 2021; Bretherton et al., 2022; Clark et al., 2022; Kwa et al., 2022;60

Chen et al., 2022). Here we will focus on the latter strategy.61

Previous works (Rasp et al., 2018; Brenowitz & Bretherton, 2019; Yuval & O’Gorman,62

2020; Watt-Meyer et al., 2021) have suggested that correcting or augmenting physics-63

based climate models with machine learning (ML) can improve weather forecast skill and64
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reduce climate biases. However, ML-augmented models can be susceptible to instabil-65

ities (Brenowitz, Beucler, et al., 2020), and their online performance can be sensitive to66

subtle offline ML training differences, such as random seed selection, in hard-to-predict67

ways (Brenowitz, Henn, et al., 2020; Wang et al., 2022).68

This study draws on the idea of using a compound parameterization (Krasnopolsky69

et al., 2008; Song et al., 2021) to mask ML models with high uncertainty. Specifically70

we train a novelty detection algorithm (Hodge & Austin, 2004) and use it to mask ML71

corrections when the input state is determined to be outside the distribution of the train-72

ing data. Our approach adds robustness to past approaches (specifically Kwa et al., 2022)73

while consistently improving temperature and precipitation bias metrics. A preliminary74

version of this study was presented in Sanford et al. (2022); an important but unrelated75

software bug fix and some changes in configuration led to substantial changes in inter-76

pretation of the effects of the novelty detector, as discussed in Section 2.5.77

We model the atmosphere as a discretized system of partial differential equations.
The atmospheric state is modeled as X = (x1, . . . , xN ) ∈ RN×d, a three-dimensional
grid of N latitude/longitude coordinates with d-dimensional column vectors concatenat-
ing the vertical profiles of gridpoint values of air temperature, specific humidity, winds
and other fields. In a ‘baseline’ model with no added ML corrections, the state of a par-
ticular column xi ∈ Rd evolves over time as

dxi

dt
= fi(X, t) (1)

for some fixed fi derived from physically-based assumptions.78

The number of grid columns N scales with the inverse square of the desired grid
spacing; large N (a fine grid) typically yields more accurate but computationally expen-
sive simulations. While accuracy penalties due to poor grid resolution are expected for
small N , coarse-grid simulations are also biased by imperfect representations of subgrid-
scale processes like thunderstorms and cloud radiative effects (Zhang & Wang, 2006; Woelfle
et al., 2018). ML is an appealing way to de-bias this coarse climate model by predict-
ing and compensating for its error. The ML-corrected model can be written

dxi

dt
= fi(X, t) + g(xi, φi; θ), (2)

where g(·; θ) : Rd+3 → Rd is a learned function with parameters θ that predicts cor-79

rective tendencies from the column, xi ∈ Rd, and its insolation, surface elevation, and80

latitude φi ∈ R3. The ML correction enables the baseline to better approximate a ref-81

erence fine-grid model while maintaining the underlying physics as the core of the mod-82

eling approach (Brenowitz & Bretherton, 2019; Watt-Meyer et al., 2021).83

While ML-based models frequently improve overall error, these models—especially84

deep neural networks—are often not robust, meaning they perform poorly for out-of-sample85

data. In online application, where predictions are fed back into the model, the correc-86

tive ML can induce errors in the overall simulation that accumulate in time, creating large87

systematic biases and instabilities (Brenowitz, Henn, et al., 2020).88

This motivated us to employ semi-supervised novelty detection to predict when a
column xi belongs to the training distribution of g and suppress the tendencies of the
ML model if not. This paper shows that strategy can substantially improve the model
stability and climate accuracy. With novelty detection, our model has the form

dxi

dt
= fi(X, t) + η(xi; ρ)g(xi, φi; θ), (3)

for a novelty detector η(·; ρ) : Rd → [0, 1] with parameter vector ρ.89
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2 Methodology90

2.1 Dataset91

We train the ML tendency correction g(·; θ) offline as described by Kwa et al. (2022).92

The training samples ((x1, φ1), y1), . . . , ((xn, φn), yn) consist of input features and tar-93

get nudging tendencies yi(described below) for a set of atmospheric columns sampled at94

time steps of a nudged coarse model simulation. A neural net with parameters θ is trained95

to make g best match the nudging tendencies.96

The nudged coarse model simulation is constructed to track the evolution of a ref-97

erence fine-grid no-ML climate model simulation, averaged to the coarse grid cells. Sym-98

bolically, the atmospheric state in this reference simulation is denoted X
(1)
fine, . . . , X

(T )
fine ∈99

RN×d.100

To nudge the coarse simulation to this fine-grid reference, we add a relaxation term
to the coarse-grid model of the form

yi :=
xfine,i − xi

τ
,

with a specified nudging timescale τ = 3 hours. By construction, the time-evolving at-101

mospheric state X(1), . . . , X(T ) of this nudged run is approximately (but not exactly)102

the same as in the fine-grid reference. The yi are the nudging tendencies that we learn;103

we denote the N × d arrays of their values at each time as Y (1), . . . , Y (T ).104

For our coarse-grid model fi, we use a version of NOAA’s FV3GFS global weather105

forecast model (Zhou et al., 2019) with a C48 cubed-sphere grid of approximately 200 km106

horizontal grid spacing (Putman & Lin, 2007). In this grid, the Earth is divided into 6107

square tiles with a 48-by-48 grid imposed on each, for N = 6 · 482 grid columns. This108

model has 79 vertical levels between the surface and the top of the atmosphere.109

The fine-grid reference model (Cheng et al., 2022) is generally similar to the coarse110

model, with the same number of vertical levels, but has a cubed-sphere C3072 grid with111

a much finer horizontal grid spacing of approximately 3 km. We used a year of three-112

hourly reference model output coarsened to the C48 grid by horizontal pressure-level av-113

eraging (Bretherton et al., 2022).114

Samples are collected from a year-long nudged coarse-grid simulation; the state and115

nudging tendencies are saved every 3 hours. After dividing this data into interleaved time116

blocks for the train/test split and randomly subsampling down to 15% of the columns117

in each timestep, we are left with n = 2834611 training samples spanning 2020-01-19118

through 2021-01-17.119

The same dataset Dx = {xi ∈ Rd : i ∈ [n]} is used to train the novelty detector η(·; ρ).120

The nudging tendencies yi are omitted, as the novelty detection procedure requires no121

labels.122

2.2 ML-corrected climate models and data123

The novelty detection procedure does not affect the training of the neural nets used124

to predict the nudging tendencies. We consider two such corrective ML models: gTq and125

gTquv:126

• gTq corrects vertical columns of air temperature T and specific humidity q ten-127

dencies, but does not correct winds. That is, xi is a d = (2·79)-dimensional vec-128

tor with 79 temperature and 79 humidity coordinates, each corresponding to an129

atmospheric model level.130

• gTquv also corrects tendencies of the horizontal wind components (u, v) at each131

level, making xi a d = (4 · 79)-dimensional vector.132
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gTq(·; θ) : R158 × R3 → R158 predicts the vector of temperature and humidity nudg-133

ing tendencies yi from the temperature and humidity profiles xi, as well as the insola-134

tion, surface elevation, and latitude of the corresponding cell (φi). Hyperparameters for135

the corrective ML models were selected after performing a sweep optimized on single-136

timestep validation loss. We represent gTq(·; θ) as a three-layer dense multi-layer per-137

ceptron of width 419. The loss is measured by the mean absolute error (MAE) with L2138

kernel regularization of strength 10−4. We found that models trained with MAE loss were139

less prone to instabilities and drifts in online simulations than those trained with mean140

squared error (MSE) loss. We train the model with the Adam optimizer for 500 epochs141

using a fixed learning rate of 0.00014 and a batch size of 512 samples.142

On the other hand, gTquv(·; θ) : R316 × R3 → R316 is defined as the concatenation
of two learned functions for input x = (xTq, xuv) ∈ R158 × R158:

gTquv(x, φ; θ) = (gTq(xTq, φ; θTq), guv(xTq, xuv, φ; θuv)).

gTq(·; θTq) is the same as the aforementioned model. guv(·; θuv) : R316 ×R3 → R158 is143

separately trained to infer wind nudging tendencies from temperatures, humidities, and144

horizontal winds. Besides the different input dimension, guv(·; θuv) is otherwise struc-145

tured and trained identically to the other model.146

2.2.1 Fixed vertically flipped application of corrective wind tendencies147

Kwa et al. (2022) obtained better prognostic simulations using gTq than by also148

adding wind tendency correction gTquv. We have since found this was due to our inad-149

vertently applying the learned wind tendency correction in each column upside-down,150

such that the correction of the lowest level 79 was applied on the highest level 1, and vice151

versa. This configuration error, which also affected the wind-corrected simulations dis-152

cussed by Watt-Meyer et al. (2021), Bretherton et al. (2022) and Clark et al. (2022), arose153

because FV3GFS uses opposite vertical indexing of grid levels in the physical parame-154

terizations and dynamical core. After fixing this error, including corrective wind tenden-155

cies no longer leads to numerical instability, and most metrics of 3-7 day weather skill156

(e.g. RMSEs of 850hPa temperature) are significantly improved.157

We consider both corrective approaches to trace through the effects of rectifying158

this error on our results, and to show that the novelty detection is useful for both cor-159

rection methods.160

2.3 Novelty detection161

The novelty detector η predicts whether a column x belongs within the support of162

the training set, and we use it to mask the ML-predicted corrections. Specifically, if a163

column is determined to not be a novelty, then we let η(x; ρ) = 1 (recall Equation 3)164

to take full advantage of the learned correction g(x, φ; θ); otherwise, we ignore g(x, φ; θ)165

by setting η(x; ρ) = 0.166

Novelty detection is a well-studied semi-supervised learning problem about esti-167

mating the support of a dataset using only positive examples (Hodge & Austin, 2004).168

We frame the problem as novelty detection rather than outlier detection (an unsuper-169

vised problem with mixture of in-distribution and out-of-distribution samples) or stan-170

dard two-class supervised classification, because we have no dataset of representative out-171

of-distribution samples and constructing such a dataset would introduce additional model-172

dependence into this process.173

There are many known approaches to novelty detection, including local-outlier fac-174

tor (Breunig et al., 2000), k-means clustering (Nairac et al., 1999), and minimum-volume175

ellipsoid estimation (Van Aelst & Rousseeuw, 2009). Our exploratory work considers two176

approaches: a simple “min-max” novelty detector and a one-class support vector ma-177
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chine (OCSVM). For each of these we consider novelty detectors ηT with 79-dimensional178

temperature vectors as input and ηTq with 158-dimensional combined temperature and179

specific humidity vectors.180

We did not consider novelty detectors with wind inputs. Adding more inputs to181

the OCSVM classifier requires further hyperparameter tuning (see Appendix A) to keep182

the evaluation time low enough to be usable within prognostic simulations; we therefore183

limit the scope of this work to out-of-sample detection on temperature and specific hu-184

midity fields.185

Naive “min-max” novelty detector The min-max novelty detector considers the
smallest axis-aligned hyper-rectangle that contains all training samples and categorizes
any sample outside the rectangle as a novelty:

ηminmax(x; (xmin, xmax)) =

{
1 if xk ∈ [xmin,k, xmax,k] ∀k ∈ [d],

0 otherwise,

for xmin,k = mini,t x
(t)
i,k and xmax,k = maxi,t x

(t)
i,k as the minimum and maximum over186

the training data of the kth feature. While efficient, this novelty detector cannot iden-187

tify irregular correlations between input features that nevertheless lie within the bound-188

ing box.189

One-class support vector machine (OCSVM) The one-class SVM algorithm of190

Schölkopf et al. (2001) repurposes the SVM classification algorithm to estimate the sup-191

port of a distribution by finding the maximum-margin hyperplane separating training192

samples from the origin. The OCSVM has been applied to novelty detection for genomics193

(Sommer et al., 2017), video footage (Amraee et al., 2018), propulsion systems (Tan et194

al., 2019), and the internet of things (Yang et al., 2021).195

We normalize each input xi and utilize the kernel trick, lifting it to the infinite-dimensional
feature space ϕ(xi) corresponding to the radial basis function (RBF) kernel κγ(x, x

′) =
exp(−γ∥x−x′∥22). We parameterize the novelty detector with ρ = (α, ξ, γ) in its dual
form,

ηOCSVM(x; (α, ξ, γ)) =

{
1 if

∑n
i=1 αiκγ(x, xi) ≥ ξ,

0 otherwise.
(4)

The sensitivity of the novelty detector can be adjusted by choosing a cutoff ξ > 0. The196

learnable real-valued weights αi ≥ 0 correspond to each training sample xi. Intuitively,197

a large αi indicates that the proximity of x to xi indicates that x is likely in the support;198

a small (or zero-valued) αi means that the novelty of samples can be determined with-199

out measuring their proximity to xi. The goal is to find a relatively small subsample of200

training samples xi and corresponding nonzero weights αi that can be used to confidently201

and efficiently assess whether x is out of sample.202

The weights are learned by solving a quadratic program based on the training data.203

The number of nonzero αi depends on γ and a regularization parameter ν. The predic-204

tion rule depends exclusively on the support vectors, or the training samples xi with αi >205

0. To obtain a robust and computationally efficient novelty detector, for a given γ we206

choose ν to ensure the number of support vectors is on the order of at most 104, less than207

0.5% of the training data sample. Smaller values of γ correspond to novelty detectors208

with highly smoothed support estimations that may be larger than necessary, while large209

γ provides a smaller and perhaps more topologically complex region.210

We explain the process of OCSVM parameter selection and the resulting trade-offs211

more comprehensively in Appendix A and Section 4. For the main results presented in212

3, we chose γ = 4/79, ν = 10−4, and ξ = 0.12, for which the novelty detector classi-213

fies none of the training data and an acceptably small 2% of a withheld test set of the214

reference data as being out-of-sample.215

–6–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

2.4 Computing scalar metrics216

We measure the success of a coarse-grid simulated run by computing the root mean
square error (RMSE) of time-averaged quantities (850hPa and 200hPa temperature, sur-
face precipitation, total precipitable water) with respect to those same quantities for the
coarsened fine-grid run. We compute the RMSE of the time-averaged field s as follows:

RMSE(s) =

√√√√ N∑
i=1

ai

(
1

T

T∑
t=1

(
ŝ
(t)
i − s

(t)
fine,i

))2

, (5)

where ŝ
(t)
i and s

(t)
fine,i denote the field value at grid cell i ∈ [N ] and time t ∈ [T ] in our217

coarse-grid and the reference fine-grid simulations respectively, and ai are the normal-218

ized area weights of grid cells.219

2.5 Methodological updates vs. Sanford et al. (2022)220

We made two important methodological updates in this study compared to a sim-221

ilar recent work on which it is based (Sanford et al., 2022). Firstly, we fixed the previ-222

ous error (see Section 2.2.1), discovered after that earlier work, where the ML wind ten-223

dencies in each grid column were applied with inverted vertical indexing during online224

simulations. The second change is related to the application of the ML corrections gTq225

and gTquv in the upper atmosphere. Sanford et al. (2022) followed the approach of Kwa226

et al. (2022), in which the ML-predicted tendencies in the top three model layers were227

not applied as corrections. The rationale was that the sponge layer differences between228

low and high resolution models was a process we did not wish to correct, and there were229

relatively large magnitude nudging tendencies at these levels. In this study, we use a more230

aggressive tapering in which the ML-predicted outputs are tapered to zero throughout231

the uppermost 25 model levels using an exponential decay, as in Equation 6 of Clark et232

al. (2022). This improves the simulation of lower atmospheric air temperatures, and more233

importantly, helps prevent large upper atmospheric temperature drifts when using ML234

corrections of horizontal winds. Both of these changes improve the ML-corrected sim-235

ulations described by Equation 2 and impose a higher bar for the novelty detection to236

add value.237

3 Results238

3.1 Offline application of novelty detection239

Before integrating a novelty detector into online simulations with an ML-corrected240

climate model, we test it offline on data produced by the preexisting simulations. We241

compare the frequency of offline novelty detection for datasets generated from the first242

16 weeks of three C48 simulations – a no-ML baseline model simulation and two gTquv -243

corrected simulations that differ only in the random initial seed used in training the gTquv models.244

The gTquv seed 0 run has the largest yearly-mean precipitable water RMSE (4.4 kg/m2)245

across a set of four gTquv simulations, while the seed 3 run has the smallest (2.4 kg/m2),246

slightly smaller than that of the baseline run (2.7 kg/m2). Results with these two seeds247

demonstrate the difference in out-of-sample fraction between ‘high error’ and ‘low error’248

ML-corrected simulations. Feedback loops between less reliable ML corrections and out-249

of-sample column states may exacerbate mean-state drifts, showing up as locally higher250

offline novelty fractions. The baseline simulation tests the extent to which mean-state251

biases developing in a conventional climate model lead to detectable novelties.252

Figure 1 focuses on the first 16 simulated weeks of the simulation to make the drifts253

into out-of-sample states more visible. Within a few days, the baseline model moistens254

relative to the reference model until it generates enough clouds and precipitation to bal-255
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Figure 1. Zonal-mean fraction of novelties detected by the ηTq,OCSVM novelty detector over

the first 16 weeks of the (a) baseline, (b) seed 0 gTquv , and (c) seed 3 gTquv simulations.

ance surface evaporation, after which it settles into a new, slightly biased equilibrium256

in which about 25% of the columns are flagged as novelties.257

Initially, the seed 0 and seed 3 gTquv corrections both have the intended effect of258

keeping the global state closer to the fine-grid reference distribution. These ML-corrected259

gTquv runs have lower global novelty fractions than the baseline over the first two months,260

particularly in the tropics. However, from March onward, the novelty fraction in the base-261

line tropics plateaus, while both gTquv simulations continue to drift farther out-of-sample262

in the tropics.263

By the end of the 16 weeks shown in Figure 1, the “high error” seed 0 gTquv simulation264

has roughly twice as many out-of-sample columns compared to the baseline and “low er-265

ror” seed 3 runs. This demonstrates that suboptimal ML corrections (as in the seed 0266

gTquv model) can indeed push the state further out of the training set distribution, set-267

ting the stage for less reliable ML corrections that further exacerbate climate drifts.268

3.2 Online novelty detection improves temperature and precipitation269

predictions270

We assess the utility of the novelty detectors by incorporating η(·; ρ) into the coarse271

grid model and numerically simulating equation (3) for one year. We compare the pre-272

dicted atmospheric states x̂i to xfine,i using the RMSE of four time-averaged diagnos-273

tics calculated using equation (5): air temperatures at pressures of 200 hPa and 850 hPa274

(T200, T850) representative of the lower and upper troposphere, surface precipitation275

rate (SP)1, and precipitable water (PWAT)2.276

Table 1 compares the performance of six global simulations. The first is the no-ML277

baseline simulation; the next two are ML-corrected runs without and with wind tendency278

corrections; and the remaining three simulations use gTquv corrections and include nov-279

elty detection from equation (3) – these differ in the choice of novelty detector η and its280

inputs. The ηTq OCSVM uses the same parameter choices as for the offline comparisons.281

1 Current climate models make less consistent predictions of regional shifts in precipitation than of

surface temperatures; contrast sections B.2.1 and B.3.1 of IPCC (2021).
2 PWAT is the total mass of water contained in a vertical atmospheric column per cross-sectional area

and is highly correlated with the regional precipitation rate (Bretherton et al., 2004).
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Table 1. The RMSE scores of time-averaged metrics and novelty detection rates for year-long

simulations. Values for ML-corrected runs are the mean, with standard deviation in parentheses,

across the four random seeds. The “% Novelty” column represents the percent of columns over

the simulated year which were classified as out-of-sample and did not receive ML corrections.

Metrics are 200- and 850-hPa temperature (T200, T850), surface precipitation rate (SP) and

precipitable water (PWAT). For each metric, the run with the lowest RMSE is bolded.

Run % Novelty T200 (K) T850 (K) SP (mm/day) PWAT (kg/m2)

Baseline - 2.48 2.09 1.78 2.79
gTq - 2.50 (0.40) 1.97 (0.08) 1.52 (0.07) 3.97 (0.29)
gTquv - 3.30 (0.49) 1.31 (0.14) 1.40 (0.12) 3.40 (0.73)
gTquv, ηT,minmax 0.6 (0.3) 3.04 (0.65) 1.29 (0.06) 1.36 (0.07) 3.28 (0.72)
gTquv, ηT,OCSVM 5.0 (1.0) 2.84 (0.49) 1.38 (0.09) 1.37 (0.08) 3.36 (0.83)
gTquv, ηTq,OCSVM 20.6 (4.8) 1.24 (0.05) 1.30 (0.08) 1.29 (0.07) 2.38 (0.37)

For the ηT OCSVM, which uses fewer inputs, we use the same γ = 4/79 and ν = 10−4
282

but readjust the cutoff ξ to 2.02 to the minimum needed to suppress T -only novelties283

within the training dataset. For all the configurations except the baseline, we perform284

an ensemble of simulations using four identically-trained ML-correction models g initial-285

ized with different random seeds.286

Without a novelty detector, the conclusions for the gTq model (ML-corrected tem-287

perature and humidity tendencies only) are similar to Kwa et al. (2022). The metrics288

(second row in Table 1) are 10-20% better than for the baseline model, except for the289

PWAT RMSE which worsens. Adding corrective ML for winds (third row in Table 1)290

significantly improves the 850 hPa air temperature errors (ensemble-mean RMSE decreases291

from 1.97 K to 1.31 K), somewhat improves SP and PWAT, but substantially worsens292

the T200 RMSE.293

The min-max novelty detector (fourth row in Table 1) slightly improves the RM-294

SEs but has limited impact since it activates only rarely (in 0.6% of atmospheric columns,295

as shown in the second column of the table). This indicates the importance of bound-296

ing the data distribution more tightly than a high-dimensional box. The ηT,OCSVM novelty297

detector classifies a higher fraction of columns as novelties (5%) than the min-max de-298

tector, but the overall RMSE for the gTquv, ηT,OCSVM simulations are mostly on par with299

the gTquv results without novelty detection, with the exception of further improvements300

in T200 RMSE.301

The ηTq,OCSVM novelty detector, on the other hand, improves 200 hPa air temper-302

ature, surface precipitation, and precipitable water RMSEs by 62%, 8%, and 30% respec-303

tively, compared to the gTquv simulations without novelty detection. To achieve these304

improvements, the OCSVM novelty detectors activate in 21% of all atmospheric columns,305

averaged over the course of the year-long simulations. If compared to the same 16 week306

time period as the offline analysis of gTquv runs without novelty detection in Section 3.1,307

online novelty detection reduces the novelty fraction in ML-corrected runs by roughly308

half. In summary, suppressing ML corrections to columns with atypical temperature and309

specific humidity profiles helps keep the gTquv -corrected model within the envelope of310

its training data, where it is skillful in reducing temperature and humidity biases.311

Figure 2 shows the RMSE of time-mean surface precipitation, 200 hPa and 850 hPa312

temperature, and precipitable water across individual ensemble members of simulations313

using gTq , gTquv , and gTquv, ηTq,OCSVM . This illustrates that the ηTq,OCSVM novelty de-314

tection substantially reduces the variance in skill across the ML-corrected runs (also demon-315
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a) b)

c) d)

Figure 2. RMSE of time-mean fields in groups of ML-corrected simulations and the

baseline prognostic run. Each group of four blue points shows a range of results across

four randomly seeded corrective-ML models. The same randomly seeded gTq models are

used in all ML-corrected groups. The same four guv models are used in both the gTquv and

gTquv, ηTq,OCSVM groups.

–10–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

a)

b)

Figure 3. Time versus zonal-mean plots visualizing upper-atmospheric temperature biases

(against the fine-grid reference simulation) at the 200 hPa pressure level (top) and fractions

of novelties identified (bottom) by three different models initialized from random seed 0 (left

to right): (1) the ML-corrected climate model gTquv without novelty detection, (2) gTquv with

OCSVM novelty detection ηT,OCSVM using temperature as the input feature, and (3) gTquv with

OCSVM novelty detection ηTq,OCSVM using temperature and specific humidity as input features.

strated by the standard deviations reported in parentheses in Table 1), especially for pre-316

cipitable water and 200 hPa temperature. The novelty detection reduces variance and317

improves the overall ensemble skill by bringing the worst-performing gTquv seeds closer318

in line with the better performers.319

3.3 Improvements for a particular ML-corrected simulation320

In this subsection, the ML-corrected simulation results are shown just for the worst321

gTquv seed (0), to provide a clear illustration of how novelty detection especially bene-322

fits poorly-performing prognostic runs. This seed’s gTquv, ηTq,OCSVM simulation had a323

novelty fraction of 24.3%, slightly higher than the ensemble mean of 20.6%.324

3.3.1 Zonal-mean biases325

Figure 3 compares the time evolution of zonal-mean 200 hPa air temperature bi-326

ases in three ML-corrected year-long simulations: gTquv without novelty detection, and327
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a)

b)

Figure 4. Annual-averaged zonal mean temperature (top) and humidity (bottom) biases plot-

ted over pressure levels, for the baseline model (left) and seed-0 gTquv models with no novelty

detection (center) and with ηTq,OCSVM novelty detection (right).

two simulations with novelty detectors ηT,OCSVM and ηTq,OCSVM that use different fea-328

ture sets.329

The ML-corrected gTquv model without novelty detection develops a significant 5-330

10 K warm bias in 200 hPa air temperature across latitudes. The temperature-only nov-331

elty detection in gTquv, ηT,OCSVM removes the the largest magnitude warm bias at the332

North Pole during boreal summer, but otherwise does not prevent the global warm drift.333

Though the gTquv, ηT,OCSVM simulation develops 5-10 K biases within the first 16 weeks,334

the ηT,OCSVM OCSVM activates infrequently as it still classifies these columns’ temper-335

ature profiles as lying within the training distribution, presumably due to the large weather-336

associated variability of temperature sampled therein.337

The prognostic run in the right column of Fig. 3 shows that using specific humid-338

ity inputs in addition to temperature inputs is necessary for successful bias reduction via339

novelty detection. This greatly increases the rate of out-of-sample classification, espe-340

cially in the tropics. The 200 hPa temperature bias is dramatically reduced out to high341

latitudes, despite the majority of the novelty detection occurring in the tropics. We spec-342

ulate that this is due to changes in tropical convection, where the ηTq,OCSVM novelty de-343

tector is most active other than extreme polar latitudes.344

Figure 4 shows sections of time- and zonal-mean air temperature and specific hu-345

midity biases. Instead of the gTquv, ηT,OCSVM run, Figure 4 includes a baseline (no-ML)346

simulation for comparison, since that is what we are aiming to improve on. The base-347

line model air temperature is biased low in the tropical stratosphere and throughout the348

column in high northern latitudes. The ML-corrected gTquv model without novelty de-349

tection corrects the cold bias at high northern latitudes but develops an overall warm350
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Figure 5. Probability distribution function of daily-mean precipitation from all grid columns

around the globe, shown for the fine-grid reference, baseline, ML-corrected gTquv run without

novelty detection, and ML-corrected gTquv, ηTq,OCSVM run. The y-axis uses linear scaling above

0.01 (mm/day)−1 and log scaling below.

bias that is largest in the extratropical stratosphere. Adding the ηTq,OCSVM novelty de-351

tector on top of the gTquv corrections removes most of this stratospheric warm bias.352

Similarly, the ML-corrected gTquv model without novelty detection develops a trop-353

ical moist bias in specific humidity that is larger in magnitude than the baseline biases354

in both the boundary layer and the troposphere. Adding the ηTq,OCSVM novelty detec-355

tor greatly reduces this bias.356

3.4 Daily-mean precipitation distribution357

The ML-corrected gTquv, ηTq,OCSVM simulation also captures the global-mean prob-358

ability distribution function (pdf) of daily mean precipitation in the reference fine-grid359

simulation better than the baseline (no-ML) and gTquv approaches (Figure 5). The base-360

line run underestimates the frequency of low daily-mean precipitation below a few mm/day,361

while the ML-corrected simulations more closely match the fine-grid reference at the low362

end of the distribution. The baseline run over-estimates the high-precipitation tail of the363

target pdf, while the gTquv run underestimates the pdf in the tail. The gTquv, ηTq,OCSVM run364

matches the tail of the global precipitation pdf more closely up to rates over 100 mm/day.365

4 Varying novelty detector sensitivity366

Section 3 considered an OCSVM with γ = 4/79 and cutoff ξ set to the maximum367

score observed in the training data3. This model, whether applied only to temperature368

or to both temperature and humidity, appears to find a consistent “sweet spot” between369

the baseline run and the ML-corrected run with no novelty detection that reduces the370

mean-state drifts of both approaches. This section presents a sensitivity study that sup-371

ports this finding by considering several choices of γ and varying ξ to adjust the aggres-372

siveness of the novelty detector. We show that these approaches interpolate between the373

3 See Appendix A for a more thorough discussion of how the value of cutoff ξ impacts novelty frequency

in online simulations.
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Figure 6. RMSE of time-averaged 850hPa temperature (top), surface precipitation (center),

and precipitable water (bottom) of year-long global C48 simulations, all with ML-correction

gTquv and novelty detector ηTq,OCSVM with kernel inverse radius γ ∈ { 1
79
, 2
79
, 4
79
, 8
79
}. The plots

show each error metric as a function of the total fraction of identified novelties (a monotonic

increasing function of ξ) on the x-axis. The choices of ξ are given in Table A1 in Appendix A.

The single green star marker represents the OCSVM parameters used in the Results section.

Filled markers indicate consistent novelty detectors that classify no more than 5% of the holdout

reference training dataset as out-of-sample; open circles indicate inconsistent detectors.
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baseline and ML-corrected run as the cutoffs change, and that choosing an intermedi-374

ate model that categorizes a substantial fraction of samples as novelties balances the trade-375

off between the quality of temperature and surface precipitation estimates and of pre-376

cipitable water estimates.377

In Figure 6, we consider an ML-corrected model gTquv augmented with an OCSVM378

novelty detector ηTq,OCSVM with various choices of inverse radius parameter γ and cut-379

off parameter ξ. We plot the error metrics as a function of the fraction of novelties iden-380

tified online for each cutoff. We find that an intermediate cutoff balances strong perfor-381

mance on temperature and surface precipitation (for which the ML-correction-only sim-382

ulation has a lower RMSE than the baseline simulation) and total precipitable water es-383

timates (which are better predicted by the baseline model than the ML-correction-only384

simulation). Optimal temperature and precipitable water predictions generally occur when385

approximately 20% and 60% of samples are categorized as novelties, respectively (and386

hence suppressed). The plots demonstrate that this approach effectively interpolates be-387

tween those two extreme cases and that the cutoff ξ used in the preceding section lies388

near that sweet spot. The figure also demonstrates that different combinations of radius389

parameter γ and cutoff ξ result in similarly performing simulations when the fraction390

of novelties detected is the same.391

As the classification cutoff ξ is increased, a greater fraction of samples from the ref-392

erence dataset distribution will also be classified as out-of-sample. Detectors are consid-393

ered inconsistent if they return a significant novelty fraction when evaluated on a hold-394

out set from the training data, as this means that the detector has a higher false pos-395

itive rate in flagging samples as novelties when they are still within the training distri-396

bution. In this analysis we set a false-positive threshold of 5% to determine which (γ, ξ)397

combinations are consistent OCSVMs. OCSVMs which classify > 5% of the holdout ref-398

erence data as out-of-sample are deemed inconsistent and indicated as open circles in Fig-399

ure 6. These include all detectors that classify less 75% of online ML-corrected samples400

as typical and, for certain γ, even detectors classifying up to 95% as such. That is, the401

best climate performance using this ML correction model is found by using the maxi-402

mum ξ consistent with the false-positive threshold on the withheld reference data.403

5 Conclusion and future work404

This study demonstrates that applying novelty detection to ML-corrected coarse-405

grid atmospheric climate models can improve the quality and reliability of their temper-406

ature and precipitation estimates. Offline, a novelty detection algorithm trained on sam-407

ples from a coarsened high-resolution simulation tends to classify more columns as nov-408

elties in runs that drift further from the high-resolution reference. When applied online409

to mask ML-predicted corrective tendencies, the novelty detector maintains or improves410

the spatial patterns of time-mean surface precipitation rate, lower and upper atmospheric411

temperature and precipitable water. Furthermore, for an ensemble of ML-corrected sim-412

ulations (in which each simulation uses an ML model trained with a different random413

seed initialization of weights), use of novelty detection decreases the spread in model skill414

across the ensemble. This is a valuable property, since online use of ML parameteriza-415

tions can be highly sensitive to subtle changes in the offline training, such as random seed416

(e.g. Wang et al., 2022).417

Future work can build on this effort by experimenting with different novelty de-418

tection approaches, OCSVM kernels, inputs to η, and methods for integrating the nov-419

elty detector into the ML-corrected climate model. Practical implementation of the nov-420

elty detector can become a simulation bottleneck if the number of support vectors (Ap-421

pendix A) is too high. For the settings used in Section 3, the novelty detector roughly422

doubled the wall clock time per simulation timestep. It would be worth further inves-423

tigation into how few support vectors are needed to improve ML-corrected simulations424

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

online. In addition the more classical ML approaches to novelty detection explored here,425

future work may consider using neural networks directly for density estimation for the426

purpose of novelty detection. Finally, further analysis of the character of the out-of-sample427

behaviors that are being detected by the trained novelty detectors could help us better428

understand their causes.429

Appendix A Parameterization of the One-Class Support Vector Ma-430

chine431

As described in Section 2.3, we use a one-class SVM to predict whether a 158-dimensional432

column of temperatures and humidities is out-of-distribution and hence, whether we should433

suppress the learned ML-corrections. Implementation details and choices are discussed434

below.435

Given a set of in-distribution training data x1, . . . , xn ∈ R158, we learn a decision
rule that categorizes a new training sample x as in-distribution or not depending based
on the correspondence with each training sample xi according to kernel function κγ :

ηOCSVM(x; (α, ξ, γ)) = 1

{
n∑

i=1

αiκγ(x, xi) ≥ ξ

}
.

The model includes learned weights α ∈ [0, 1]n, a fixed kernel inverse-radius parame-436

ter γ, and a cutoff parameter ξ.437

We use the radial basis function (RBF) kernel κγ(x, x
′) = exp(−γ∥x−x′∥22) be-438

cause of its expressibility and due to the ease of trading off bias and variance with its439

inverse-radius parameter γ. A large choice of γ ensures that κγ(x, x
′) only has non-negligible440

output if x is extremely close to x′, while smaller γ selections cause a large “ball” of x441

around x′ to all have κγ(x, x
′) ≈ 1. Choosing large γ makes for a more expressive clas-442

sifier that can be used to fit any training data, but raises the risk of classifying many ‘holes’443

in between training data samples as out-of-sample. A smaller γ imposes a smoothing ef-444

fect on the learned classifier. The default SVM setting in scikit-learn is γ = 1
# features =445

1
2·79 . For our application, we find that a larger choice of γ tends to produce better out-446

comes and focus our study on four choices: γ ∈ { 1
79 ,

2
79 ,

4
79 ,

8
79}.447

The scikit-learn implementation of an OCSVM uses a regularization parameter ν448

in the training procedure to trade off classification accuracy and model simplicity when449

learning weights α ∈ [0, 1]n (Schölkopf et al., 2000). ν does so by regulating the num-450

ber of allowable support vectors, which are samples xi that have respective weight αi >451

0, which in turn scales the computational cost of each application of the OCSVM. Choos-452

ing a large value of ν puts a greater premium on categorizing every sample correctly by453

using more support vectors. Here, we use a parameter search to choose a ν for each γ454

that results in roughly 104 support vectors.455

Finally, the cutoff ξ affects the sensitivity of the learned novelty detector. A large456

choice of ξ causes an aggressive detector that categorizes a large number of samples as457

novelties (and hence, turns of the ML-corrected tendencies frequency), while a small ξ458

classifies more samples as in-distribution. We calibrate the sensitivity by drawing sam-459

ples from a full year of an ML-corrected run and choosing a cutoff ξp such that a frac-460

tion p of the given data are categorized as in-distribution; a larger choice of p results in461

a smaller ξp. For the sensitivity study in Section 4, we consider the corresponding ξp choices462

for each γ for p ∈ {0.25, 0.5, 0.75, 0.95, 0.99}. In Table A1, we give the respective choices463

of ν and ξp for each γ.464
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Table A1. One-class SVM parameterizations. For each kernel radius γ, we select a regular-

ization parameter ν in order to constrain the number of support vectors to roughly 10000 for

computational efficiency, which is in turn used to train a parameter vector α. Five cutoffs ξ are

identified to adjust the conservatism of the model: ξp is chosen to ensure that a p fraction of the

training dataset is categorized as in-distribution, i.e. ηOCSVM(x; (α, ξp, γ)) = 1.

γ ν # SVs ξ0.25 ξ0.5 ξ0.75 ξ0.95 ξ0.99

1
79 5 · 10−3 14365 351 321 289 227 153
2
79 5 · 10−3 15029 80 70 60 42 22
4
79 1 · 10−4 16030 0.18 0.15 0.12 0.065 0.023
8
79 4 · 10−6 12152 5.9 · 10−4 4.4 · 10−4 2.8 · 10−4 9.3 · 10−5 1.7 · 10−5

Open Research465

Code used to run these experiments is available at the Github repositories466

https://github.com/ai2cm/out-of-sample and https://github.com/ai2cm/fv3net,467

which are archived at https://zenodo.org/record/7872723 and468

https://zenodo.org/record/7872718, respectively. The coarsened fine-grid data used469

for initial conditions and in the nudged coarse-grid simulation is available upon request470

through a Google Cloud Storage ‘requester pays’ bucket.471
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